A BANACH SPACE NOT CONTAINING l₁ WHOSE DUAL BALL IS NOT WEAK* SEQUENTIALLY COMPACT

BY

J. HAGLER AND E. ODELL¹

The structure of Banach spaces with nonweak* sequentially compact dual balls was studied in [7], where it was proved that if X is separable and the unit ball of X** is not weak* sequentially compact, then X* contains a subspace isomorphic to $l_1(\Gamma)$ for some uncountable set Γ . Subsequently it was proved in [1] that if the unit ball of X* is not weak* sequentially compact, then (a) either c_0 is a quotient of X or l_1 is isomorphic to a subspace of X, and (b) X has a separable subspace with nonseparable dual. In this note we give an example of a Banach space X whose dual ball is not weak* sequentially compact, but where X contains no subspace isomorphic to l_1 . This answers a question posed by H. P. Rosenthal [7].

The example we construct draws on two ideas. First R. Haydon [2] exhibited a compact Hausdorff space K which is not sequentially compact such that C(K) does not contain a subspace isomorphic to $l_1(\Gamma)$ for any uncountable set Γ . Central to this construction (and to ours) is the existence of a "thin" family of subsets of the integers which infinitely separates every infinite subset of the integers (see Lemma 1 below). Secondly, the space X we exhibit must be nonseparable. A key part of our construction is a nonseparable analogue of JT, the James tree (cf. [3] or [4]). This space has the property that JT^* is not separable, yet JT contains no isomorph of l_1 . We recall the definition of JTbelow during the proof of Lemma 2.

Notation. If X is a Banach space and $(g_{\alpha})_{\alpha \in I} \subseteq X$, then by $\langle g_{\alpha} \rangle_{\alpha \in I}$ we mean the linear span of the set $(g_{\alpha})_{\alpha \in I}$, while $[g_{\alpha}]_{\alpha \in I}$ denotes the closure of $\langle g_{\alpha} \rangle_{\alpha \in I}$. Also if L and M are subsets of N, the set of natural numbers, then |L| denotes the cardinality of L. $L \subset M$ means $|L \setminus M| < \infty$ and $L \cap M = M$ means $|L \cap M| < \infty$.

Other Banach space notation we use is standard and may be found in [5].

The definition of X.

LEMMA 1. There is a well ordered set I, < and a collection of infinite subsets of N, $(M_{\alpha})_{\alpha \in I}$, such that:

Received January 17, 1977.

¹ Research of the second author was partially supported by the National Science Foundation.

^{© 1978} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

(1) If $\alpha < \beta$ then either $M_{\beta} \subset M_{\alpha}$ or $M_{\beta} \cap M_{\alpha} = 0$.

(2) If $M \subset N$, $|M| = \infty$ then there is an $\alpha \in I$ such that $|M \cap M_{\alpha}| = |M \setminus M_{\alpha}| = \infty$.

Proof. Let $(S_{\alpha})_{\alpha \in J}$ be the collection of all infinite subsets of N and let < be a well ordering of J. For each $\alpha \in J$ let M_{α} be an infinite subset of S_{α} with $|S_{\alpha} \setminus M_{\alpha}| = \infty$. We shall inductively choose $I \subset J$ so that (1) and (2) are satisfied. If α_1 is the first element of J, put α_1 in I. Let $\beta \in J$ and assume I has been defined for all $\alpha < \beta$. If there is an $\alpha < \beta$ such that

$$|S_{\beta} \cap M_{\alpha}| = |S_{\beta} \setminus M_{\alpha}| = \infty,$$

we "discard" β . If no $\alpha < \beta$ satisfies (3), we put β in *I*.

Clearly $(M_{\alpha})_{\alpha \in I}$ satisfies (1) by construction. If $M \subset N$, $|M| = \infty$, then $M = S_{\beta}$ for some $\beta \in J$. If $\beta \in I$, then $|M \cap M_{\beta}| = |M \setminus M_{\beta}| = \infty$. If $\beta \notin I$ then there is an $\alpha < \beta$ so that (3) holds and thus (2) is proved, Q.E.D.

We wish to thank M. Wage for showing us the proof of Lemma 1 and for allowing us to reproduce here his argument.

Now define a *new* partial ordering \leq on *I* as follows: $\alpha \leq \beta$ if $\alpha < \beta$ and $M_{\beta} \subset M_{\alpha}$. We note that (I, \leq) is a tree (i.e., if $\beta \in I$, $\{\alpha \in I : \alpha \leq \beta\}$ is a well ordered set). Also every nonempty subset of (I, \leq) has at least one minimal element.

Remarks. (1) The requirement that $\alpha < \beta$ in the definition of $\alpha \leq \beta$ is actually redundant. Indeed if α , $\beta \in I$, $M_{\beta} \subset M_{\alpha}$ and $\alpha > \beta$ then $M_{\alpha} \subset M_{\beta}$ and so $M_{\alpha} = M_{\beta}$. But then $|S_{\alpha} \cap M_{\beta}| = |S_{\alpha} \setminus M_{\beta}| = \infty$ and this contradicts our definition of I in the proof of Lemma 1.

(2) In [2], R. Haydon used Zorn's lemma to construct infinite subsets of the integers $(M_{\alpha})_{\alpha \in I}$ satisfying (2) and such that if $\alpha \neq \beta$ then either $M_{\beta} \subset M_{\alpha}$, $M_{\alpha} \subset M_{\beta}$ or $M_{\alpha} \cap M_{\beta} = {}^{a} \emptyset$. The importance of Lemma 1 to us is the particular partial order it allows us to define.

By a segment B in I we shall mean a subset of I of the form

$$B = [\alpha, \beta] = \{ \gamma \in I : \alpha \le \gamma \le \beta \},\$$

where α , $\beta \in I$. Let $(g_{\alpha})_{\alpha \in I}$ be a linearly independent set of vectors in some vector space. If $(t_{\alpha})_{\alpha \in I}$ is a finitely nonzero set of scalars, we define

(*)
$$\left\| \sum_{\alpha \in I} t_{\alpha} g_{\alpha} \right\|$$

= $\sup \left\{ \left[\sum_{i=1}^{k} \left(\sum_{\alpha \in B_{i}} t_{\alpha} \right)^{2} \right]^{1/2} : B_{1}, \dots, B_{k} \text{ are pairwise disjoint segments} \right\}$.

Let Y be the completion of $\langle g_{\alpha} \rangle_{\alpha \in I}$ under this norm (Y is the nonseparable analogue of JT referred to above).

For each $\alpha \in I$, let $1_{M_{\alpha}}$ be the indicator function of M_{α} in l_{∞} and let

$$h_{\alpha} = (1_{M_{\alpha}}, g_{\alpha}) \in (l_{\infty} \oplus Y)_{\infty}.$$

Thus, for a finitely nonzero set of scalars $(t_{\alpha})_{\alpha \in I}$,

$$\left\|\sum t_{\alpha}h_{\alpha}\right\| = \max\left\{\left\|\sum t_{\alpha}\mathbf{1}_{M_{\alpha}}\right\|_{\infty}, \left\|\sum t_{\alpha}g_{\alpha}\right\|\right\}.$$

Let X be the closed subspace of $(l_{\infty} \oplus Y)_{\infty}$ generated by $(h_{\alpha})_{\alpha \in I}$ and let B_X^* denote the unit ball of X^* .

 B_X^* is not weak* sequentially compact.

For $n \in N$, let $F_n(h_{\alpha}) = 1_{M_{\alpha}}(n)$ and extend F_n linearly to $\langle h_{\alpha} \rangle_{\alpha \in I}$. Then if $\sum t_{\alpha} h_{\alpha} \in \langle h_{\alpha} \rangle_{\alpha \in I}$,

$$|F_n(\sum t_{\alpha}h_{\alpha})| = |\sum t_{\alpha}1_{M_{\alpha}}(n)| \leq ||\sum t_{\alpha}1_{M_{\alpha}}||_{\infty} \leq ||\sum t_{\alpha}h_{\alpha}||_{\infty}$$

Thus F_n has a unique extension to a norm one element of X^* which we also denote by F_n . We claim that if M is an infinite subset of N, then $(F_n)_{n \in M}$ does not converge. Indeed by (2) there is an $\alpha \in I$ such that $|M \cap M_{\alpha}| = |M \setminus M_{\alpha}| = \infty$. Thus, $(F_n(h_{\alpha}))_{n \in M}$ does not converge.

X contains no subspace isomorphic to l_1 .

LEMMA 2. Every infinite dimensional subspace of Y contains an isomorph of l_2 .

Let us assume for the moment that Lemma 2 has been proved and that X contains an isomorph of l_1 . Then there exists

$$e^{n} = (f^{n}, g^{n}) \in \langle h_{\alpha} \rangle_{\alpha \in I}$$

such that (e^n) is equivalent to the unit vector basis of l_1 . By passing to a block basis of (e^n) if necessary we may assume that $||g^n|| \to 0$ and (f^n) is equivalent to the unit vector basis of l_1 . An easy application of Rosenthal's characterization of Banach spaces containing l_1 [6] yields a subsequence of (f^n) (which we continue to call (f^n)) and real numbers r and δ with $\delta > 0$ such that if

$$A_n = \{m \in N : f^n(m) > r + \delta\}$$
 and $B_n = \{m \in N : f^n(m) < r\}$

then $(A_n, B_n)_{n=1}^{\infty}$ is independent. This means that if F and G are disjoint finite subsets of N, then

$$\bigcap_{n \in F} A_n \cap \bigcap_{n \in G} B_n \neq \emptyset.$$

In particular $|A_n| = |B_n| = \infty$ for all *n*. We can also suppose that $r + \delta > 0$ (if not, multiply each e^n by -1) and fix *n* large enough so that $||g^n|| < r + \delta$. We show that $|A_n| < \infty$, which is a contradiction.

292

Let

$$e^n = \sum_{\alpha \in D} t_{\alpha} h_{\alpha} = \left(\sum_{\alpha \in D} t_{\alpha} \mathbb{1}_{M_{\alpha}}, \sum_{\alpha \in D} t_{\alpha} g_{\alpha} \right),$$

where D is a finite subset of I. Choose a finite subset G of N and $\overline{M}_{\alpha} \subset M_{\alpha}$ for $\alpha \in D$ such that if $\alpha, \alpha' \in D$ are distinct, then

- (i) $M_{\alpha} \cap M_{\alpha'} = {}^{a} \emptyset$ implies $\overline{M}_{\alpha} \cap \overline{M}_{\alpha'} = \emptyset$,
- (ii) $M_{\alpha} \subset M_{\alpha'}$ implies $\overline{M}_{\alpha} \subset \overline{M}_{\alpha'}$,
- (iii) $\overline{M}_{\alpha} \cap G = \emptyset$ and $M_{\alpha} \subset \overline{M}_{\alpha} \cup G$.

Let $m \in \overline{M}_{\alpha}$ for some $\alpha \in D$. Then there exists a unique sequence

$$\alpha_1 < \alpha_2 < \cdots < \alpha_k$$
 in D

such that $m \in \overline{M}_{\alpha_i}$ for $1 \le i \le k$ and $m \notin \overline{M}_{\alpha}$ for $\alpha \in D \setminus \{\alpha_1, \ldots, \alpha_k\}$. Consider the segment $B = [\alpha_1, \alpha_k]$ in *I*. Then $f^n(m) = \sum_{i=1}^k t_{\alpha_i} = \sum_{\alpha \in B} t_{\alpha}$. Since $||g^n|| < r + \delta$, $f^n(m) < r + \delta$ and so $m \notin A_n$. Thus $A_n \subset G$ is finite and we conclude that X does not contain l_1 .

To prove the lemma, we present a simplified version of our original argument, as shown to us by Y. Benyamini.

Proof of Lemma 2. We show that every infinite dimensional subspace of Y contains an isomorph of an infinite dimensional subspace of JT and thus by [3] an isomorph of l_2 . First let us recall the definition of JT. Let $T = \bigcup_{n=0}^{\infty} \{0, 1\}^n$ be a dyadic tree (i.e., if \emptyset , $\chi \in T$ with lengths n and m respectively then $\emptyset \le \chi$ if $n \le m$ and the first n terms of χ form \emptyset). If x is a finitely nonzero scalar-valued function on T let

$$||x|| = \max\left[\sum_{i=1}^{k} \left(\sum_{\emptyset \in B_i} x(\emptyset)^2\right)\right]^{1/2}$$

where the max is taken over all k and pairwise disjoint segments B_1, \ldots, B_k in T. JT is the completion of the linear span of all such x with this norm.

Now let Z be an infinite dimensional subspace of Y. We can assume that Z is separable and that there is a countable set $I_0 \subset I$ such that $Z \subseteq [g_\alpha]_{\alpha \in I_0}$.

Let $I_1 = \{ \alpha \in I_0 : \alpha \text{ is a minimal element of } I_0 \}$ and for a countable ordinal β , set

$$I_{\beta} = \left\{ \alpha \in I_0 \colon \alpha \text{ is a minimal element of } I_0 \setminus \bigcup_{\gamma < \beta} I_{\gamma} \right\}.$$

Since I_0 is countable, there is a countable ordinal α_0 such that $I_0 = \bigcup_{\beta < \alpha_0} I_{\beta}$.

Now, let $\beta \le \alpha_0$ be the smallest ordinal such that the restriction map to $\bigcup_{\alpha \le \beta} I_{\gamma}$ is an isomorphism on an infinite dimensional subspace of Z. (This

map is defined as follows: For a finitely nonzero set of scalars $(t_{\alpha})_{\alpha \in I_0}$, define

$$R\left(\sum_{\alpha \in I_0} t_{\alpha}g_{\alpha}\right) = \sum_{\alpha \in \cup_{\gamma \leq \beta} I_{\gamma}} t_{\alpha}g_{\alpha}.$$

It is clear that $||R|| \leq 1$.)

First, if the restriction map to I_{β} is an isomorphism on an infinite dimensional subspace of Z, then clearly l_2 imbeds in Z. (For instance, this case must occur if β is a successor.)

If not, then a standard gliding hump argument shows the existence of a subsequence $n_1 < n_2 < \cdots$ of N, and normalized basic sequences $(z_j) \subset Z$ and $(y_j) \subset Y$ such that

$$y_j \in \langle g_{\alpha} \rangle : \alpha \in \bigcup \{ I_{\delta} : n_j \leq \delta < n_{j+1} \}$$

and $||z_j - y_j|| < 2^{-j}$ for each $j \in N$. (Thus, by a standard perturbation argument, (z_i) is equivalent to (y_i) .)

We claim that $[(y_j)]$ is isometric to a subspace of *JT*. Indeed let $y_j \in \langle g_{\alpha} \rangle_{\alpha \in D_j}$ where D_j is a finite subset of

$$\bigcup \{I_{\delta}: n_j \leq \delta < n_{j+1}\}$$

and choose an order preserving injection $Q: \bigcup_{j=1}^{\infty} D_j \to T$. Let $x_j \in JT$ be defined by $x_j(\emptyset) = y_j(Q^{-1}(\emptyset))$ for $\emptyset \in T$. Then (x_j) is isometrically equivalent to (y_j) , Q.E.D.

Remark. If (S, \leq) is any tree and $(g_{\alpha})_{\alpha \in S}$ are linearly independent vectors in a vector space we may define a norm on $\langle g_{\alpha} \rangle_{\alpha \in S}$ by means of (*) above. Lemma 2 remains valid for the resulting Banach space if every nonempty subset of S has a minimal element. In general it is false, however. For example if S is the set of rationals with the usual order then corresponding Banach space can be seen to contain c_0 .

REFERENCES

- 1. J. HAGLER AND W. B. JOHNSON, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math.,
- 2. R. HAYDON, On Banach spaces which contain $l^1(\tau)$ and types of measures on compact spaces,
- 3. R. C. JAMES, A separable somewhat reflexive space with nonseparable dual, Bull. Amer. Math. Soc., vol. 80 (1974), pp. 738-743.
- 4. J. LINDENSTRAUSS AND C. STEGALL, Examples of separable spaces which do not contain l_1 and whose duals are non-separable, Studia Math., vol. 54 (1975), pp. 81–105.
- J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach space, Lecture Notes in Mathematics, No. 338, Springer-Verlag, New York, 1973.
- H. P. ROSENTHAL, A characterization of Banach spaces containing l₁, Proc. Nat. Acad. Sci. U.S.A., vol. 71 (1974), pp. 2411–2413.
- 7. ——, Pointwise compact subsets of the first Baire class, Amer. J. Math., vol. 99 (1977), pp. 362–378.

CATHOLIC UNIVERSITY

WASHINGTON, D.C.

YALE UNIVERSITY

NEW HAVEN, CONNECTICUT

294