A BANACH SPACE NOT CONTAINING l_{1} WHOSE DUAL BALL IS NOT WEAK* SEQUENTIALLY COMPACT

BY
J. Hagler and E. Odell ${ }^{1}$

The structure of Banach spaces with nonweak* sequentially compact dual balls was studied in [7], where it was proved that if X is separable and the unit ball of $X^{* *}$ is not weak* sequentially compact, then X^{*} contains a subspace isomorphic to $l_{1}(\Gamma)$ for some uncountable set Γ. Subsequently it was proved in [1] that if the unit ball of X^{*} is not weak* sequentially compact, then (a) either c_{0} is a quotient of X or l_{1} is isomorphic to a subspace of X, and (b) X has a separable subspace with nonseparable dual. In this note we give an example of a Banach space X whose dual ball is not weak* sequentially compact, but where X contains no subspace isomorphic to l_{1}. This answers a question posed by H. P. Rosenthal [7].

The example we construct draws on two ideas. First R. Haydon [2] exhibited a compact Hausdorff space K which is not sequentially compact such that $C(K)$ does not contain a subspace isomorphic to $l_{1}(\Gamma)$ for any uncountable set Γ. Central to this construction (and to ours) is the existence of a "thin" family of subsets of the integers which infinitely separates every infinite subset of the integers (see Lemma 1 below). Secondly, the space X we exhibit must be nonseparable. A key part of our construction is a nonseparable analogue of $J T$, the James tree (cf. [3] or [4]). This space has the property that $J T^{*}$ is not separable, yet $J T$ contains no isomorph of l_{1}. We recall the definition of $J T$ below during the proof of Lemma 2.

Notation. If X is a Banach space and $\left(g_{\alpha}\right)_{\alpha \in I} \subseteq X$, then by $\left\langle g_{\alpha}\right\rangle_{\alpha \in I}$ we mean the linear span of the set $\left(g_{\alpha}\right)_{\alpha \in I}$, while $\left[g_{\alpha}\right]_{\alpha \in I}$ denotes the closure of $\left\langle g_{\alpha}\right\rangle_{\alpha \in I}$. Also if L and M are subsets of N, the set of natural numbers, then $|L|$ denotes the cardinality of $L . L \subset{ }^{a} M$ means $|L \backslash M|<\infty$ and $L \cap M={ }^{a} \emptyset$ means $|L \cap M|<\infty$.

Other Banach space notation we use is standard and may be found in [5].
The definition of X.
Lemma 1. There is a well ordered set $I,<$ and a collection of infinite subsets of $N,\left(M_{\alpha}\right)_{\alpha \in I}$, such that:

[^0](1) If $\alpha<\beta$ then either $M_{\beta} \subset^{a} M_{\alpha}$ or $M_{\beta} \cap M_{\alpha}={ }^{a} \emptyset$.
(2) If $M \subset N, \quad|M|=\infty$ then there is an $\alpha \in I$ such that $\left|M \cap M_{\alpha}\right|=\left|M \backslash M_{\alpha}\right|=\infty$.

Proof. Let $\left(S_{\alpha}\right)_{\alpha \in J}$ be the collection of all infinite subsets of N and let $<$ be a well ordering of J. For each $\alpha \in J$ let M_{α} be an infinite subset of S_{α} with $\left|S_{\alpha}\right| M_{\alpha} \mid=\infty$. We shall inductively choose $I \subset J$ so that (1) and (2) are satisfied. If α_{1} is the first element of J, put α_{1} in I. Let $\beta \in J$ and assume I has been defined for all $\alpha<\beta$. If there is an $\alpha<\beta$ such that

$$
\begin{equation*}
\left|S_{\beta} \cap M_{\alpha}\right|=\left|S_{\beta}\right| M_{\alpha} \mid=\infty \tag{3}
\end{equation*}
$$

we "discard" β. If no $\alpha<\beta$ satisfies (3), we put β in I.
Clearly $\left(M_{\alpha}\right)_{\alpha \in I}$ satisfies (1) by construction. If $M \subset N,|M|=\infty$, then $M=S_{\beta}$ for some $\beta \in J$. If $\beta \in I$, then $\left|M \cap M_{\beta}\right|=\left|M \backslash M_{\beta}\right|=\infty$. If $\beta \notin I$ then there is an $\alpha<\beta$ so that (3) holds and thus (2) is proved, Q.E.D.

We wish to thank M. Wage for showing us the proof of Lemma 1 and for allowing us to reproduce here his argument.

Now define a new partial ordering \leq on I as follows: $\alpha \leq \beta$ if $\alpha<\beta$ and $M_{\beta} \subset^{a} M_{\alpha}$. We note that (I, \leq) is a tree (i.e., if $\beta \in I,\{\alpha \in I: \alpha \leq \beta\}$ is a well ordered set). Also every nonempty subset of (I, \leq) has at least one minimal element.

Remarks. (1) The requirement that $\alpha<\beta$ in the definition of $\alpha \leq \beta$ is actually redundant. Indeed if $\alpha, \beta \in I, M_{\beta} \subset^{a} M_{\alpha}$ and $\alpha>\beta$ then $M_{\alpha} \subset^{a} M_{\beta}$ and so $M_{\alpha}={ }^{a} M_{\beta}$. But then $\left|S_{\alpha} \cap M_{\beta}\right|=\left|S_{\alpha} \backslash M_{\beta}\right|=\infty$ and this contradicts our definition of I in the proof of Lemma 1.
(2) In [2], R. Haydon used Zorn's lemma to construct infinite subsets of the integers $\left(M_{\alpha}\right)_{\alpha \in I}$ satisfying (2) and such that if $\alpha \neq \beta$ then either $M_{\beta} \subset^{a} M_{\alpha}$, $M_{\alpha} \subset{ }^{a} M_{\beta}$ or $M_{\alpha} \cap M_{\beta}={ }^{a} \emptyset$. The importance of Lemma 1 to us is the particular partial order it allows us to define.

By a segment B in I we shall mean a subset of I of the form

$$
B=[\alpha, \beta]=\{\gamma \in I: \alpha \leq \gamma \leq \beta\}
$$

where $\alpha, \beta \in I$. Let $\left(g_{\alpha}\right)_{\alpha \in I}$ be a linearly independent set of vectors in some vector space. If $\left(t_{\alpha}\right)_{\alpha \in I}$ is a finitely nonzero set of scalars, we define

$$
\begin{align*}
& \left\|\sum_{\alpha \in I} t_{\alpha} g_{\alpha}\right\| \tag{*}\\
& \quad=\sup \left\{\left[\sum_{i=1}^{k}\left(\sum_{\alpha \in B_{i}} t_{\alpha}\right)^{2}\right]^{1 / 2}: B_{1}, \ldots, B_{k} \text { are pairwise disjoint segments }\right\} .
\end{align*}
$$

Let Y be the completion of $\left\langle g_{\alpha}\right\rangle_{\alpha \in I}$ under this norm (Y is the nonseparable analogue of $J T$ referred to above).

For each $\alpha \in I$, let $1_{M_{\alpha}}$ be the indicator function of M_{α} in l_{∞} and let

$$
h_{\alpha}=\left(1_{M_{\alpha}}, g_{\alpha}\right) \in\left(l_{\infty} \oplus Y\right)_{\infty}
$$

Thus, for a finitely nonzero set of scalars $\left(t_{\alpha}\right)_{\alpha \in I}$,

$$
\left\|\sum t_{\alpha} h_{\alpha}\right\|=\max \left\{\left\|\sum t_{\alpha} 1_{M_{\alpha}}\right\|_{\infty},\left\|\sum t_{\alpha} g_{\alpha}\right\|\right\}
$$

Let X be the closed subspace of $\left(l_{\infty} \oplus Y\right)_{\infty}$ generated by $\left(h_{\alpha}\right)_{\alpha \in I}$ and let B_{X}^{*} denote the unit ball of X^{*}.
B_{X}^{*} is not weak* sequentially compact.
For $n \in N$, let $F_{n}\left(h_{\alpha}\right)=1_{M_{\alpha}}(n)$ and extend F_{n} linearly to $\left\langle h_{\alpha}\right\rangle_{\alpha \in I}$. Then if $\sum t_{\alpha} h_{\alpha} \in\left\langle h_{\alpha}\right\rangle_{\alpha \in I}$,

$$
\left|F_{n}\left(\sum t_{\alpha} h_{\alpha}\right)\right|=\left|\sum t_{\alpha} 1_{M_{\alpha}}(n)\right| \leq\left\|\sum t_{\alpha} 1_{M_{\alpha}}\right\|_{\infty} \leq\left\|\sum t_{\alpha} h_{\alpha}\right\|
$$

Thus F_{n} has a unique extension to a norm one element of X^{*} which we also denote by F_{n}. We claim that if M is an infinite subset of N, then $\left(F_{n}\right)_{n \in M}$ does not converge. Indeed by (2) there is an $\alpha \in I$ such that $\left|M \cap M_{\alpha}\right|=$ $\left|M \backslash M_{\alpha}\right|=\infty$. Thus, $\left(F_{n}\left(h_{\alpha}\right)\right)_{n \in M}$ does not converge.
X contains no subspace isomorphic to l_{1}.
Lemma 2. Every infinite dimensional subspace of Y contains an isomorph of l_{2}.

Let us assume for the moment that Lemma 2 has been proved and that X contains an isomorph of l_{1}. Then there exists

$$
e^{n}=\left(f^{n}, g^{n}\right) \in\left\langle h_{\alpha}\right\rangle_{\alpha \in I}
$$

such that $\left(e^{n}\right)$ is equivalent to the unit vector basis of l_{1}. By passing to a block basis of $\left(e^{n}\right)$ if necessary we may assume that $\left\|g^{n}\right\| \rightarrow 0$ and $\left(f^{n}\right)$ is equivalent to the unit vector basis of l_{1}. An easy application of Rosenthal's characterization of Banach spaces containing l_{1} [6] yields a subsequence of $\left(f^{n}\right)$ (which we continue to call $\left(f^{n}\right)$) and real numbers r and δ with $\delta>0$ such that if

$$
A_{n}=\left\{m \in N: f^{n}(m)>r+\delta\right\} \quad \text { and } \quad B_{n}=\left\{m \in N: f^{n}(m)<r\right\}
$$

then $\left(A_{n}, B_{n}\right)_{n=1}^{\infty}$ is independent. This means that if F and G are disjoint finite subsets of N, then

$$
\bigcap_{n \in F} A_{n} \cap \bigcap_{n \in G} B_{n} \neq \emptyset
$$

In particular $\left|A_{n}\right|=\left|B_{n}\right|=\infty$ for all n. We can also suppose that $r+\delta>0$ (if not, multiply each e^{n} by -1) and fix n large enough so that $\left\|g^{n}\right\|<r+\delta$. We show that $\left|A_{n}\right|<\infty$, which is a contradiction.

Let

$$
e^{n}=\sum_{\alpha \in D} t_{\alpha} h_{\alpha}=\left(\sum_{\alpha \in D} t_{\alpha} 1_{M_{\alpha}}, \sum_{\alpha \in D} t_{\alpha} g_{\alpha}\right),
$$

where D is a finite subset of I. Choose a finite subset G of N and $\bar{M}_{\alpha} \subset M_{\alpha}$ for $\alpha \in D$ such that if $\alpha, \alpha^{\prime} \in D$ are distinct, then
(i) $M_{\alpha} \cap M_{\alpha^{\prime}}={ }^{a} \emptyset$ implies $\bar{M}_{\alpha} \cap \bar{M}_{\alpha^{\prime}}=\emptyset$,
(ii) $M_{\alpha} \subset^{a} M_{\alpha^{\prime}}$ implies $\bar{M}_{\alpha} \subset \bar{M}_{\alpha^{\prime}}$,
(iii) $\bar{M}_{\alpha} \cap G=\emptyset$ and $M_{\alpha} \subset \bar{M}_{\alpha} \cup G$.

Let $m \in \bar{M}_{\alpha}$ for some $\alpha \in D$. Then there exists a unique sequence

$$
\alpha_{1}<\alpha_{2}<\cdots<\alpha_{k} \text { in } D
$$

such that $m \in \bar{M}_{\alpha_{i}}$ for $1 \leq i \leq k$ and $m \notin \bar{M}_{\alpha}$ for $\alpha \in D \backslash\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$. Consider the segment $B=\left[\alpha_{1}, \alpha_{k}\right]$ in I. Then $f^{n}(m)=\sum_{i=1}^{k} t_{\alpha_{i}}=\sum_{\alpha \in B} t_{\alpha}$. Since $\left\|g^{n}\right\|<r+\delta$, $f^{n}(m)<r+\delta$ and so $m \notin A_{n}$. Thus $A_{n} \subset G$ is finite and we conclude that X does not contain l_{1}.

To prove the lemma, we present a simplified version of our original argument, as shown to us by Y. Benyamini.

Proof of Lemma 2. We show that every infinite dimensional subspace of Y contains an isomorph of an infinite dimensional subspace of $J T$ and thus by [3] an isomorph of l_{2}. First let us recall the definition of $J T$. Let $T=\bigcup_{n=0}^{\infty}\{0,1\}^{n}$ be a dyadic tree (i.e., if $\emptyset, \chi \in T$ with lengths n and m respectively then $\emptyset \leq \chi$ if $n \leq m$ and the first n terms of χ form \emptyset). If x is a finitely nonzero scalar-valued function on T let

$$
\|x\|=\max \left[\sum_{i=1}^{k}\left(\sum_{\emptyset \in B_{i}} x(\emptyset)^{2}\right)\right]^{1 / 2}
$$

where the max is taken over all k and pairwise disjoint segments B_{1}, \ldots, B_{k} in $T . J T$ is the completion of the linear span of all such x with this norm.

Now let Z be an infinite dimensional subspace of Y. We can assume that Z is separable and that there is a countable set $I_{0} \subset I$ such that $Z \subseteq\left[g_{\alpha}\right]_{\alpha \in I_{0}}$.

Let $I_{1}=\left\{\alpha \in I_{0}: \alpha\right.$ is a minimal element of $\left.I_{0}\right\}$ and for a countable ordinal β, set

$$
I_{\beta}=\left\{\alpha \in I_{0}: \alpha \text { is a minimal element of } I_{0} \backslash \bigcup_{\gamma<\beta} I_{\gamma}\right\}
$$

Since I_{0} is countable, there is a countable ordinal α_{0} such that $I_{0}=\bigcup_{\beta<\alpha_{0}} I_{\beta}$.
Now, let $\beta \leq \alpha_{0}$ be the smallest ordinal such that the restriction map to $\bigcup_{\alpha \leq \beta} I_{\gamma}$ is an isomorphism on an infinite dimensional subspace of Z. (This
map is defined as follows: For a finitely nonzero set of scalars $\left(t_{\alpha}\right)_{\alpha \in I_{0}}$, define

$$
R\left(\sum_{\alpha \in I_{0}} t_{\alpha} g_{\alpha}\right)=\sum_{\alpha \in \cup_{\gamma \leqslant \beta} I_{\gamma}} t_{\alpha} g_{\alpha}
$$

It is clear that $\|R\| \leq 1$.)
First, if the restriction map to I_{β} is an isomorphism on an infinite dimensional subspace of Z, then clearly l_{2} imbeds in Z. (For instance, this case must occur if β is a successor.)

If not, then a standard gliding hump argument shows the existence of a subsequence $n_{1}<n_{2}<\cdots$ of N, and normalized basic sequences $\left(z_{j}\right) \subset Z$ and $\left(y_{j}\right) \subset Y$ such that

$$
y_{j} \in\left\langle g_{\alpha}\right\rangle: \alpha \in \bigcup\left\{I_{\delta}: n_{j} \leq \delta<n_{j+1}\right\}
$$

and $\left\|z_{j}-y_{j}\right\|<2^{-j}$ for each $j \in N$. (Thus, by a standard perturbation argument, $\left(z_{j}\right)$ is equivalent to $\left(y_{j}\right)$.)

We claim that $\left[\left(y_{j}\right)\right]$ is isometric to a subspace of $J T$. Indeed let $y_{j} \in\left\langle g_{\alpha}\right\rangle_{\alpha \in D_{j}}$ where D_{j} is a finite subset of

$$
\bigcup\left\{I_{\delta}: n_{j} \leq \delta<n_{j+1}\right\}
$$

and choose an order preserving injection $Q: \bigcup_{j=1}^{\infty} D_{j} \rightarrow T$. Let $x_{j} \in J T$ be defined by $x_{j}(\emptyset)=y_{j}\left(Q^{-1}(\emptyset)\right)$ for $\emptyset \in T$. Then $\left(x_{j}\right)$ is isometrically equivalent to $\left(y_{j}\right)$, Q.E.D.

Remark. If (S, \leq) is any tree and $\left(g_{\alpha}\right)_{\alpha \in S}$ are linearly independent vectors in a vector space we may define a norm on $\left\langle g_{x}\right\rangle_{\alpha \in S}$ by means of (*) above. Lemma 2 remains valid for the resulting Banach space if every nonempty subset of S has a minimal element. In general it is false, however. For example if S is the set of rationals with the usual order then corresponding Banach space can be seen to contain c_{0}.

References

1. J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math.,
2. R. Haydon, On Banach spaces which contain $l^{1}(\tau)$ and types of measures on compact spaces,
3. R. C. James, A separable somewhat reflexive space with nonseparable dual, Bull. Amer. Math. Soc., vol. 80 (1974), pp. 738-743.
4. J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l_{1} and whose duals are non-separable, Studia Math., vol. 54 (1975), pp. 81-105.
5. J. Lindenstrauss and L. Tzafriri, Classical Banach space, Lecture Notes in Mathematics, No. 338, Springer-Verlag, New York, 1973.
6. H. P. Rosenthal, A characterization of Banach spaces containing l_{1}, Proc. Nat. Acad. Sci. U.S.A., vol. 71 (1974), pp. 2411-2413.
7. ——, Pointwise compact subsets of the first Baire class, Amer. J. Math., vol. 99 (1977), pp. 362-378.
Catholic University
Washington, D.C.
Yale University
New Haven, Connecticut

[^0]: Received January 17, 1977.
 ${ }^{1}$ Research of the second author was partially supported by the National Science Foundation.

