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AUTOMORPHISM SEQUENCES OF INTEGER
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JOAN L. DYER

Let /(G) denote the automorphism group of the group G, and let I" G -/(G) be the homomorphism which assigns to g e G the inner automorphism

l(g): x - gxg- (all x s G).
is procedure may be iterated to v rise to an automorphism sequence

G (G)((G))= 2(G) ’".
Such a sequence stabilizes in finitely many steps if the maps

I" ’(G) ’*(G)
are isomorphisms for all sufficiently large integers i; that is, (G) has a trivial
center and only inner automorphisms for all sufficiently large i. Such roups
are reded complete. Finite stability need not occur, even when G is assumed to
be linear. For th infinit dihedral roup D, ach

" ’(G) ’+ ’(G)
is a monomorphism with +’(G)/I((G))of order two (Hulse [7]). The main
rsult of this paper is"

THEOREM A. The automorphism sequences of the groups SL(n, Z)and
GL(n, Z) stabilize in finitely many steps.

When G is SL(n, Z) or GL(n, Z), the automorphism group /(G) is known
(Hua and Reiner [5], Wan [17]). Moreover, G has almost all automorphisms
inner, and almost has a trivial center. Thus the conclusion of Theorem A is a
natural one, and the automorphism sequences of these groups might be ex-
pected to stabilize very quickly. However the situation is surprisingly com-
plicated for the general linear group when n is even, as well as for the special
linear group when n 2.
We first establish:

THEOREM B. For n >_ 2, .q/(PGL(n, Z)) is complete" that is

I" ./(PGL(n, Z)-, ./2(PGL(n, Z))
is an isomorphism.
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For n >_ 3, Theorem B follows easily from Solazzi’s more general results on
the automorphisms of projective groups containing enough transvections ([15],
or see [13]). These results are obtained by extending O’Meara’s residual space
techniques, are valid for a broad class of rings, but exclude n 2. The first
determination of (PGL(n, Z)) is that of Hua and Reiner [6], utilizing what
has been termed the method of involutions and including n 2. In that paper,
the automorphisms of PGL(n, Z) that carry PSL(n, Z) to itself are determined.
This is indeed the full automorphism group for n >_ 3 as asserted in [6], but is
only a subgroup of index 2 in (PGL(2, Z)). This error appears not to have
been noted previously.
We next obtain

THEOREM C. If rl >_ 3, (SL(n, Z))is complete.

Since GL(n, Z) decomposes as the direct sum of SL(n, Z) and its center
{I., -I.) for odd n, PGL, GL, and SL have the same automorphism groups in
this case. Thus for Theorem A, there remains the general linear group in even
dimensions, and the exceptional n 2. The table which follows summarizes the
remainder of the computations. The entry in row , column G is a pair of
numbers: the first is the index of I(1- I(G))in ’(G)and the second is the
order of the center of (G). We remark that these, centers are all elementary
abelian 2-groups. The last entry in a column is the first (G) for which I:
"(G)- ’+ I(G)is an isomorphism.

.&3

.q6

(,,, z),
n > 4 and even

22; 2
22; 22
25.3;1
2’3;1
2;1

GL(2, Z)

22 22
26"3;
2;1
2;1

SL(2, Z)

22; 2
23;2
23 22
2; 2’
229. 32. 5" 7; 2
26. 3" 7; 23
212" 3," 7;
26.3.7;1

The automorphism groups of GL(n R) and SL(n, R), when n >_ 3 and R is
any integral domain, have been determined by O’Meara [12]; those of the
projective groups by Solazzi [15]. I conjecture that the automorphism seq-
uences of these groups are finite whenever the automorphism group of the ring
R has a finite automorphism sequence.

This paper is organized as follows: in Section 1, after establishing notation,
we state some consequences of the decomposition of .(G) relative to a split
short exact sequence
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where K is a characteristic subgroup of G. These results serve to organize the
subsequent computations. In Section 2 we obtain Theorems A, B, and C for
n > 3. Section 3 deals with the automorphisms of V and the group of deriva-
tions of SL(n, Z2) in V, for certain SL(n, Z2)-modules V. These results are
required in Section 4; the modules which arise are the (additive) group M(n, m)
of n x m matrices over Z2 on which SL(n, Z2) acts by left matrix multi-
plication, and the (additive) groups M(n), M(n)/{O, I} on which SL(n, Z2)acts
by conjugation. The results of this section imply that HI(SL(n, Z2), V) 0 for
n 4:3 (see also [4], [9]). Proofs are direct and elementary, proceeding from the
Steinberg presentation of SL(n, Z2) (see [16], [10]). The fourth and final section
is devoted to the case n 2. We obtain (PGL(2, Z)), correcting the error in
[6], and then Theorems A and B. It may be of interest to note the correction
required in [6]" in the notation of that paper, case b of Theorem 2 cannot be
eliminated (the assertion "whence ($1 T2t)3 +__ I" on p. 469, lines 1 and 2, is
false). This case does arise, and leads to an exceptional automorphism defined
in terms of the generators

-1 1’ B=+I
of PGL(2, Z) by

S- SB, T TB, B- B.

Thus Theorem 2, the Corollary to Theorem 3, and Theorem 4 need
modification for n 2. A computation along the lines indicated in the proof of
Theorem 4 establishes that (PGL(4, Z)) is as asserted and then the induction
proceeds as given.

Results are numbered consecutively within a section, so that 2.3 refers to the
third result of Section 2.

1. Extensions and complete groups

For any group G and any x, y 6 G we write [x, y] xyx- ly- 1. H < G means
that H is a subgroup of G, and H < G that H is a normal subgroup of G. [G: H]
is the index of H in G, and al the order of G. For any subset S c G, (S) is the
subgroup generated by S and nm (S) is the normal subgroup generated by S.
For subsets S, T of G, [S, T] is the subgroup generated by all [s, t] with s 6 S,
6 T. The commutator or derived subgroup of G is [G, G], also denoted by G’;
G is perfect if G G’. cgo(S is the centralizer of S in G:

go(S) {g G l[g, s] 1 for all s e S}.
The center of G is ego(G), which will be written as Cg(G)../Vo(S)is the norma-
lizer of S in G.
For 9 G, cz (G) write [9, ] 9(9)-*. Then for T c G and S c

[T, S] is the subgroup of G generated by all [O, ] with g T, S; and
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is the fixed point set of S in G"

cg(S) {g G l[9, a] 1 for all a S}.
For any set S, Gs is the group of functions from S to G, under pointwise

multiplication #" Gs x Gs Gs, where (f # 9)(s)= f(s). 9(s).
The map I" G ’(G) defined by

I(g)(x gx0-1 (O, x 6 G

is a homomorphism of G onto the group I(G) of inner automorphisms of G.
I(G) < I(G), since

I(g)-1 l(a(g)) ( ,(G), g G).
G is complete if I" G ,_’(G) is an isomorphism. Thus the automorphism seq-
uence obtained from G stabilizes in finitely many steps if and only if ./’(G) is
complete for some integer r. If (G) 1, I" G .(G) is a monomorphism. In
this situation, we will identify 9 G with 1(9) ;(G) whenever convenient.

Let K be a characteristic subgroup of G; that is, restriction to K induces a
homomorphism (G) ,(K). Then he natural projection G G/K induces
a homomorphism ’(G)- q/(G/K). Throughout this paper, homomorphisms
of the type G .q/(G), ._’I(G) .I(K), and ,_(G) ._c/(G/K) will always be
given by I (viewed as an inclusion if (G) 1), restriction to the characteristic
subgroup K, and the map induced by the natural projection, respectively. Note
that in general these homomorphisms are neither monomorphisms nor
epimorphisms.
For n > 3, SL(n, Z) is the commutator subgroup of GL(n, Z) (see [5] or [11,

p. 108]). Therefore SL(n, Z)is a characteristic subgroup of GL(n, Z), and Wan
[17] has established"

THEOREM 1.1 [17]. For n >_ 3, the restriction map induces an epimorphism

.(GL(n, Z))--..e/(SL(n, Z)). |

This result also follows from O’Meara’s more general determination of the
automorphisms of linear groups over integral domains.

If K, Y are groups and " Y ,(K) is a homomorphism, the semidirect
product of K by Y with action , written K x , Y, is defined to be the set K x Y
with multiplication

(h, x)(k, y)= (h lax(k), xy) (h, k K, x, y Y).
Thus K x. Y is a group, and we will identify K, Y as subgroups of K x. Y.
Note that G - K x, Y if and only if G contains subgroups K*, Y* isomorphic
to K, Y respectively, such that

K*<zG, K* Y*= 1, G=(K* w Y*),
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and such that # corresponds to Y* acting on K* by conjugation. In the case
Y < (K) and kt is inclusion, we write K , Y. Iflm/ 1, K x u Y

_
K q) Y.

For groups K, Y define .#(K, Y)as a set by :gI(K, Y)= (K) x K x
.(Y); under the product

(, , )(, , &)= (, &,
..#(K, Y) is a group. Moreover, if G satisfies an exact sequence

E’IKGYI

and i(K) is a characteristic subgroup of G, then there is a monomorphism
.(G) .#(K, Y). The elements of Im may be characterized in terms of

the data associated with the extension E (cf. [19]). We will exploit this result in
the special case G K x, Y.

PROPOSITION 1.2. t G K x, Y, and assume that K is characteristic in G.
Define " .(G) .#(K, Y)by

(7) (a, , fl) 7(k, x)= (a(k)6(x), fl(x)).
Then (, , fl) Im if and only the two conditions below hold, for all x,
yY"

() x-’ t(()),., (i, ./(K)),
(2) (y)= (). ,,((y))(i, K).
Proq[ To each .(G) there corresponds a commutative diagram

IKK x YYI

so that 7(k, x)= ((k)f(x), 3(x)), and (, 6, 3)-#(K, Y) by the Five-lemma.
Conversely, the Five-lemma implies (, 6, fl) Im if and only if , defined as
above, respects products in K , Y. By computation, we require

x(h" ty)= f)’x(h))’xt(y))
for h K, x, y Y which is equivalent to (1) and (2).
The propositions which follow are fairly immediate consequences of 1.2 and

will be used in the computations of automorphism groups in the rest of this
paper. Henceforth, we identify .v/(G) and Im .

PROPOSiTiON 1.3. t G K x, Y, where K is a characteristic suboroup of
Go

(1) The kernel of the projection ../(G)o../(K).,/(Y) is

Der, (Y, c6 (K)) {6" Y --, c6 (K)lf(xy) 6(x). laxf(y).lbr all x, y Y}.
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(2) If eft(K) 1, (G) is isomorphic to the subgroup of ._l(K) (Y) given
by

{(, fl)la#x-’l;x’ I(K)).
(3) If(K) 1 and Ker # 1, then .(G) is isomorphic to the normalizer of

(I(K) Im ()) in (K).
(4) Ifr is complete, (G) K .(Y).
(5) If Y is complete, .(G) M x r where

M {(a, 6) (K) x Der,, (r, K)[ [a, ,] I(6(x))for all x Y}
with product (a, b)(a2, 62)= (a a2, a b2 # ), and

p(, 6) (##; , #6I(y)- t).
Proo By 1.2, if a fl 1 then I(6(x))= 1 so 6(x) (K) and

derivation. This is part (1); for part (2), I’K ,d(K) is a monomorphism
when (K) 1. Consequently, equation (2) of 1.2 may be derived from equa-
tion (1):

l(b(xy)) axya

afxfya- #;#;x

I(6(x)x(6(y))).
Therefore Im (,d(G) (K) d(Y))is as described in part (2)above. Part
(3) follows from part (2) since I(K)d(K) and fl d(Y) is determined by
#fl" Y (K). Part (4) also follows from part (2), since K is complete means
that (K)= 1 and I(K)= (K).
When Y is complete, Y m {(#, 1, l(y))]y Y} < .d(G). The remaining st.ate-

merits of part (5) follow from 1.2 and the computation

(fly, 1, I(y))(a, , 1)(fl; , 1, I(y-))= (graft; , flybl(y- ), 1).
We remark that 1.3(3) is Lemma 1.1 in J. S. Rose [14], and that (4)follows

from Baer’s observation that any complete normal subgroup K of a group G is
a direct summand of G [1].
We turn now to the case in which K is also assumed to be abelian. Write the

group operation in K additively, and view K as a left Y-module by means of
.#: Y (K). Denote by d,(K) the group of Y-module automorphisms of K
(that is, d,(K)= #tr(Im #)), and by Der,, (Y, K)!he additive group of deri-
vations of Y in K"

Der, (Y, K)= {6" Y K ]6(xy)= 6(x)+ #x6(Y)for all x, y Y}.
The inner derivation determined by k e K is the derivation 6(x)= k
and corresponds to l(k) #(K x,, Y).
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PROPOSITION 1.4. Let G K x, Y, where K is a characteristic abelian sub-
9roup of G, and let t: ,(G)- ,_(Y) be the projection.

(1) Ker n - Deru (Y, K) x, u(K), where a(6)= 6.
(2) Im rr {fl (Y)I#, la fl: Y .(K) are equivalent representations}.
(3) If Y is complete, (G)- Kern xp Y where pr(6, )= (/rbl(y-1), ).
(4) If Y is complete and Im/ is abelian, ._’(G)- Ker n x p Y where now

pr(6, )= (6I(y-), ).

Proof. Since I(K) 1, (1) and (2) are immediate consequences of 1.2. When
Y is complete, (3) follows from 1.3(5). To obtain (4), define s: Y ///(K, Y) by
s(y) (1, 0, y). Then Im s < (G) by 1.2, ns 1: Y Y; and so

(G) - Ker r x Ims- Ker r x o Y. |

COROLLARY 1.5. Continue with the hypotheses of 1.4.

(1) IfKer/ 1,

(G) - Der. (Im/, K) x, ....V’K)(Im #)
where p,(6 6o I(- ).

(2) If lm n I(Y)and c(y)= 1,

(G)- Der (Y, K) x a (Y )
where pr,)(6) #rfI(y-X). |

See also [14] for results related to 1.4 and 1.5.

COROLLARY 1.6.
oroup of G.

Let G - K Y where K is a characteristic abelian sub-

(1) ,(G)- Hom (Y, K) x. (,_e/(K)@,(Y)), where pt,,a,(6)= 6fl-.
(2) tf Y is complete, :(G)- (Horn (Y, K) .(K))03 Y, where

The criterion which follows is due to Burnside; it may be deduced from
Rose’s 1.3(3 ).

THEOREM 1.7 [2, p. 95]. lfC(G) 1, then .(G) is complete ifand only ifG is
a characteristic subgroup of,_(G). |

Finally, we quote Wielandt’s rather sweeping sufficient condition for finite
automorphism sequences"

THEOREM 1.8 [18]. If G is a finite 9roup and (G)= 1, then the automor-
phism sequence of G stabilizes in finitely many steps.
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2. Automorphism sequences, n > 3

The projective general linear group PGL(n, Z) is the quotient of GL(n, Z) by
its center {I,, -I}, and is a group with trivial center. In this section we first
prove that the groups (PGL(n, Z)) are complete, by applying Burnside’s
criterion to a special case of Solazzi’s Theorem ([15]; see 2.1 below). Theorems
A and C for odd n are then obtained as a corollary. Next, we utilize Hua and
Reiner’s determination of (GL(n, Z)) ([5]; see 2.4 below) to complete the
proof of Theorem C and then to compute the automorphism sequences for the
general linear groups (even n > 4). We begin by stating the Solazzi results we
require.

THEOREM 2.1 15].

where

and

For n > 3,

(PGL(n, Z)) - (PSL(n, Z))- PSL(n, Z) x (Z2 Z2),

Im a {1, " +_X---, +AXA-’, fl" +__X + +X-’, }

A diag (- 1, 1,..., 1)6 GL(n, Z). |

We have written +_ X PSL(n, Z) for the image of X SL(n, Z) under the
natural projection, X is the transpose of X, and X -t (X-l)t.

COROLLARY 2.2. (1) For n >_ 3, /(PGL(n, Z)) is complete.
(2) If n is odd, n > 3,

’(PGL(n, Z))-- /(SL(n, Z))- (GL(n, Z)).
Proof. (1) Since PSL(n, Z)is perfect when n >_ 3 (cf. [11, p. 108]),PSL(n, Z)

is the derived group of (PSL(n, Z)). Hence PSL(n, Z)is a centerless group,
characteristic in its automorphism group; and so Burnside’s criterion (1.7)
yields (1).

(2) For odd n > 3, GL(n, Z) has the direct sum decomposition

GL(n, Z)- (I, -I) SL(n, Z).
Consequently PGL(n, Z)- PSL(n, Z)- SL(n, Z)and (e.g., by 1.6(1))

o(GL(n, Z))_ (SL(n, Z)). I
As stated in the introduction, the groups ’(PGL(n, Z)) (n >_ 3) were first

determined by Hua and Reiner [6]. Ying [20] subsequently established that all
automorphisms of PSL(n, Z) are induced by automorphisms of PGL(n, Z) for
even n >_ 6 (odd n cause no difficulty for PGL and PSL coincide). The final case
n 4 is part of Solazzi’s result, and we thank the referee for supplying the
reference. This replaced a rather laborious though elementary computation
which showed directly that Burnside’s criterion applies to .(PGL(n, Z)) (even
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n > 4) by proving that PGL(n, Z) is not isomorphic to the other two subgroups
of index two in (PGL(n, Z)).
The next proposition paves the way for us to apply the results of Section 1 in

the remainder of this section.

PROPOSITION 2.3. Let n > 3, and let K be an arbitrary finite group. If
G K x, sC(PGL(n, Z)), then K is a characteristic subgroup of G.

Proof Let r: G sC(PGL(n, Z)) denote the natural projection. If K is not
characteristic in G, then G contains a finite normal subgroup whose image
under is a non-trivial finite normal subgroup of sC(PGL(n, Z)). Thus it
suffices to show that s(PGL(n, Z)) contains no element with finitely many
conjugates, except 1. Let, then, e e sC(PGL(n, Z)) and assume that e has finitely
many conjugates. Then e centralizes a normal subgroup L, say, of finite index in
sC(PGL(n, Z)). We will prove that e centralizes PGL(n, Z), which implies that
e 1. Let x PGL(n, Z), y e L; then x-yx e L so

Thus [x,]PGL(n,Z) and centralizes L. But +eL for d=
I(PGL(n, Z))/L I, say, where eu is the elementary matrix with l’s down the
main diagonal and in position i, j; zeros elsewhere. But the only element of
PGL(n, Z) that commutes with all + ed (d 0)is the identity. Hence [x, ] 1,
or 1 as required. |

We now establish that the automorphism sequence of SL(n, Z) and GL(n, Z)
are finite for n even, n > 4. We first quote Hua and Reiner’s determination of
(GL(n, Z)) for the case under consideration.

THEOREM 2.4 [5]. Let n be even, n > 4. Then

(GL(n, Z)) PGL(n, Z) x, (Z2 Z2),
where Im tr {1, " X X-’, fl: X (det X)X, ofl}. |

COROLLARY 2.5. For even n > 4,

(1) z’(GL(n, Z))-(PGL(n, Z)) Z2, and
(2) o(SL(n, Z))- (PGL(n, Z)) and is complete.

Proof By 2.1 and 2.4, /(PGL(n, Z)) is a subgroup of sC(GL(n, Z)) of index
2, and the action induced by fl on PGL(n, Z)is trivial. This is (1). Since fl acts
trivially on SL(n, Z) and s(GL(n, Z)) sC(SL(n, Z)) is onto (1.1), (2)
follows. |

Denote the additive group of 2 x 2 matrices over Z2 by M(2, 2) and set
M M(2, 2) x SL(2, Z2) where 2 denotes the (left) action of SL(2, Z2) on
M(2, 2) given by matrix multiplication’

2A" X AX (X M(2, 2), A SL(2, Z2)).
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Note that SL(2, Z2) $3, the symmetric group on 3 symbols (they are nonab-
elian groups of order 6), and that $3 is complete.

THEOREM 2.6. Let n >_ 4 be even.

(1) ed2(GL(n, Z))- Z2 03 Z2 @ /(PGL(n, Z)).
(2) /3(GL(n, Z))- M O)/(PGL(n, Z))and (M)= 1.
(3) 3+k(GL(n, Z))

_
/k(M)) M(PGL(n, Z)) and the automorphism seq-

uence of GL(n, Z) stabilizes infinitely many steps.

Proof. Put Y I(PGL(n, Z)) and write ’ for ’(GL(n, Z)). It follows
from (2.1) that Y/Y’

_
Z2 @ Z2.

Since a’1
_
Z2 Y, Z2 is characteristic in 1 and 1.6(2) yields

,2
_

{Horn (Y, Z2) x, M(Z2)} @ Y

Som (Y/Y’, Z2) Y

Z2 @ Z2 @ Y.

This is (1), and we may again apply 1.6(2) to obtain

M3 {nom (Y, Z2 Z2) x, (Z2 Z2)} Y

{nom (Z2 @ Z2, Z2 @ Z2) x, (Z2 @ Z2)} Y

MY.
Since ($3)= 1, (M)= t2.2(SL(2, Z2)), which is the fixed point set of
SL(2, Z2) acting on M(2, 2) by left multiplication 2. Consequently (M)= 1.

Finally, part (3) follows from Wielandt’s Theorem (1.8) once we prove that
M(K Y) M(K) Y for any finite centerless group K. By 2.3, K is charac-
teristic in K Y so 1.3(2) impes

(K Y) = (K)(Y) = (K) Y. I
As a consequence of 2.6(3), 3+k(GL(n, Z))is complete if and only if k(M)

is complete; we conclude this section by establishing that 2(M) is a complete
group. One preliminary lemma is required; the group M and these computa-
tions appear again in Section 4 in connection with the automorphism sequence
of OL(2, Z).

LEMMA 2.7. View M(2, 2) as a left SL(2, Z2)-module under left multiplication
2.

(1) Der (SL(2, Z2), M(2, 2))- M(2, 2), where X M(2, 2) corresponds to
the (inner)derivation A (I A )X.

(2) .(M(2, 2))- St(2, Z2), where B St(2, Z2) corresponds to the auto-
morphism X XB-1.
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Proof. Let di be any derivation, and put

1
SL(2, Z2).

Then C2 + C + I 0, so that we may define X e M(2, 2) by

6(C) (I- C)X.
Note that 6(C- ) (I C- x)X, and that ACA- C+ for all A SL(2, Z2).
Consequently,

6(C+) 6(ACA-X)= (I C+ x)6(A)+ A3(C)
which implies that 6(A)= (I- A)X as required.
Now let s M(M(2, 2)); we claim (X)= XB- for some B SL(2, Z2).

Let m M(2, 2) denote the matrix with 1 in position i, j and zeros elsewhere.
The fixed point set of (e2) in M(2, 2)is (mt, mt2), hence restricted to
(mt,mt2) is an automorphism. Consequently there is a (unique)
B SL(2, Z2) defined by (mxj) mB- for j 1, 2. Then

cz(m2j) z(e21 mlj + mlj)= e21 (mlj) + o(mlj)= m2jB-1.
Thus X XB-1, since (m,l 1 _< i, j _< 2) M(2, 2). |

PROPOSmON 2.8. Let M M(2,2)x SL(2, Z2). The automorphism se-
quence ofM is

M < ’(M) < ,.2(M)= 3(M)
where the factor 9roups are SL(2, Z2), Z2, 1, 1,

Proof Since M’ M(2, 2) x z (C), where

C=
0 1)1 1’

and M"= M(2, 2), M(2, 2)is characteristic in M. Moreover SL(2, Z2)is
complete, so 1.5(2) yields

.(M)_ Der (SL(2, Z2), M(2, 2)) xa {SL(2, Z2)@.’x(M(2, 2))}
where PA.()= VA O6I(A-) Using the isomorphisms of 2.7 we may write

./(M) M(2, 2) x, {SL(2, Z2)@ SL(2, Z2)}
where now p(a,B)(X)= AXB-. Here,

I(M)= M(2, 2) x, {SL(2, Z2)@ 1}.
Since .o/(M)" M(2, 2), M(2, 2) is characteristic in .(m) and we may apply
1.4(1), (2) where

z: ..o/2(M)--).q/(SL(2, Zz)@ SL(2, Z/)).
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A computation shows that

a’(S3 if) $3)- ($3 if) $3) x, (zlz2

where z(x, y)= (y, x). (See Rose, Lemma 1.4 [14]. For a direct proof, the ele-
ments of order 3 in $3 0) $3 with centralizers of order 2 3 2 are (a, 1) or (1, a)
where a3 1. Use an element of (I($3 O)$3), z to assume these are fixed.
Then so are their centralizers, and now fix an element of order 2 in each
centralizer by applying I(Z3 )Z3). Recall that

( b)
adj d b) for( b)d c a d

s M(2, 2).

Thus adj zC(M(2, 2)) is an automorphism of M(2, 2) as an abelian group, and
is an anti-automorphism of the matrix ring M(2, 2) such that
XadJX (det X)I2. It follows that for (A, B) s SL(2, Z2))SL(2, Z2),

adjo PA,n)= P,a,n) adj 1(M(2, 2)).
By 1.4(2), Im r. In fact, r()where (X, (A, B))= (Xadj, (B, A)). There-
fore n is onto, ancl

Im n - ((I((M))), ()
_
(M)/I(M(2, 2)) x,

We prove next that Ker I(M(2, 2)); it follows that zC2(M)-’(M) x,
(. By .4(1), we have

Ker
_

Oerp (SL(2, Z2) SL(2, Z2), M(2, 2)) x ,(M(2, 2)).
Thus Ker z I(M(2, 2))if and only if zC,(M(2, 2))- 1 and every derivation is
inner. The first statement follows from 2.7(2) and the fact that
(SL(2, Z2))= 1, and the second follows from the argument of 2.7(1).

Finally, we prove that 2(M) is complete. We will do this by exhibiting a
characteristic centerless subgroup L of ’2(M) su3h that L < (M) and such
that the induced homomorphism ’2(M)- (L)is an isomorphism. The fact
that 2(M)is complete is then a consequence of Burnside’s Theorem (1.7). We
claim that L ’2(M)" has the required properties; note that L < zC(M)since
,;2(M)/(M is abelian. We have

L - M(2, 2) (Z3 Z3),
where z,f) X cexcy with

C=(01 1

A computation shows that (L) 1. L is clearly characteristic in .(M), and it
remains to prove that o’(M)---, s(L)is an isomorphism. Since :.(M)/L acts
faithfully on LIE - , s(M) s(L) is an injection.
We now compute (L). Since Ker z 1 and M(2, 2)is characteristic in L (it
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is the 2-Sylow subgroup of L), by 1.5(1)
._(L) - Der, (Im r, M(2, 2))

The argument of 2.7(1) shows that every derivation is inner, whence

Der, (Im r, M(2, 2)) M(2, 2) 2’.
Next, we determine the order of the normalizer of Im z in /(M(2, 2)). Since
Im rl 32 and (M(2, 2))_ $L(4, Z2), Im z is a Sylow-3-subgroup of

SL(4, Z2). It therefore suffices to determine the order of the normalizer of

0 Cf 23!
in SL(4, Z2). A computation yields

which has order 23. 32. Hence I. (L)I IM(2, 2)123. 32 27. 32. But
[2(M) 21(M)I 27. 32 and ’2(M) ’(L) is a monomorphism.
Thus .&2(M) (L) as required. |

3. Some SL(n, Z2)-modules
The results of this section (and Lemma 2.7)are not new (see [4] or [9, p. 25]).

However, we require only some rather specific computations for Section 4, so
the proofs below are correspondingly elementary. Write M(n, m), M(n)for the
additive groups of n x m, n x n matrices over Z z respectively. These groups are
left SL(n, Zz)-modules, where the action 2 on M(n, m) is by matrix multi-
plication, and x on M(n) is by conjugation, thus

2A: X --+ AX, XA: Y--+ A YA-* (A SL(n, Z2), X M(n, m), Y M(n)).
Since {0,, I.} s a x-submodule ofM(n), the quotient inherits a module structure
also denoted by x, and the natural projection

M(n) PM(n)= M(n)/{O,,, In}
is of course a x-homomorphism.

Let mj M(n, m) denote the matrix whose sole nonzero entry is a I in
position i, j. For matrices of appropriatc shape,

I0 if j k
mijmkt Imit if j-- k.

Consequently, mi Xmkt is zero if and only if X has a zero in position j, k; we
write X(j, k) for this entry.
We view SL(n, Z2) (n > 3) as the group presented in Steinberg form on

generators ei (i 4: j, 1 < i, j < n), where ei corresponds to the elementary
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matrix I, + mij SL(n, Z2), subject to the defining relations

e=I, for 4: j,

[%, ek] ek for distinct i, j, k,

[%, ekt] 1, if j 4: k, and 4: k, i.

(See [16], p. 72, or [10] for a full discussion of the Steinberg groups and further
references.)

PROPOSITION 3.1. If n > 4, every derivation ofSL(n, Z2)in M(n, m), M(n), or
PM(n) is inner. That is,

(1) Dera (SL(n, Z2), M(n, m))_ M(n, m),
(2) Der (SL(n, Z2), M(n))_ PM(n), and
(3) Der (SL(n, Z2), PM(n))_ PM(n).

Proof Let V denote any SL(n, Z2)-module. Since ei,+ (i= 1, n and the
subscripts are taken modulo n) generate SL(n, Z2), a derivation
6 Der. (SL(n, Z2), V) is inner if there exists v V such that

(1) 6(e,,,+1) v- e,,, + v (1 e,,, + v,

and then v is determined modulo the fixed point set of SL(n, Z2) in V.
Moreover, the 6(%) e V are subject only to the conditions

(2) (1 +eij)" 6(eij) 0 (i 4: j),

(3)6(eik) + 6(%) + eikek 6(ei) + %" 6(ek) +eik" 6(ejk) 0 (i, j, k distinct),

(4) (1 + ek,) a(e,j) + (1 + e,j)" 6(ekt)= 0 (j 4: i, k; =/= i, k).
Consider first 6 e Dera (SL(n, Z2), M(n, m)); we seek X M(n, m) such that

6(ei.,+ l) m,.,+ X (i 1, n).
The matrix m. / X has all rows zero except perhaps its ith row, which is the
(i + 1)st row of X. Hence we can solve for a unique X provided equations (2),
(3), and (4) imply m,ka(e./ ,)= 0 for some r and all k 4= i. From equation (2),
mfi(%) 0 and from equation (4) applied with i, j, k, distinct (n > 4),

mitt(eij) mikmklt(eij)= mikmijt(ekl O.

Next, let fi Oer (SL(n, Z2), M(n)). Equation (1)now reads

(ei,i + I) mi,i + X + Xmi, + + mi,i + Xmi,i + 1.

The nonzero entries of the matrix on the right occur only in row or column
+ 1. They determine the off-diagonal entries in row + 1, column of X and

the sum X(i, i) + X(i + 1, + 1). Hence solutions of equation (1)determine an
element of PM(n) (reflecting the fact that {0,, I.} is the fixed point set of
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SL(n, Z2)in M(n)); and solutions exist if and only if (2), (3), and (4)imply

mrt(ei,i+ 1)mRs 0 for some r, s and all # i, k =/= + 1.

Note first that equation (2) implies that 6(ej) commutes with mj, and equation
(4) yields

+ +
for j i, k and i, k. Since mk

mk,(fi(ei) + fi(ek,))= mk,(fi(eij) + fi(ek,))eiek,.
But mk commutes with 6(ek), whence 0 mkb(ei)mk (l # i, k, j # i, k). It
remMns to show that m,f(e,+ t)ms 0 for i, + 1 and some r, s. For this,
we use equation (3): pick i, j, k (n 4) and multiply (3) on the left and right
by m. This yields m3(e)m 0 for all distinct i, j, and completes the proof
of part (2).

Finally, let 3 6 Der (SL(n, Z2), PM(n)). Let Di 6 M(n)satisfy

D 6(ei) PM(n), Di(r, r)= 0 for some r r(i, j), i, j.

Then (2), (3), (4), in terms of the Di, read

(2’) Dij + eijOijeij a(i,

(3’) D + D2 + eejD2eje + ejDej + eDje a(i, j, k)I,

(4’) Dj + euD,jeu + Du + e,jDuej a(i, j, k, l)I.
where/# j in (2’); i, j, k are distinct in (3’); j # i, k; # i, k in (4’); and a(i, j),
a(i, j, k), a(i, j, k, l) Z2. We claim that all a’s are zero, whence part (3) follows
from part (2).

Pick k i, j and multiply (2’) left and right by m to obtain a(i, j)= O.
Consequently mj commutes with Dj so

mijDijmji m.mjDjmjm miiDijmii.

Therefore the trace of the matrices appearing in (3’) is

n" a(i, j, k)= tr (D,k)= Z D,k(S, S).
si,k

However for any s i, j, k, when (3’) is multiplied left and right by m,, we
obtain

m,sDikm,,

Consequently Dk(S, s) a(i, j, k) for s i, j, k. If the choicc of Dik fi(eik) was
such that r(i, k), i, j, k then a(i, j, k)= Dik(r(i, k), r(i, k))= 0. Otherwise,
r(i, k)= j and the trace relation now yields

a(i, j, k) Dik(J, j)= O.
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Finally, we establish that all a(i, j, k, l) are zero. For n > 5, or for n 4 and
k or j l, there is an s q: i, j, k, with s {1, 2, n}. Multiply (4’) left and

right by m to obtain a(i, j, k, l) 0. In the remaining case, n 4 and i, j, k,
are distinct. Multiply (3’) on the left by mu and on the right by mk to obtain

0--’- mklDikmjk + mklDijmik mktDimjk + mklDijmijmjk;

and so 0 muDR mk by (2’), valid for all distinct i, j, k, I. Now (4’) multiplied
left and right by m, yields a(i, j, k, l)= O.

COROLLARY 3.2. If at least one of n, m is 3,

Oero (SL(n, Z2)03 SL(m, Z2), M(n, m))- M(n, m),
where p(A,B)(X)= AXB-.

Proof Apply transpose if necessary to assume n :p 3. If

6: SL(n, Z2)@ SL(m, Z2)---, M(n, m)
is a derivation, by 3.1(1) or the argument of 2.7(1) there is an X M(n, m) such
that

6(A, I)= (I- A)X for all A SL(n, Z2).
Since (A, I,) and (I, B) commute, (I,- A)(3(I, B)- X(I.- B-t))= 0. In
particular

m,,,+ (6(I, B) X(I, B-t)) 0 for 1,..., n

O1"

6(In, B) X(I, B-

Consequently <(A, B)= X- AXB-1 as required. |

PROPOSITION 3.3. (1) nera (SL(3, Z2) M(3, m))- M(4, m).
(2) Der (SL(3, Z2), M(3))- Der (SL(3, Z2), PM(3))- PM(3).

Proof We establish (2) first: as in 3.1(2), (3), eDe + D I3 is impos-
sible, so D commutes with e. Therefore the (i, i) and (j, j) entries of D are
equal and the other entries in row j, column are zero. For k q: i, j, the (k, k)
entry of D is zero either as a consequence of equation (4) or by the choice of

D D made as in 3.1. This yields part (2).
For part (1), equations (2), (3), and (4)reduce to

mijf(eij 0 (i j),

6(e,k) mjkf(eij) (i, j, k distinct).
Consequently mlkf(ej)= mx 6(e23), and there is a unique X M(3, m) such
that

6(ej) (1 ej)X + m6(e2a) (k i, j).
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Thus 6 corresponds to the pair (X, mttf(e2a)). Since mttf(e2) can be any
matrix in M(3, m) with rows 2 and 3 zero, we obtain part (1). |

PROPOSITION 3.4. Let n _> 3.

(1) p(M(n, m) M(n))- SL(m, Z2) Z2, where the isomorphism is given
by

(B, b)- fl: (X, Y)-, (XB-, Y + b Tr (Y)I.)
and SL(n, Z2)acts on M(n, m)$ m(n) by pA(X, Y)= (AX, AYA-X).

(2)
in (1).

(3)

(4)

sgp(M(n, m) PM(n))
_

SL(m, Z2), where the action of SL(n, Z2) is as

l,(M(n, m) PM(n)) 1, where SL(n, Z2) SL(m; Z2) acts by

a(A,n,(X, Y) (AXB- ’, A YA-

’z(M(n, m))- SL(m, Z2).

Proof
Let

A SL(n, Z2). Let St, $2 be the subgroups of SL(n, Z2) defined by

Note that (3), (4)follow from (1), (2).
lo(M(n, m)+M(n)), where pA(X, Y)= (AX, AYA-’)

1
0$1 A ]A + SL(n- 1, Z2)

0"..0

A ]a SL(n- 1, Z2)

1

$2= 0.
0

for

(2) (0, roll)= (.. bjmlj, mll+ bin).
Follow by (X, Y)-, (XB, Y) so as to assume B I. in equation (1). Then
(et mt#, O)= p(ea)(mt#, 0)implies

/(m#, 0)= (m#, 0), k =p 1

(1)
and second that

The fixed point sets of p(S,), p(S2)in M(n, m)+ M(n) arc

TI am, aI T2 arn, bl. + m t’
respectively, and Im O fixes (0, I)). Since the restrictions of to these fixed
point sets are isomorphisms, we have first a (unique) B e SL(, )such that

(m,, O)= (mljB-1, a(j)I.)
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and the action of elk applied to the equation above yields fl(X, 0)= (X, 0).
Next, apply ex to equation (2) to obtain

and then apply elk to (2) to obtain fl(0, m lk) (0, m lk), k 1. But mR m*k SO

these matrices are conjugate, which implies bj 0. Now follow fl by

(X, Y)--)(X, Y + b Tr (Y)In)
so as to obtain b 0 in equation (2). Since m ll and m, are conjugate,
fl(0, ml 1)= (0, ml 1)implies (0, m,,)= (0, m,,).
The argument that establishes part (2) is similar; the fixed point set ofS 1, S 2

are the images of T1, T2 in M(n, m) PM(n). |

4. The case n 2

In this final section, we derive Theorem B, Proposition 2.3, and then
Theorem A for the groups PGL(2, Z), GL(2, Z), and SL(2, Z). It will be conven-
ient to relate these groups to the free product structure of PSL(2, Z). We will
view SL(2, Z) as a split extension of the free product L Z3 * Za by Z, and
GL(2, Z) as a split extension of L by the dihedral group of order 8. Since the
index of L is in each case a power of 2 whereas L is generated by elements of
order 3, it follows that L is characteristic. We first summarize the properties of
free products (with amalgamation) that will be used below; proofs may be
found in Magnus, Karrass and Solitar [8, Chapter 4, Section 2], for example.
We write H *A K for the free product ofH and K with amalgamated subgroup
A; we assume given and fixed monomorphisms A H, A K and identify A
as the intersection H K in H *A K. The groups H and K are termed the
factors of the free product H .A K. A right transversal of A in H denotes a
subset ocf c H such that 1 e Yt" and H is the disjoint union he Ah.

THEOREM 4.1. (1) Let , gig be ri#ht transversals ofA in H, K respectively.
Then each element of H *a K has a unique expression in the form as1S2""Sm
where a A, si ,’If w g/f, and s, si / lie in different factors.

(2) Any element offinite order in H . K is conju#ate to an element offinite
order in one of the factors.

(3) (n *a K)= A (H) (K). |

Let D be the dihedral group of order 8; D
_
Z, x. (Z4). Fix the

presentation

D (a, b la" bz (ba)2 1).
Note that every nontrivial normal subgroup of D contains Cg(D)= (a2), and
that the only elements of order 4 in D are a +/- 1. Consequently Z, is character-
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istic in Z, x, (Z,)
_
Z, x, Z2, so 1.4(1) and (2) yield

’(D) - Z, x, M(Z,)= (a, z la’= z2 tar)2= 1)
where r" b - ab, a a and ,: b --} b, a --, a- t. Furthermore l(a) r2, I(b) .

Let L Z3 * Z3 have the presentation L (c, c2 ]c3 c2
3 1).

PROPOSITION 4.2. (1) a’(L)- L x p D, where p" D--} (L)is defined by

Pa" Cl --} C2 1 C2_._} C1 Pb Cl C2 C2"-} C1"

12) o   ete.
(3) If G K x e’(L) and K is finite, then K is characteristic in G.

Proofi (1) By direct computation, p q= 1 so p" D (L) is an injective
homomorphism. Moreover p(D) L-- 1 (where we have identified L with
I(L)), since L has no 2-torsion (4.1(2), (3)). We claim a’(L)= (L, p(D)), and
this is part (1). Let ,_(L); is determined by 7(ct)and (c2). By 4.1(2), the
conjugacy classes of elements of order 3 in ,(L) are represented by
{ct, ci-t, c2, c-t}. Since p acts transitively on this set, we may follow by a
suitable element of (L, p,) to obtain (c2)-- c2. Now (ct)is L-conjugate to ct
or to c-t. Since (c2)--c2 and (ct) generate L, 4.1(1)implies that
(Cl)-- cec lce2 whence 7 (I(c2), p,a).

(2) We have rg(L) 1 (4.1(3)), and L is generated by all elements of order 3
in #(L). Hence L is characteristic in (L); and so a’(L) is complete by Burn-
side’s criterion.

(3) As in the proof of 2.3, we must show that (L) has no nontrivial finite
normal subgroups, which is equivalent to showing that the centralizer of any
normal subgroup of finite index in (L)is trivial. By 4.1(2), L has this property.
Now suppose H < (L) and I (L)/n is finite. If at(H), then for all
xL, yeHL,

x yx (x yx) (x)- y(x).
Consequently (x)x -1 (8L(H c L)= 1, or 0 1. |

Fix the presentation Z, (ala4 1) together with the monomorphism
Z4 ---} D defined by a ---} a.

PROPOSITION 4.3. There is a commutative diagram

1 L SL(2, Z) Z, 1

1----*L---*GL(2, Z)----* D 1

where the middle vertical arrow is inclusion, and both rows are split exact (that is,
the middle oroup is a semidirect product of the end 9roups). The action I: D--.
.I(L) is oiven by pb, p2. Moreover, L is a characteristic suboroup of
SL(2, Z) and of GL(2, Z), and SL(2, Z)is a characteristic suboroup of GL(2, Z).
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Proof. The group SL(2, Z) has the well-known description as Z, *z2 Z6
(see [11, p. 139] or [8, p. 47]); thus

SL(2, Z) (x, y lx2 y3, x" 1),
where

1 Y 1

defines the requisite isomorphism. By 4.1(1), each element of SL(2, Z)may be
written uniquely in the form

as1 $2 sm

where a {1, x2}, s, {x} w {y, y-1}, and s,, S,+l lie in different factors (x,
(y). Define the homomorphism L SL(2, Z) by

Cl _+ y2 x2y 1, C2 _+ xy2x-1 xy-Ix.

The uniqueness of the normal forms 4.1(1) implies that L -+ SL(2, Z) is a mono-
morphism. Since I(y)= l(y-2) and I(x2) 1 in ag(SL(2, Z)), a computation
shows that L <a SL(2, Z). By 4.1(2), L is the group generated by all elements of
order 3 in SL(2, Z); and so is a characteristic subgroup. The map
SL(2, Z) Z, defined by x a, y a2 is an epimorphism whose kemel con-
tains L and whose restriction to (x) is an isomorphism. Since $L(2, Z)=
(L, x) and L c (x)= 1, the first row is split exact.
To obtain the exactness of the second row, note that the sequence

1 -, SL(2, Z)--, GL(2, Z)--, Z2 (bib2 1) -, i

is split exact, where we select the splitting map Z2 --, GL(2, Z) to be

Then the matrices

1

generate a subgroup of GL(2, Z) isomorphic to D, and the argument now
proceeds as above.

Finally, since L is characteristic in GL(2, Z) and D contains a unique sub-
group isomorphic to Z#, it follows that SL(2, Z) is characteristic in
GL(2, Z). |

COROLLARY 4.4. (1) PSL(2, Z)- L xo (b, PGL(2, Z)- L xv (a2, b.
(2) aI(PSL(2, Z))_ PGL(2, Z).
(3) aI(PGL(2, Z))- L x D al(L) and is complete.
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Proof By 4.3, PSL(2, Z) - L x (Z,/Ker #) and PGL(2, Z)
_
L x

(D/Ker u). These correspond to the descriptions given in (1).
L is characteristic in both PSL(2, Z) and PGL(2, Z), C(L)= 1, and

Ker p 1. Therefore 1.3(3)implies that

(PSL(2, Z))/I(PSL(2, Z)) o((b))= (a2, b),
and (PGL(2, Z))= M(L). t

This completes the proof ofTheorem B and establishes 2.3 for the case n 2.

THEOREM 4.5. (1) M(SL(2, Z))= Z2 PGL(2, Z).
(2) M(GL(2, Z))= Z2 Z2 * PGL(2, Z).

Proof We have SL(2, Z)=L xZ4; and so 1.3(2) implies that
M(SL(2, Z))is isomorphic to the subgroup of M(L) M(Z,) #ven by

Since fl(a)= a and a2 6 Ker #, #a #. Hence

M(SL(2, Z))= ((, fl)l [, ,] I(L)} = L x a o(b) (Z,)
L x, (a2, b) Z2 PGL2, Z). Z2.

Again by 4.3, we have GL(2, Z) L x D, and now 1.3(2) yields

{(, ) M(L)@M(D)IV-tV I(L) and b-tVt I(L)}.
As above, a at so the first condition on (, ) reads PGL(2, Z). Since

p2 and a2 (D), the second condition is that b-t(b) Ker . Thus

(GL(X, Z))= PGL(X, Z) ( (D)lb-(b)
P(2, Z). I(0) P(2, Z). Z. Z.

Recall that M M(2, 2) x SL(2, Z2), where M(2, 2) is the additive group
of 2 x 2 matrices over Z2 viewed as a left SL(2, Z2)-mule by 2" X AX.

THEOREM 4.6. (1) 2(GL(2, Z))= M x, (PGL(2, Z)).
(2) (GL(2, Z)) (M x, Z2) (PGL(2, Z)).
(3) M*(GL(2, Z)) ((M x, Z2) x, Z2) (PGL(2, Z)) and is a complete

#roup.

Proof Put Y L x D M(L), and recall that PGL(2, Z) = L x a (a2, b)
and (PGL(2, Z)) Y.
We have Z))= <a b>. By 1.6(1),
M2(GL(2, Z)) Horn (L x a (a2, b), Z2 Z2) x, (M(Z2 Z2) Y)
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where tr,.,)(6) ’ 6" I(y-’). Since (L x, (a2, b))’= L,

Hom (L x, (a2, b), Z2 Z2)- Hom ((a2, b), M(2, 1))- M(2, 2)
where the second isomorphism assigns the matrix whose first column is ob-
tained by evaluation at a2 and second column by evaluation at b. Then

M(Z2 * Z2)= SL(2, Z2)
and we choose this isomorphism so that SL(2, Z2) acts on M(2, 2) by X AX.
For y e Y, the action is that induced by I(y-t)on (a2, b). Consequently,
L x a (a2, b) acts trivially and I(a- ) induces the map a2 a2, b a2b which
corresponds to right matrix multiplication by et2 SL(2, Z2). Therefore

M2(GL(2, Z)) M(2, 2) x, {SL(2, Z2) Y) M x, Y M x, (L x O)
where L xa (a2, b) Ker a and %(X, A)= (Xe2, A).

Since M is finite, it is characteristic in M2(GL(2, Z))by 4.2(3). Moreover
(M) 1 so 1.3(2) and 4.2(2)yield

M3(GL(2, Z))_ {, y) M(M) Y1--_ I(M) for all x

Since Im a 2 Z2, a-t ax; and so

M3(GL(2, Z)) ( M(M)] [, %] I(M)} Y.

By Proposition 2.8, M(M)/I(M) SL(2, Z2), and the centralizer ofa. I(M)in
(M)/I(M) is (%). I(M). Thus we have part (2), where

M x, Z2 2 M(2, 2) xu {SL(2, Z2) (et2)}
and (,a)(X) AXB- . This group is characteristic in Ma(GL(2, Z)). Iterating
1.3(2) and 4.2(3)yields

Ma+k(GL(2, Z))2 Mk(M x, Z2) Y.

It remains to show that M(M x, Z2) (M x, Z2) x a Z2 and that this group
is complete.

Since M(2, 2)= (M x, Z2)" we may apply 1.5(1) to obtain

M(M x, Z2) Der (Im V, M(2, 2)) xa a((2,2)(Im V).
The argument of 2.7(1)shows that every derivation is inner; and so

M(M x, Z2)/I(M(2, 2)) ,a((2,2))(Im V).
Note that Im is a dihedral group of order 12, for Im SL(2, Z2)
in which

1)’ el)
has order 6 and is inverted by w (e, 1) which has order 2. Take the bis
{,,,} for M(2, 2) over , and identity (M(2, 2)) with
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SL(4, Z2) acting from the left on M(4, 1) - M(2, 2). A computation shows that
the matrices corresponding to z, w are

(C C (e21 0 ) whereC=(01 1 )Z=
0 C

and W=
0 e21 1

We assert that

./lsu,.z2,((Z, W))= (Z, W)"

Since the center of (Z, W) is generated by

and has order 2, any matrix X which normalizes (Z, W commutes with Z3

and therefore has block upper triangular form. Since (C, e2) SL(2, Z2) we
may multiply X from the left by an element of (Z, W to obtain

(’(1) X
0

where Y 6 M(2, 2).

Note that the matrices in (Z, W) of this form are Z3 and I,, and that X2 I4.
Since (Z2) (Z, W)’, XZ2X Z-+ 2, which implies that YC C+/- Y.
Moreover, IX, Z] (Z, W)implies that

CYC-1 + y 02 or 12.
Since CYC-+ Y=(C+/- +I)Y, it follows that CYC-+ Y=0 so
Y=aI / bC. Therefore X or Z3X is the matrix T. But TZT-= Z,
TWT- Z3 W, which shows that (Z, W. (T is the normalizer of (Z, W).
Therefore

(M x, Z2)- M(4, 1) x (Z, W, T- (M(2, 2) x (z, w)) x Z- (M x, Z2) x, Z2.
A computation establishes that M(2, 2)_ /(M x, Z2)", so 1.5(1)applied as
above yields

’2(M x, Z2)- M(4, 1) xa ./l/’SL(a.z)((Z, W,

We obtain part (3) once we show that (Z, W, T) is a self-normalizing sub-
group of SL(4, Z). To this end, since (Z, W, T)’= (ZS, any matrix X which
normalizes (Z, W, T may be selected modulo (Z, W5 to be block upper
triangular of form (1) and to centralize Z. But then the upper right hand 2 x 2
corner of X commutes with C. Thus X ZaT, as required. |
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We now turn to the determination of the automorphism sequence of
SL(2, Z). We shall first show that zg(PGL(2, Z)) is a direct summand of

z)).
PROPOSITION 4.7. (1) zg2(SL(2, Z))- (Z2 Z2) x, zg(PGL(2, Z)).

a(SL(2, Z))- (Z2 * D) ’(PGL(2, Z)).II 4(SL(2, Z))_ (M(8, 1)x (Z)))I(PGL(2, Z)), where

z sL(8,
is the block lower trianoular matrix

Moreover, the centers of these three groups are elementary abelian groups whose
orders are 2, 22 and 24 respectively.

Proof In 4.5(1), we obtained (SL(2, Z))
_
Z2PGL(2, Z). Thus by

1.6(1) and 4.4,
2(SL(2, Z))- M(1, 2) x, Y

where Y L xp D - I(PGL(2, Z)), and tr: Y - (M(1, 2)) is defined by

L x p (a2, b)= Ker tr, ao(X) Xe12.
Next, by 4.2(3)and 1.4(4),

3(SL(2, Z))- (Der, (Y, M(1, 2)) x u, ,(M(1, 2))} x

where ,,(6)= 6 and 2,(6, )= (6o I(y-), ). First,

Y

’(M(1, 2))- rgsu2,z,(Im t)= Im .
Next, let 6: Y M(1, 2) be a a-derivation. Since L < Ker tr and the restriction
of 6 to Ker tr is a homomorphism, 6(L)= 0 and 6 is determined by 6(a),
6(b) M(1, 2). These must satisfy 6(a4) 6(b2) 6(abab) 0, which reduce to
(6(a) + 6(b))mz 0. Ttierefore the first entries of 6(a), 6(b) coincide and we
may write 6(a)= (e, f), 6(b)= (e, O). Define the map

Der, (Y, M(1, 2)) x,, (e12) ---, Z2 O

by (6, 2) (cy+g, a2g+ebh) (where 6 is given above). By direct computation,
this map is an isomorphism, and the map /2 corresponds to #2" Y---’
a’(Z2 D) given by

L < Ker #2, kt2,o(c’, aSb’) (c"+’, a-’b’) and /2,b(C’, ab’) (c"+s, a’b’).
Adjust the presentation of 3(SL(2, Z)), replacing ((1, 1), a) by ((1, b), a), to
obtain

3(SL(2, Z)) (Z2 O) x u Y

where V I 1 and . : (c’, a’b’) (c’+’, a’b’).
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Since Z2 @} D is characteristic in 3(SL(2, Z)), we apply 1.3(5) to obtain

/4(SL(2, Z)) N xa Y,

where

N {, 6) (Z2 ) D) x Def. (Y, Z2 D)l [, ] l(6(x)) for all x Y}
and p(, 6)=(, 6l(y-)). Since L < Ker , L < Ker 6; and so any
derivation is determined by 6(a), 6(b) Z2 D which must satisfy

1= (6(a)# 6(a))2= 6(b) # b6(b)= 6(ab) 6(ab).
These equations are equivalent to 6(a)= (c, bk), 6(b)= (c’, a2abk) and

(,) (bk k)2 1.

Now let e (Z2 D). The derived group of Z2 D is 1 a2, and

(Z2 @ D)= (c) (a2).
Hence

(1, a)= (cel, a +2fl), (1, b)= (ce2, ahb), (c, 1)= (c, a2/).
The equalities = 1(6(b)) and .= 1(6(a)) evaluated at (1, a)
together with (,) above impose the conditions k k k2, s 0 mod 2. Then
evaluate on (1, b) to obtain h 0 mod 2. These exhaust the restrictions on , 6
so we have now (, 6) N if and only if

a(a) (c,1, a,x), a()= (c,2, a2,2)
{**) (1, a)= (ce, a1+’), (1, )= (c"2, a22),

(c, 1)= (c, a),
where all exponents are taken mod 2. A computation shows that p" Y M(N)
is given by p I 1 and

Let (A, 1) N be defined by

A. (1, a) (, a), (1, ) (1, ), (, 1) (, 1).
Then pa(a, 1)= (a, 1) and for all (, 6) N,

p,(, )= (a, ). (, ). (A, )-.
We may therefore adjust the presentation of (SL(2, Z)), replacing a, b Y

1), b), to obtain ,*(SL(2, Z))= N Y. Finally,by ((A, 1), a), ’; to see this, to(, 6) given by (**) associate (X, Z) whereN = m(8, 1) x
X

(e 1, , , + ( + 1)e +,, + (k + 1)e +f, A, f2, o + Y, 02 + f).
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This map is a homomorphism (using the product in N given in 1.3(5)), and is
clearly injective. That the centers of these automorphism groups are as
described above follows by computing cgtl.2)(Im a), Cgz,.o(Im ), and
(N) (Ia+ Z)M(8, 1). |

COROLLARY 4.8. For all k >_ 0,

g4+R(SL(2, Z))-- Hk g(PGL(2, Z)),
where Ho M(8, 1) x x (Z) andfor k >_ 1, HR+ Uom (Z2 Z2, <(Hk)) x,

Proof Since Ho is finite, so are all Hk. We have sg(PGL(2, Z)) - L x p D, so
(PGL(2, Z))/C(PGL(2, Z))’ - Z Z2.Therefore 4.2(3) together with 1.3(5)
yields the result above. |

Note that, if Cg(Hk)= 1, then Hk+, ’(Hk) and the finiteness of the auto-
morphism sequence of SL(2, Z) is a consequence of Wielandt’s Theorem. The
groups Hk, and their centers, will be determined explicitly in the following
propositions. The notation is that of Section 3.

PROPOSITION 4.9. H1 - (M(4, 3) M(4)) x p SL(4, Z2) and Cg(H 1) - Z2,
with action

(X, Y)--, (AX, A YA

Proof. We have Ho M(8, 1) x a (Z, and for any X M(8, 1),
Cno((X, Z)} ((Ho), Z>, no((X, 1)} = M(8, 1).

Therefore M(8, 1) is characteristic in Ho; and so 1.5(1) impfies

(Ho) Derz ((Z>, M(8, 1)) x u su.,z,{Z},
where ,(6)= 6. A computation shows that

s (4,

Any derivation is determined by {Z) which is suNect to the one restriction
{I + Z(Z)= 0. Therefore (Z) e (I + Z)M(8, 1)= (Ho) and is otherwise
arbitrary. View (Ho) as M(4, 1) imbedded in M(8, 1) naturally as
(I + Z)M(8, 1). Then corresponds to left multiplication by A, where

Thus

.(Ho)- {M(4, 1)@ M(4)} xp SL(4, Z2),
where (6, ) (Ho)corresponds to ((6(Z), Y), A).
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The action of ,s/(Ho) on Horn (Z2 Z2, (Ho)) - (Ho) (Ho)is given
by the restriction of /(Ho) to (Ho) - M(4, 1); thus the action corresponds to
left multiplication by A, whence

H = (M(4 3) M(4)) x SL(4, Z2).
Since (SL(4, Z2))= 1, (H)isthe fixed point set of SL(4, Z2)in M(4, 3)
M(4). Hence (H)= ((0, I,)) Z (see 3.1(1), (2)). |

PROPOSITION 4.10. H2 - M(3, 1) K, where

K (M(4, 3) PM(4)) xo (SL(4, Zz) SL(3, Z))
and tra,n)(X, Y) (AXB- 1, A YA- ). Moreover, K is complete
(nz)

_
M(3, 1).

and

Proof. By 4.8 and 4.9,

Hz =Hom (Z, @ Z,, Zz) x, (H)- M(1, 2) (H,)- M(2, 1) (H).
Since SL(4, Z2) is simple, M(4, 3). M(4) is characteristic in H so that we may
apply 1.4(2) to n: (H) (SL(4, Z2)). It is a classical theorem that

(SL(4, Zz))= I(SL(4, Z)) r Z,
where the nontrivial element in Im y is the inverse-transpose map [3]. Let
S < SL(4, Z) be the subgroup described in 3.4"

O0 A
A SL(3, Z

0

The fixed point set of S in M(4, 3) M(4) has order 24, while its image under
inverse-transpose has fixed point set of order 2. Consequently Im n
I(SL(4, Z2)) and we may now apply 1.5(2) to obtain (n)- D xu F where

D Dero (SL(4, Z2), M(4, 3) M(4)) - M(4, 3) PM(4),
and

F ’o(M(4, 3) M(4)) SL(4, Z_) = (SL(3, Z) Z).SL(4, Z)
(using 3.1(1), (2)and 3.4(1)). Since #,,a)(X, Y)= (AX, AYA-), it follows that
’(H)

_
K Z; and so H - M(1, 3) K. Therefore C(H)

_
M(3, 1), and

it remains to prove that 1" K (K) is an epimorphism.
M(4, 3) PM(4) is the maximal normal nilpotent subgroup of K, since

SL(3, Zz) and SL(4, Z) are simple. Furthermore, up to an inner automor-
phism, any (SL(3, Z) SL(4, Z)) is of the form t where each 0q
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is either 1 or inverse-transpose. As above, only I q) 1 extends to an automor-
phism of K, so that 1.5(2) again applies. We obtain (K)- D x, F where
now (using 3.1, 3.2 and the additivity of Der),
D Der (SL(3, Z2) ) SL(4, Z2) M(4, 3)) PM(4))- Oer (SL(3, Z2) () SL(4, Z2), M(4, 3))

0) Der (SL(3, Z2)() SL(4, Z2), PM(4))- M(4, 3) DerK (SL(4, Z2), PM(4)) q) Uom (SL(3, Z2), PM(4))_
M(4, 3) PM(4) 1,

and
F (SL(3, Z2)q)SL(4, Z2))q)(M(4, 3)q)PM(4))- SL(3, Z2) if) SL(4, Z2) if) 1.

Consequently I(g) D I" IFI II(K) so I(g)-- (g). !
PROPOSITION 4.11. H3 - {M(3, 3) x SL(3, Z3)} K where K is the #roup

described in 4.10, and ((H3)= 1.

Proof We have

K (M(4. 3)03 PM(4)) x. (SL(4. Z2) SL(3. Z2)).
so the map b" K --, Z2 defined by ((X, Y), (A, B)) Tr Y is a homomorphism
whose kernel contains K’. We claim K’ Ker t#. Since $L(4, Z2)ff $L(3, Z2)
is perfect and

{(A I)XlX M(4, 3), A SL(4, Z2)} M(4, 3),
we need only show that m and m + m (i q: j) belong to K’; this follows from
the equations

m m + e,meik (i, j, k distinct),
m.*,i + m m + eimei + mi.

By 4.8, we have

H3 =Hom (Z2 ff Z2, ((H2)) x, (H2)- M(3, 2) x, a’(H2).
Since H2 2 M(3, 1)ff K, we apply 1.6(2) to obtain

(H2) Hom (K, M(3, 1)) x, M(M(3, 1))if)K.
But K/K’ - Z2, so a’(H2) M(3, 1) x SL(3, Z2)03 K. Note that .(H2)---,
M((H2)) is given by

M(3, 1) xx SL(3, Z2)ff) K - (0) x, SL(3, Z2)ff) 1 - SL(3, Z2).
Consequently Ha - M(3, 3) xx SL(3, Z2)ff K, and qq(H3) 1 as required. |
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PROPOSITION 4.12. H, - {M(4, 3) x, (SL(3, Z2)q) SL(3, Z2))} K, and
H4 is complete.

Proof. We have Ha - {M(3, 3) x SL(3, Z2)} q) K, and H, (Ha). Now
V M(3, 3)q) M(4, 3)q) PM(4)

is a normal subgroup of Ha with Ha/V SL(3, Z2) SL(3, Z2) SL(4, Z2).
This extension splits, with action

tBt,n2,A)(X, Y, Z) (Bt X, AYB , AZA- ).
Now V is the mimal normal nilpotent subgroup of Ha, hence characteristic,
while SL(4, Z2) is characteristic in H/V (if not, there is a nontrivial homomor-
phism SL(4, Z2) SL(3, Z2). See also [14, Lemma 1.4]). Thus

V x u (1 1 @ SL(4, Z2)
is characteristic in H3, as is its center M(3,3). But ffn(M(3,3))
M(3, 3) K, which has derived group K’. Finally ffn(K’)= M(3, 3)x
SL(3, Z2) and is characteristic in Ha, as is its ntraler K. Consequently

H, M(H3)= M(M(3, 3) x SL(3, Z2)) K.

As in 4.10, using 1.4(2)and 1.5(2),
(M(3, 3) x a SL(3, Z2))

2 Der (SL(3, Z2), M(3, 3)) x, {SL(3, Z2) M(M(3, 3))}

with ZtA,,)(6) (A 6 I(A- )). By 3.3, the group ofderivations is isomorphic
to M(4, 3), and by 3.4, Mz(M(3, 3))= SL(3, Z2)where B SL(3, Z2) acts by
X XB- . The action of SL(3, Z2) on Der is also by Y YB- x.
To show H, complete, we prove that H3 is characteristic in H, and apply

Burnside’s criterion. The argument of the first paragraph applies to

V= M(4, 3) (M(4, 3) PM(4)) H,
where now

n,/V S(3, Z:). S(3, Z). S(3, Z). S(4, Z).
We conclude that K and (M(3, 3) x SL(3, Z2)) are characteristic in H,, so
it suffices to prove that L M(3, 3) x SL(3, Z2)is a characteristic subgroup
of

#(L) M(4, 3) x {SL(3, Z2) SL(3, Z2)}.
We have M(4, 3) M(3, 3) M(1, 3) (where the first summand corre-

sponds to the group of inner derivations) characteristic in M(L). But M(3, 3) is
an irreducible ,.(L)/M(4, 3)-module, for zta.n,(X)= AXB-x, X M(3, 3).
Moreover, if 6 is any derivation and A SL(3, Z2),

A I(A +
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where I((A)) is the inner derivation determined by cS(A). Consequently either
I(cS(A)) 0 so that 6 0, or M(3, 3) is contained in the submodule generated
by c5. Thus M(3, 3) is characteristic in /(L), and

/(L)/I(M(3, 3))- M(1, 3) x {I(SL(3, Z2)) SL(3, Z2)}- I(SL(3, Zz)) {M(3, 1) a SL(3, Zz)}.
Here M(3, 1) is characteristic, and its centralizer is I(SL(3, Z2)) q) M(3, 1), with
derived group I(SL(3, Z2)). Thus L I(L) and is characteristic in ,../(L), as
required. |
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