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1. Introduction

We consider the elliptic equation, in plane polar coordinates,

(1.1) a(p)Upp + b(p)up + Uoo O,

where a and b are defined for 0 < p _< 1, and xo a(p)-1/2 dp + (hence
a(O) 0 and the equation has a singularity at the origin). Through the change
of variable

p

f a-1/2=f(p), O<r_< 1,r xp

equation (1.1) becomes

(1.2) Au + u 0,
r

where e(r)= a(p)-1/2[b(p) 1/2a’(p)], r =f(p).
Equation (1.2) is simply div (a grad u) 0 with e(r)/r a’/a, in the case that
is a function of r alone. This equation in turn is the model equation for a

number of physical situations, e.g., steady state temperature distribution with-
out heat sources where a is the coefficient of heat conduction of the medium;
magnetic potential with a the magnetic permeability of the medium; the poten-
tial of the electric field of a steady current where a is the conductivity of the
medium [3, p. 387].
We focus our attention on equation (1.2). It is the purpose of this note to

characterize all (complex valued) solutions to (1.2) in the unit disk by identify-
ing their generalized boundary values. The possibility of exploring such a task
was suggested by Courant in the final paragraph of [4, p. 798]. This idea was
vigorously pursued by Lions and Magenes in a series of papers culminating in
[9] where they characterize the solutions to uniformly elliptic systems with
analytic coefficients, defined in compact domains in R" with analytic boundary.
In [6] Johnson reproves this result for Laplace’s equation in the unit disk, using
different methods. He also obtains an integral representation for harmonic
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functions in terms of certain sequences of continuous functions on the boun-
dary. Such a representation was obtained by Saylor [11] for the systems men-
tioned above.
The equation considered here differs from those above in that the coefficients

are not assumed analytic. We show that there is a one-to-one correspondence
between the set of solutions to (1.2) and the space g’ of analytic functionals
which also appear as the generalized boundary values of harmonic functions in
the unit disk [6]. In a vague sense one can view this as a form of stability: by
perturbing Laplace’s equation in its lower order terms, one does not alter the
class of solution boundary values.
Each solution is represented as a convolution of its boundary "function"

with a certain kernel solution. The existence and verification of the crucial
properties of this kernel function are obtained using classical stability theory.
As an immediate consequence of the structure theorem for elements in ocg’ [6,
Theorem 6], we also obtain an integral representation theorem for solutions to
(1.2). In the final section we briefly discuss generalizations to equations whose
boundary values are not necessarily elements from ’.

2. The kernel solution

Central in the study of harmonic functions is the Poisson kernel,

1 r2
P,(O)- 1-2rcos0/r2 rlkleik’ O<r<l.

It is itself harmonic, and through convolution integrals can represent every
harmonic function in the unit disk. The few simple properties of the Poisson
kernel needed to accomplish this rather broad representation can be simply
listed in terms of the Fourier coefficients Rk(r rlkl; they are symmetric in k,
positive, increasing to 1 with r, and summable.

In this section we prove that equation (1.2) possesses a kernel solution

(2.1) Q,(O)= Z Rk(r)eik, 0 < r < 1,
k

whose Fourier coefficients Rk(r are also symmetric in k, positive, increasing to
1 with r, and summable. In addition Q(O) is real analytic in 0 for each ed r,
which is the reason why the space of generalized boundary values is the same as
for the harmonic functions.

Separating variables in (1.2) we obtain, as usual, the 0 eigenfunctions eik,
k 0, 1, 2, The boundary value problem in r that must be solved is
then

l+e(r) R,
k2

(2.2) R" + R 0, RR(O) finite, RR(1)= 1.
r
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For k 0, the general solution to this equation is

R(r) a + b exp --s-ds dr,

where a and b are arbitrary constants. If we assume {e{r)/r) dr is convergent,
then Ro(r)-= 1 is the unique solution to (2.2).
For k > 0, we first make a change in independent variable log (l/r), and

then a change in dependent variable v(t)= R(t)exp {- I e(e-) ds). The
equation in (2.2) reduces to

V"-- (k2 + (t))v 0 where (t)= e(e-t)2 + e-e’(e-t).
If we assume e(r) C[O, 1], e(O) O,d e’(r) o(1/r)as r O, then (t) 0 as
t + , and hence according to eorem 7 on page 44 of [1], the above
equation has a solution v(t) which satisfies the inequality

Iv(t)l + Iv’(t)l c exp -kt + d I(s)l ds 0 < ,
where c d d are positive constants independent of k. If I()1 d < ,
then this becomes I()1 + I’(t) he-’, Moreover, in this case Theorem 7
of [1] also guarantees the existence of an unbounded solution as well.

Returning to the variables r e-’ and R v exp ( e(e-) ds)we find a
pr of inequafities

R()I A exp d R’()I n- exp d.
x x

Now

I()ld ,,
which leads agn to the hypothesis that

x

onrnt, a so tt [’()1 a onrnt.
A omplete st of hypotheses imposed on the oeffident e(r)are as follows.

(2.3a) e(r)continuous for 0 <r < 1, o (e(r)/r)dr convergent.
(2.3b) e’(r) H61der continuous for ro < r < 1 for each 0 < ro < 1, e’(r)=

o(1/r) as r-, 0, o I’()1 d, convergent.

These conditions are independent, and (2.3a) implies e(0) 0. The two integral
conditions relate to the density tr in the physical equation div (a grad u)= 0
since

e(x) dx log
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Thus (2.3a) is satisfied, for example, if r C’[0, 1] and a(r) > 0 on [0, 1]. Con-
dition (2.3b) says that the oscillation of e and hence of a and a’ cannot be too
great. These conditions do allow e(r)/r to be unbounded at r 0. Throughout
the rest of this paper we assume conditions (2.3a) and (2.3b) are satisfied.
We conclude from Theorem 7 of [1] that for each integer k, the boundary

value problem (2.2) has a unique bounded solution R(r) with the properties

(2.4) < Ariel, Rg( )l -< 0 1,

where A and B can be chosen independent of k (see [12, chapter 4], where
expficit formulas for A and B are found). Of course R_(r)= R(r). From the
differential equation we also have

(2.5) Ck-, kl 2, 0 r 1.

Finally, for ]k[ suffidently large, we have more information. Since (t)is
bounded, 0 t < , setting [klt, we get the equation

v"(z) 1 + (v/lkl) v(v) o.

But then (1/k2)6(z/[ k [) can be made unKormly small on [0, ) and hence the
asymptotic results of Theorem 7 [1] remain true for all 0 (see equation (5),
p. 45). In particular, we have

(2.6) Ra(r) DrIkl, R(r) O, 0 r 1,

for kl sufficiently large. We note, in this case, that Rk(r) is increasin9 to 1
with r.
We now define the kernel function Q,(O) by (2.1). The series converges abso-

lutely for 0 K r < 1 and sub-uniformly (uniformly on compact subsets of the
unit disk). Furthermore by (2.4) and (2.5) the series can be twice differentiated
term by term, and hence Q,(O) is a solution to (1.2) in the unit disk. In addition
(2.4) implies [7, p. 26] Q,(O)is real analytic in 0 for each fixed r.
We summarize the results of this section in the following

THEOREM 2.1. Equation (1.2), subject to conditions (2.3a) and (2.3b), pos-
sesses a solution Q,(O) in the open unit disk which is real analytic in 0for each r,
and whose Fourier coefficients R(r) are symmetric in k, summable, and for k
sufficiently laroe are positive and increasino to 1 with r.

The following result characterizes the solutions to (1.2) in terms of their
Fourier series, subject of course to conditions (2.3a) and (2.3b).

THEOREM 2.2. Every solution u(r, O) of (1.2)in the punctured unit disk which
is bounded in a neiohborhood of the origin is continuous at the orioin, is real
analytic in 0 for each 0 < r < 1, and can be written

(2.7) u(r, O)= akRk(r)e’,
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for some unique set of constants {ak} satisfying

(2.8) lim sup ak
1/Ikl < 1.

Conversely each sequence with property (2.8) determines a solution through (2.7).

By results of partial differential equations [2, p. 136], each solution u(r, O) has
H61der continuous third partial derivatives in the punctured disk. Hence if we
write

u(r, O)= ., h,(k)ei, O < r < l,

Lu= Au +u,=O= Z L(,(k)e’)
l" k=

1 + e(r) k2 r ikO

By the uniqueness of Fourier coefficients and the fact that u is bounded near the
orion, we see that fi,(k) is a bounded solution of equation (2.2)and is therefore
a unique constant multiple of Re(r). Condition (2.8) follows from (2.6), the root
test, and the fact that the series (2.7) is absolutely convergent.

Condition (2.8)implies ff= [ak P Ikl converges for each 0 < p < 1, and
therefore if 0 < r < s < 1, the Fourier coefficients of u(r, O) satisfy

R (r)
and the analyticity follows.
For the converse, the series in (2.7) can be twice termwise differentiated

because of (2.4)and (2.5). Since Rk(r)ek is a solution of (1.2), so is u(r, 0).

3. Boundary integral representation theorems

Setting r 1 in (2.7) we see immediately that the boundary values of solu-
tions to (1.2) must be the "Fourier" series f(0)= --_o ak eik whose
coefficients satisfy (2.8). Furthermore (2.7)says that each solution can be writ-
ten as a convolution u(r, 0)= (Q,, f)(O). The appropriate setting in which
these statements have meaning and in which one can show that u(r, 0) "agrees"
with f(O) on the boundary, is the so-called space ’ of analyticfunctionals or
hyperfunctions [10], [8]. ’ is the strong dual of a certain locally convex topolo-
gical vector space whose elements are the real analytic functions defined on
the unit circle zl 1.
We list here the pertinent properties of and ’. For details see [8] and [6].

For each integer n 1, 2,..., denote by Yt, the Banach space, with sup norm,
of all 2r-periodic functions tk(0) which are continuous in the closed strip
Im 01 < l/n, analytic in the open strip Im 01 < 1In. The topological space
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;= , is the topological inductive limit of the )f,’s. The topology on
is the finest locally convex topology for which each natural imbedding of, is continuous. In terms of Fourier series, the elements of may be

described by

(3.1) ,: (0)= 2 CkeikO’ lim sup < 1,
k= Ik]

which is equivalent to saying, there exist constants 0 < r < 1 and M > 0 such
that

(3.2) CR (k) MrIkl,
for all integers k.

is a nonmetrizable, complete Montel space. The strong dual of is ’,
which is also a Frechet space, as well as a Montel space, whose strong dual, in
turn, is . A weakly convergent sequence in or ’ is also strongly conver-
gent to the same limit [8, p. 370].
The Fourier coeffioents of an element f of ’ can be defined by

Zf(e-’kO)(3.3) f(k) 2

The Fourier coefficients (3.3)satisfy (2.8)and the Fourier series 2= f(k)e’k
converges in ’ to f Conversely any sequence {ah satisfying (2.8)is the seq-
uence of Fourier coefficients of a unique f in ’. In addition, boundedness in

’ and convergence of the Fourier coefficients imply strong convergence
in ’.

Convolution may be defined by

(3.4) (f * 9)(0)= Z akbk eik,
k

where f= ak elk and 9 bk eik. The mappingff, 9 is continuous for
each 9 e ’.

Differentiation may be defined as is usually done for distributions, and it
commutes with convolution.
We can now interpret Theorem 2.2 as a generalized Poisson integral

representation.

THEOREM 3.1. A function u(r, O) in the unit disk is a solution to (1.2) and
only there is a 9eneralized function f in ’ such that

(3.S) u(r, O)= u,(O)= (Q f)(O)

for each 0 < r < 1. Furthermore u,f in ’ as r 1 and consequently f is
uniquely determined.

Except for the convergence at the boundary, this theorem is simply a restate-
ment of Theorem 2.2, where f(O)= =_ ak ek, the ak being determined by
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(2.7). Condition (2.8) implies f6 Jet’. Since R(r) is increasing to 1 with r,
Proposition 10 of [6] implies that the family of functions Q, 6 act af’ is
bounded in t’. Hence Q, o= -oo ez in 9g’ as r --, 1, where denotes the
Dirac delta function (see the remarks preceding (3.4)). Hence u, Q, f--,
f=f in ", by the continuity of convolution. This completes the proof.

In the case f is a continuous function on the boundary, it is not, at first
glance, clear that the solution u, Q, f is continuous on the closed disk and
equal tofon the boundary. That this is in fact true can be shown as a corollary
of Theorem 3.1. Let v(r, O) v,(O) denote the unique classical solution which
agrees with f on the boundary [5, p. 176]. Then v,funiformly as r--, 1 and
therefore v,--,f in t’. By the uniqueness part of Theorem 3.1, v u.

Finally, Johnson’s structure theorem [6, Theorem 6] for elements in oug’

allows us to prove the following representation theorem.

THEOREM 3.2. A function u(r, O) in the unit disk is a solution to (1.2)/f and
only if there is a sequence (gn} ofcontinuousfunctions on the unit circle such that

(3.6) lim (n 0

and

(3.7) u(r, 0)= n=O Qn)(o- t)gn(t) dt.

The convergence in (3.7) is subuniform (uniform on compact subsets of the
unit disk). If f is in Jog’, then the above mentioned theorem states that
f Y’,=o gn for a sequence of continuous functions on the unit circle satisfying
(3.6), the convergence being, of course, in Jet’, and the differentiation in the
sense of distributions. Thus

Ur=Qr*f Z Qr, Z Qin)*gn
n=O n=O

and (3.7) is established with convergence in Jog’. To show the convergence in
(3.7) is subuniform, we need only show the right-hand side converges subuni-
formly, therefore converges in ’, and then invoke the uniqueness ofconver-
gence in ’.

If 0 < r < 1 is ed, then simple estimates based on (2.4) yield that the
fight-hand side of (3.7) is dominated in absolute value by a constant times

E:o (E:o Ilgn I1 kn), in the disk ]z N r < 1. But this series converges, for
if one chooses e < In (l/r), then, except for a constant factor, (3.6) implies that
this series is dominated by

since e"r < 1.
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4. Generalizations

We conclude with some observations on our methods. Given an elliptic
equation Lu 0, one tries to characterize all solutions in the unit disk by first
finding a kernel solution Qr(O) whose Fourier coefficients Rk(r behave essen-
tially like the Fourier coefficients of the Poisson kernel. Depending on the
nature of L, it is possible that Qr(O) will not be real analytic in 0 for each r. A
description of solutions through their distributional boundary values can then
no longer be facilitated by means of and ’. What is needed is a new test
space, call it (9, and its corresponding dual (#’. Using as motivation the charac-
terization of elements in given by (3.2), we adopt the following"

DEFINITION 4.1. Let (# be the set of all complex valued integrable functions
t# on the unit circle for which there exist constants 0 < r < 1 and M > 0 such
that

(4.1) I(k) MIR(r) l, for all integers k.

A locally convex topology can be given to (9, along the same lines as was
done for F. Then (, and its strong dual (9’, can be shown to have at least all the
properties of and ’ listed in Section 3. Theorems 2.2 and 3.1 can then be
proved for solutions to the equation Lu 0. A technical point that arises in this
development is that Rk(r) must satisfy some multiplicative property analogous
to rksk (rs)k, which is satisfied by the Fourier coefficients Rk(r)= rIkl of the
Poisson kernel. The exact form of this property that is used is" for each pair
O < a < b < l, there exist O < c < l and M > O such that

(4.2) IR(a) _< M IR(b)R(c)I, for all intelers k.

For details the reader is referred to [12].
An example of an operator L for which the corresponding c does not reduce

to F will appear in a subsequent paper.
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