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PARTS OF OPERATORS ON HILBERT SPACE
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1. Introduction

In the study of operators on Hilbert spaces it has been found convenient in a
number of different situations to introduce a systematic decomposition of every
operator into the direct sum of two suboperators, one of which possesses some
special property, while the other is "completely free" of that property. The best
known of these decompositions is the splitting of each contraction into its
unitary part and its (complementary) completely-non-unitary part used con-
sistently in [13]. Other instances of this type of construction are extractions of a
self-adjoint part of an operator as in [6], [11], [12], and of the normal part as in
[2], [6], [14]. (There is also frequent reference in the literature to what might be
called the zero part of an operator, though not usually by that name.) More
general decompositions of this type appear in [5, pp. 177-179].
The primary aim of this paper is to put this kind of construction on a

systematic basis. In particular, we give a simple characterization (Theorem 3.3)
of those properties of operators that give rise to such a decomposition. It is also
shown (Theorem 3.7) that these properties can be defined by certain types of
equations. In Section 2 a simple construction is given (Theorem 2.3) for the part
corresponding to a property defined by a family of equations.
In what follows, H denotes a Hilbert space. If M is any subspace (closed

linear manifold) of H, then B(M) denotes the set of operators (bounded linear
transformations) on M, and dim M (the dimension of M) denotes the cardina-
lity of an orthonormal basis for M. If T B(M), then size T dim M. An
operator S is a suboperator of an operator T if S is the restriction of T to a
nonzero reducing subspace. If T is an operator, then W* T) denotes the von
Neumann algebra generated by T (i.e., the weakly closed algebra generated by
1, T, T*). If E

_
H, then /E denotes the subspace spanned by E. A polyno-

mial p(x, y) in the noncommuting variables x, y is a noncommutative
polynomial.

2. Equationally defined parts

Many of the special properties that an operator can have are defined by
equations that the operator is required to satisfy. (Example: T is normal if
T* T TT* 0.) A large number of these equations involve noncommutative
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polynomials in an operator and its adjoint. In order to include such properties
as hyponormality (T*T- TT* > 0), it is necessary to consider a much larger
class of functions.
The motivation for this large class of functions.comes from the study of Borel

functions of normal operators. Suppose T is a normal operator and is a
complex Borel function. IfM is a subspace ofH that reduces T, then M reduces
(T); furthermore, (TIM)=d(T)IM. In other words if T can be
decomposed into the direct sum of two operators A, B, then (T) can be
decomposed into the direct sum of (A), q(B). In addition if U is any unitary
operator, then c/)(U*TU)= U*dp(T)U.

DEFINITION 2.1. A decomposable function is a function 4 on

{B(M): M is a subspace of H}

such that:

(i) ck(B(M))_ B(M) for every subspace M of H.
(ii) If T B(H) and M is a reducing subspace of T, then M reduces b(T)

and  (TIM)= 4 (T)IM.
(iii) If M, N are subspaces of H, S B(M), and U: N --, M is unitary, then

u*4 (s)u.

A decomposable function b is continuous if b B(M)is continuous for every
subspace M of H.

If T is normal and q is a Borel function, then q(T)is in the von Neumann
algebra W*(T) generated by T. Since the commutant of W*(T)is generated by
its projections (or by its unitary operators), it follows from (ii) (or from (iii))
and the double commutant theorem that 4(T)e W*(T) whenever T is an
operator and 4 is a decomposable function.

Examples. (A) If p(x, y)is a noncommutative polynomial, then b(T)=
p(r, T*) defines a decomposable function 4.

(B) If f is an entire function, then 4)(T) f(T) defines a decomposable
function 4).

(C) The sum (linear combination, product, composition)of two decompos-
able functions is a decomposable function.

(D) If f is a complex Borel function and if is a decomposable function
such that 0(S)is normal for every S in B(H), then b(T)=f(0(T))defines a
decomposable function b.

The following definition provides the terminology needed to discuss the class
of operators defined by a family of equations involving decomposable
functions.
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DEFINITION 2.2. If .T is a family ofdecomposable functions, then an opera-
tor T is an .T-operator provided th(T) 0 for each b in .T.

THEOREM 2.3. Suppose .T is a family of decomposable functions and
T B(H). Let M 0 (ker dp(T)p(T, T*): dp ., p(x, y)is a noncommutative
polynomialI. Then:

(1) M+/-= /{range p(T, p(, y) is a noncommutative
polynomial}.

(2) MreducesT.
(3) TIM is an .T-operator.
(4) If S reduces T and TIN is an .T-operator, then N

_
M.

(5) M reduces any operator which commutes with T and T*.

Proof. (1) This follows from the facts that (ker A)+/-= range (A*)- and
(0 Mi)1- /M for any operator A and any collection of subspaces {Mi}.

(2) It is clear from (1) that M+/- is left invariant by both T, T*.
(3) This follows from the fact that M_ ker q(T) ( e .T) and that

(TIM)=(T)IM.
(4) Suppose N reduces T and TIN is an 0-operator. Since N reduces T,

then N reduces each polynomial in T, T*. Thus

p(T)p(T, T*)(N)
_

dp(T)(N)= (TI N)(N)= 0

for each tk in ,T and each polynomial p(x, y).
(5) If A commutes with T and T*, then A commutes with every operator in

W*(T). Thus A and A* commute with (T)p(T, T*)for each th in - and each
polynomial p(x, y). Hence A is reduced by each ker q(T)p(T, T*). Therefore A
is reduced by M.

The subspace M in the preceding theorem is called the -subspace of T.

COROLLARY 2.4. If is a family of decomposable functions, T B(H), and
T A B, then the ,T-subspace of T is the direct sum of the -subspace ofA
with the -subspace of B.

DEFINITION 2.5. If " is a family of decomposable functions, T B(H), and
M is the -subspace of T, then T M is the ,-part of T, and T M+/- is the
non--part of T.

The preceding theorem says that, for any given family of decomposable
functions, any operator can be decomposed into the direct sum of an
operator and an operator with no -part. Part (4) of the theorem says that this
decomposition is unique. The corollary says that the --part of the direct sum
of two operators is obtained by taking the direct sum of the -parts of each
summand. In particular, if A and B have no ,-parts, then A @ B has no
.-part.
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Examples. (E) Let ,T {qS} where b(T)= T for every operator T. The
,T-part of an operator T is the zero part of T, and the ,T-subspace of T is
ker T ker T*.

(F) Let ,T- {b} where qS(T)= T- T* for every operator T. The ,T-part
of an operator T is the Hermitian (self-adjoint) part of T.

(G) If ,T {b, O} where qS(T)= 1 7"*7" and 0(T)= 1 7"7"* for every
operator T, then the ,N-part of an operator T is the unitary part of T.

(H) Hyponormality is defined by an inequality rather than an equation; i.e.,
T is hyponormal if T*T- rr* >_ 0. If A is any operator, let AI
Then A > 0 if and only if A A I. If 0 is a decomposable function, then so is
O I, and if q5 O O l, then O(T) > 0 if and only if b(T) 0. Thus inequal-

ities involving decomposable functions can always be rewritten as equations
involving decomposable functions. If ,T {b} where b(T)= T*T- TT*-
TT* T*T for every operator T, then the ,T-part of an operator T is the

hyponormal part of T.
(I) It was shown by Halmos [8] and Bram [1] that an operator r is sub-

normal if and only if for each positive integer n, the operator S, defined on the
direct sum of n + 1 copies of H by the operator matrix

S,=((T*)27), 0<i,j<n,

is positive. For each positive integer n, let

Isol (Oi,j,n(T)), 0 _< i, j < n.

There is a sequence {p(x, y)} of noncommutative polynomials such that
p(A, A*)-+ AI Yor every operator A. Since Pk(Sn, Sn)--, s l, then each
O,,,(T) is a (norm) limit of noncommutative polynomials in T and T*. Thus
the functions Oi,j,n are decomposable for 0 < i, j <_ n < oe. Furthermore, an
operator T is subnormal if and only if Oi,,,(r) (T*}/T for 0 _< i, j <_ n <
Therefore if -- {(])i,j,n" O i, j < n <

where each bi,,,(T)= Oi,,,(T)- then the -part of an operator T is
the subnormal part of T.

3. General parts

Although every operator has a normal part and a hyponormal part, oper-
ators do not generally have nilpotent parts (consider a direct sum of nilpotent
operators, one of each positive order), compact parts or invertible parts (con-
sider a diagonal operator with spectrum [0, 1]). What kinds of properties of
operators give rise to parts, and which of these can be defined using decompos-
able functions? These questions are answered in this section.
For notational convenience we will identify a property with the class of all

operators having the property. Thus "T e "’ means "T has property ", and a
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property can be defined by a statement like "Let be the class of normal
operators". In order to be "coordinate-free", a property of operators should be
closed under unitary equivalence.
What do we mean when we say that an operator T has a "part" correspond-

ing to a particular property ? It should mean that there is a unique subspace M
that reduces T such that T] M has the prescribed property and T] Mx has no
suboperator with the property. In some sense M should be maximal; that is, M
should contain all those subspaces N that reduce T such that T N has the
prescribed property. These facts imply that M equals the span of all those
subspaces N that reduce T such that TIN has the prescribed property.

DEFINITION 3.1. If is a property of operators and T is an operator, then
the -subspace of T, denoted by (T), is

/{N: N reduces T, T[ N 5).
Note that (T) reduces T. We can now rigorously define what it means for a

property of operators to give rise to parts.

DEFINITION 3.2. A property of operators is a part-property if it is closed
under unitary equivalence and, for each operator T,

(i) T I(T) , and
(ii) if M reduces T, TIM , and (T[M+/-) 0, then M (T).

It may seem that condition (ii) is redundant. To see that it is not, consider the
operator T A B where A is the unilateral shift operator of multiplicity 1
and B is a normal operator whose spectrum is the closed unit disk. Let be the
class of all operators that can be written as the sum of a normal operator and a
compact operator. It follows from [4] that (T) is the entire domain of T and
that TI(T is in . However, (ii)is not satisfied since B ’ and A has no
suboperator in . (Recall that A ’ and A is irreducible.)
The following theorem characterizes those properties that give rise to parts;

they are precisely the properties that are closed under direct sums and under
restriction to reducing subspaces.

THEOREM 3.3. Suppose that is a property ofoperators that is closed under
unitary equivalence. The followin9 two statements are equivalent:

(a) is a part-property.
(b) A direct sum of operators has property ifand only ifeach summand has

property .
Proof (a) (b). Suppose that is a part-property. Suppose also that T is

an operator on a Hilbert space H, and that T is a direct sum of operators in .
It follows that

(T) H and T TI(T) .



PARTS OF OPERATORS ON HILBERT SPACE

Next, suppose that T and T A @ B relative to H M 03 N. Consider
the operator S T T0)...= A 0) B0)A B....
It follows from what was just proved that S . We want to show that A .
It will suffice to show that (A)= M. However, if

M1 @(A N O) M O) N O) M O) NO)’",

then S[MI (S[M is unitarily equivalent to S) and S IMi has no sub-
operator in . Hence M (S). Since S is in , it follows that (A)= M.

(b) (a). Suppose (b) is true, and let T be an operator on a Hilbert space
H. Using Zorn’s lemma, choose a collection {Mi: 6 I} of nonzero subspaces of
H that is maximal with respect to the following conditions"

(i) The subspaces Mi are pairwise orthogonal.
(ii) Each Mi reduces T.
(iii) T[Mi @ for every in I.

Let M /it Mi. Then M reduces T and, from (b), it follows that

TIM . By maximality, TIM+/- has no suboperator in . Hence TIM and
T M have no unitarily equivalent suboperators. It follows from [5, part 3 of
Proposition 1.11] that the orthogonal projection Q onto M commutes with
every operator that commutes with both T and T*. Suppose that M reduces
T and T[M 6 . Since the projection onto M commutes with both T and
T*, then it commutes with Q. Hence

M (M M)@ (M c M+/-).
However, TIM+/- has no suboperator in ; hence M M+/-= O. Thus

M1
_
M. It follows that M (T) and that . is a part-property.

DEFINITION 3.4. If is a part-property of operators and T is an operator,
then T I’(T) is the @-part of T and T I,(T)+/- is the non--part of T.

It is possible that a property of operators may not be a part-property and yet
give rise to parts on some particular Hilbert space. (Example: Let H be separ-
able, and let ’ be the class of all normal operators with separable range.) It is
clear that if a property of operators gives rise to parts on a Hilbert space H,
then it gives rise to parts on all Hilbert spaces M with dim M _< dim H. Hence,
for each infinite cardinal m, we shall consider the properties of operators that
give rise to parts on every Hilbert space M with dim M < m.

DEFINITION 3.5. If rn is an infinite cardinal, then a property of operators
is an m-part-property if is closed under unitary equivalence and, for each
operator T with size T < m,

(i) TI(T) , and
(ii) if M reduces T, TIM , and TIM+/- has no suboperators in , then

M (T).
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The proof of Theorem 3.3 is easily adapted to prove the following analogous
result.

PROPOSITION 3.6. Suppose that rn is an infinite cardinal and that is a
property ofoperators that is closed under unitary equivalence. Thefollowin9 two
statements are equivalent:

(a) is an m-part property.
(b) A direct sum T ofoperators with size T < m has property ifand only if

each summand has property 2.

Since the class of nilpotent (quasinilpotent, compact, invertible) operators is
not closed under countable direct sums, this class is not an m-part-property for
any cardinal m that is larger than No. Here are some more examples.

Examples. (J) Let ,- be a collection of decomposable functions and let
be the class of all operators T such that b(T) is compact for every b in ,N. Such
operators are essentially--operators. Since an infinite direct sum of compact
operators need not be compact, then N will generally not be a part-property.

(K) An operator is block-diagonal if it is unitarily equivalent to a direct sum
of operators having finite size. Since a direct sum of operators is block-diagonal
if and only if each summand is block-diagonal (see [5, Corollary 1.9]), then
block-diagonality is a part-property. Hence every operator has a block-diagonal
part. The same holds when the class of block-diagonal operators is replaced by
the class of operators that are unitarily equivalent to a direct sum of irreducible
operators.

(L) The closure of the set of block-diagonal operators on a Hilbert space is
the set of quasidiagonal operators [10]. It is clear that a direct sum of quasi-
diagonal operators is quasidiagonal. However, it was shown by Halmos [9]"
that the unilateral shift operator is not quasidiagonal, and it was shown by
Deddens and Stampfli [4] that this operator is a suboperator of a quasidiagonal
operator. Hence the class of quasidiagonal operators is not a part-class.
(M) Let be a part-property and let N’ be the class of all operators having

no suboperators in N. Then N’ is a part-property and the Y"-part of an oper-
ator T is the non-N-part of T.

We conclude this section with a determination of the part-properties that can
be equationally defined. The surprising (but simple) answer is that they all can.
The proof is elementary and is omitted.

THEOREM 3.7. Suppose that N is a part-property of operators and dp is the
function defined by letting dp(T) be the projection onto N(T)+/-. Then dp is a
decomposable function and an operator T has property N precisely when
dp(T) O.

4. Remarks and questions

(I) Using Theorem 3.7 we can interpret part (5) of Theorem 2.3 as saying
that if N is a part-property and T is an operator, then the projection onto N(T)
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is in the center of W*(T). Thus if x and ,2 are part-properties and T B(H),
then we can write

H [,x(T)@ 2(T)] @ [I(T) c 2(T)] @ [2(T)( x(T)] @ M,

where each of the summands reduces T. Hence we can write

T= TI @ T2 T3 T4.
where Tx is a ,x-operator with no ’2-part, T2 is a ,x c 2-0perator, T3 is a
2-0perator with no x-part, and T has no suboperator in x w ;2. A
similar decomposition holds for a sequence of part-properties.

(II) It is shown in [7] that if ,- is a collection of decomposable functions
and T is an essentially-,--operator, then the non-,--part of T is unitarily
equivalent to a direct sum of irreducible operators. It is also shown in [7] that if- is a collection of continuous decomposable functions, T is an essentially-,T-
operator on a separable Hilbert space, and if S is a norm limit of operators that
are unitarily equivalent to T, then the non-if-part of S is unitarily equivalent to
the non-,--part of T.

(III) Very little is known about decomposable functions. The restriction of
a continuous decomposable function to the scalars (operators with size one)
yields a continuous complex function. This continuous complex function
determines the values of the decomposable function on the diagonal, and hence
normal, operators. Similarly, the value of the decomposable function on the
quasidiagonal operators is determined by its value on all operators with finite
size; once its values are known for quasidiagonal operators, its values are
determined for all suboperators of quasidiagonal operators (e.g., the unilateral
shift). (It is conjectured that every operator is unitarily equivalent to a sub-
operator of a quasidiagonal operator.) Here are a few of the many interesting
questions that can be asked about decomposable functions.

(a) Which continuous complex functions in the plane can be extended to
continuous decomposable functions ?

(b) Which part-properties of operators can be defined by a collection of
continuous decomposable functions?

(c) It is easily shown that if 4) is a decomposable function that is continuous
with respect to the weak operator topology, then b has the form b(T)=
aT + bT* + e. Are there simple characterizations of decomposable functions
that are continuous with respect to other operator topologies?

(d) If T is an operator on a separable Hilbert space, then is {4(T): 4) is a
continuous decomposable function} a C*-algebra? Is it the C*-algebra gen-
erated by 1 and T? (The answer to both of these questions is "yes" if T is
compact or normal.)

(e) If 4 is a continuous decomposable function and n is a representation of
the C*-algebra generated by 1 and T, then does n(b(T))= b(n(T))define an
extension of n to a representation of the C*-algebra generated by 1, T, and
b(T)?
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Added in proof We have recently learned that some of the results in this
paper are similar to those in [15] and [16]. Also [17] contains many interesting
properties of decomposable functions, including answers to most of the pre-
ceding questions.
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