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I. Introduction

This paper treats the planar case of Hilbert’s fourth problem [14] by a direct
geometric argument which is entirely free from the notion of differentiability.
The key idea (Lemma 1) is a combinatorial version of Crofton’s arclength
formula which can be established strictly on the basis of Hilbert’s simple
axioms of plane incidence and order. In principle this allows a purely axiomatic
treatment of the problem, although we will use the more convenient language
of convexity, general topology and measure theory.
Even though the removal of cumbersome variational techniques is a major

benefit, there are other virtues of the present approach. Since there is no need to
assume a Euclidean incidence structure, the theorem of Desargues may be
ignored. This greatly increases the method’s scope. Also, the three basic lemmas
on the foundations of integral geometry require absolutely no continuity
assumptions. This ultimately allows the treatment ofdiscontinuous path-length
functions and a clear description of the possible sets of discontinuities.

Briefly stated, the fourth problem requests an investigation of the various
geometries obtained by replacing the usual triangle congruence axiom with the
requirement that the triangle inequality hold for the sides of any triangle. The
axiom of parallels is dropped, but the remainder of the Hilbert axiom scheme is
retained. The heart of the problem is to identify all metrics on such a plane
which add continuously along the lines. They give rise to the continuous path-
length functions for which "the lines are the shortest connection between
points".
In order to avoid an axiomatic description we make the following four

assumptions about the planes to be investigated: (1) the points of the plane
carry a topology making the plane homeomorphic to the Euclidean plane; (2)
the lines are certain pointsets which are homeomorphic to Euclidean lines in
the relative topology; (3) two distinct points lie on precisely one line; (4) each
line separates the plane into two distinct nonempty open convex sets, or equiv-
alently, the axiom of Pasch is valid. The method does extend to some other
general line-systems, certainly the projective plane, but we will use the above
conditions which allow a simple exposition.
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There is a natural topology on the lines of a plane which may be described in
a variety of ways. A description which is particularly apt for this paper is to let
a lineset be a basic open set if it is the set of lines, possibly empty, which strictly
separate a pair of nonempty finite pointsets. With this topology the set of lines
which cut the interior of a triangle is topologically an open Mrbius band.
As usual, a pseudometric is a real-valued function d on pairs of points such

that
(i) d(p, q)= d(q, p),
(ii) d(p, p) 0, and
(iii) d(p, q)+ d(q, r) >_ d(p, r).

A plane pseudometric is said to add alon# lines if d(p, q) + d(q, r)= d(p, r)
whenever p, q, r are collinear in the given order. A pseudometric d is said to be
continuous at p iflimit d(p, p) 0 whenever {p} is a sequence of points tending
to p in the plane topology. It is now possible to state the main theorem.

THEOREM 1. Let d be a plane psudometric which adds alon# lines.
(1) The points at which d is discontinuous form a set A w B where A is a

countable union of lines and B is countable.
(2) There is a unique Borel measure on the lines ofthe plane such thatfor any

pair of points p, q at which d is continuous, d(p, q) is equal to half the measure of
the lines which cut the segment -.
In Section 3 it is shown that d is continuous at p if and only if the pencil of

lines at p has measure zero. This explains the nice structure of the set of
discontinuities of d.

Furthermore, there is a simple necessary and sufficient condition that the line
segments be uniquely the shortest paths connecting their endpoints, namely,
that all nonempty open linesets be assigned positive measure. If p, q, r is a
noncollinear triple of points, the set of lines which separate {p, r} and {q} is open
and nonempty, and it follows from Section 3 that d(p, q) + d(q, r) d(p, r) is at
least as large as the measure of this lineset. The sufficiency of the condition
follows at once. The necessity is established by similar observations.

Since no single article can deal with all aspects of even the planar case of
Hilbert’s problem, we refer the reader to H. Busemann’s recent survey [8] for a
more complete list of references and a brief history of the problem beginning
with the classical paper of G. Hamel [13] and proceeding to the recent work of
A. V. Pogorelov [18].
Using variational methods and an integral averaging process, Pogorelov

proves Theorem 1 for the case in which the metric is continuous and the plane
is Desarguesian. Much earlier Blaschke [3] used variational methods to estab-
lish related theorems for certain line systems, not necessarily Desarguesian,
with differentiabl metrics. However, we have been unable to extend the
methods of Blaschke and Pogorelov to obtain a second proof of Theorem 1.
Busemann has given numerous synthetic constructions based on the ideas of



LINES ARE THE SHORTEST PATHS 179

integral geometry, and his book [7] contains a number of examples related to
our present work in content and spirit.
The proof of the main theorem is essentially self-contained with the excep-

tion of certain claims concerning convexity and separation in a plane. An
example is the assertion that two disjoint convex polygons share two unique
internal joint tangent lines. Let us briefly say that with a slight modification the
arguments of H. Brunn [5] apply just as well in the planes presently under
consideration to justify these claims. Also, the angle concept will not be di-
scussed. The early paper of Busemann [6] shows that if need be, angles may be
introduced in the presence of a metric which adds continuously along the lines
of a plane.

2. Lemmas on the foundations of integral geometry on a plane

A pseudometric is a very special example of a mapping d from the line
segments of a plane to a commutative group G. The most important construc-
tion of this paper uses only this fact together with the incidence and order
properties of the points and lines of the geometry.

If n Po P Pk is a polygonal line, d(n) will denote k_ d(pi- , Pi), and
it is natural and convenient to define d(p, p) to be the identity of G. For the
present we do not assume that d adds along lines.

Let Q (p, p} be a set of distinct points in a plane, no three collinear,
and let S denote the collection of C(n, 2) distinct line segments p-?-. A line is
said to separate the points Q if (i) none of the points lie on l, and (ii)each of the
open halfplanes determined by contains at least one of the points. Two separ-
ating lines will be called equivalent if each separates Q into the same pair of sets.
An inductive argument shows that there are precisely C(n, 2) equivalence
classes of separating lines. Form the lineset L by choosing exactly one represen-
tative from each equivalence class.
Suppose K and K* are disjoint convex polygons whose vertices are members

of Q. There will be two distinguished members of $, pp* and qq*, which lie on
the internal joint tangent lines ofK and K*. (See Figure 1.) Let T and T* be the
portions of the boundaries of K and K*, respectively, which are contained in
the convex set, Conv {p, p*, q, q*). We define a(K, K*)in G by

(1) a(K, K*) d(p, p*) + d(q, q*) d(T) d(T*).

The segments pp*, qq* together with the various segments which comprise T
and T* will be called extreme segments for the pair (K, K*). For each line in L,
Kt and K’ will denote the convex hulls of the two sets which are separated by l,
and d’(l) will denote a(K, K’).

In the following lemma K or K’ is allowed to be a single point or a line
segment. If n >_ 3, not both sets can be points. The formula (1) for a(K, K*) is
still defined even when T or T* consists of a single point by setting d(T) to be
the identity of G.
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FIGURE

LEMMA 1. Let Q, S, and L be as described above. Then for any i, j there is a
combinatorial Crofton formula given by

(2) 2d(p, p)= E {d’(l): c =/= }.

Proof. We will show that each segment @ in S occurs as an extreme seg-
ment in such a manner that + d(q, r) appears exactly the same number of times
as -d(q, r) on the right side of equation (2), unless @ pp, in which case
+d(q, r) appears twice. There are four distinct cases to consider.

Case i. Suppose p, p, q, r are distinct points and that the line containing
q--f does not cut. Here we see that + d(q, r) cannot appear on the right side
of (2). For if in L is such that p, is in Kt and p isin K’, then any line which
contains an extreme segment must cut -p-].

Case ii. Again, suppose p, p, q, r are distinct, and that the line containing
q-- does cut. There are precisely four lines in L which separate p and p in
such a manner that qr is an extreme segment. We will identify the lines by
giving the pairs (Kt, K’).

Let the line containing separate Q {q, r} into the necessarily nonempty
sets A, B. We now list the four possible choices for the pairs (Kt, K’)"

1. (Conv (A w {r}), Conv (B w {q})),
2. (Conv (A w {q}), Conv (B w {r})),
3. (Conv (A), Conv (B w {q, r})),
4. (Conv (A w {q, r}), Conv (S)).



LINES ARE THE SHORTEST PATHS 181

We observe that the first two pairs will contribute + d(q, r) while the last two
pairs will contribute -d(q, r).

Case iii. Suppose p pj :/: -F, but r p. There are precisely two lines in L
which separate p and pj in such a manner that is an extreme segment. We
use the notation of Case ii, except that we assume that pjis in B and we allow A
to be empty. The possible pairs are"

(Conv (A Co v {q})),
2. (Conv (A w {q, r}), Conv (B)).

The first pair leads to a contribution of +d(q, r) in equation (1) while the
second gives -d(q, r).

Case iv. Suppose p p. There are exactly two lines in L which separate
Pi and pj in such a way that-is an extreme segment. Here we allow either A or
B to be empty. The possible pairs are"

1. (Conv (A w {q}), Conv (B w {r})),
2. (Conv (A Conv (n {q})).

Each pair leads to a contribution of +d(q, r)= +d(p, p).
The four cases taken together show that equation (2) is indeed valid. IfK is a

convex polygon whose vertices q, q z, q, are in Q, and G possesses no
elements of order 2, then equation (2) and a simple counting argument gives a
combinatorial formula

(3) P(K) Z {d’(/): c K }
where P(K) is the generalized perimeter d(q q,q ).

Richard L. Bishop kindly points out that the requirement that G contain no
elements of order 2 assures the uniqueness of the function d’ in equation (2).
Also, it turns out that a as a function on pairs of convex sets has occurred in the
work of Crofton [10] and Sylvester [19]. Here d was the Euclidean metric and
a(K, K*) was interpreted as the probability that a line would separate K and
K*.

LEMMA 2. Let d be a plane pseudometric which adds along lines. IfK and K2
are convex polygons such that K1 c K2, then

(4) P(K1) <- P(K.).

Proof Suppose the successive vertices of K are Po, Pl,..., Pk-1. Let be
the line containing Po Pl, and let qo and q be the points on where leaves K2.

(See Figure 2.)
The line breaks the boundary of K2 into two polygonal fines having q and

qo as endpoints. Since d is linearly’additive, P(K2)is the sum of the lengths of
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FIGURE 2

these two polygonal lines. Each of these lengths is at least d(q0, q l)by the
extended triangle inequality. Therefore the segment together with the
polygonal line on the same side of as K bounds a convex polygon Kt2t) where
K c Kt2l) c K2 and P(Kt2) < P(K2).
The above argument may be repeated with the successive segments

Pl P2,..., PR-tPo. At the final stage KtEk) K t, and since P(K+ ) <_ P(K)
for each i, the lemma is true.

LEMMA 3. Let d be a plane pseudometric which adds alonl lines. Then
d’(1) > 0 for each in L in equation (2).

Proof (See Figure 1.) Let us assume that not both K and K* are singletons.
Let r be the point of intersection of the segments pp* and qq*. If K is not a
singleton, Lemma 2 allows the conclusion that d(p, r) + d(r, q) > d(T), after
subtraction of d(p, q) from both sides. This conclusion is trivial if K is a sing-
leton. Similarly, d(p*, r) + d(r, q*) > d(T*). Adding these two inequalities and
using the linear additivity of d gives a(K, K*) > O.
The three lemmas show that in a plane the fundamental reasons for the

existence of a Crofton-type formula for arc length are independent of the
continuity (or differentiability) properties of the metric d as well as the collinea-
tion group of the plane. Also, the theorem of Desargues plays no role.
The classical Crofton measure on the lines of the Euclidean plane may be

obtained in a simple manner. If L is a Borel lineset, let L(O)denote those
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members of L which are orthogonal to a line/(0), making a positive angle 0
with respect to some fixed line l(0) which acts as an axis. Let s(O) denote the
linear Lebesgue measure of the pointset L(O)c l(O). Define r/[L] to be
) s(O) dO. It is easily checked that r/[L] 2 if L consists of the lines which cut a
unit segment, and that r/ILl 2n if L consists of the lines which cut a unit circle.
This construction for Crofton’s measure utilizes many special properties of the
Euclidean plane. A much more general construction for line measures, based
on the three lemmas, is given in the next section.

3. Construction of the line measure

If A is a planar pointset, L(A) will denote the set of fines having nonempty
intersection with A. Note that L( A) L(A), and that if {A} is a decreas-
ing sequence of convex pointsets whose intersection is a nonempty compact set,
then L((’] A)= (’] L(A). The symbol A will denote the interior of A.

Let/( be a convex polygon with/(o being nonempty. Choose p , P2, to be
a countable dense subset of/( which contains the vertices of/(, and which has
the property that no three p are collinear. Let Q. {p x, p2, p.} be an initial
segment of the sequence which contains the vertices of

If d is a pseudometrie which adds along fines, we define an atomic measure
on/ L(K’), a compact lineset, by putting r/.(l) tr(K, K’) for each line in a
set of C(n, 2) separating fines chosen for Q.. From equation (3) it follows that
/.[L-] P(K’), a finite number which does not depend on n.
By the Helly compactness theorem there will be a subsequence of the meas-

ures {q.} which converge weakly with respect to the line topology on/5 to a
Borel measure r/. By reindexing we may assume that {r/.} does converge weakly
to q. Our strategy will be to prove Theorem 1 for d restricted to/(o. The
complete theorem will then follow easily.

LEMMA 4. Let K c o be a convex polyoon. Then

(5) r/[L(K)] _< P(K)<_ r/[L(K)].

Proof Suppose K is nonempty, and that the vertices of K belong to the
previously described dense sequence {p}. Let K’ c K be a convex polygon
with/2 denoting L(K’). Let E’ denote the compact lineset/, L(K), the lines
which cut/( but not K. There is a continuous functionf:/7, [0, 1] such that
fiE’= 0 and f I/2 1. If we choose n large enough that q.[L(K)] P(K), as
guaranteed by equation (3) as soon as the vertices of K belong to Q., we have
fdn. <_ n.[L(K)] P(K). Therefore, since q[/2] < fd,, the weak conver-
gence implies that r/I/2] < P(K). The fact that L(K) can be expressed as a
monotone union of such linesets/2 gives the left inequality in (5)for the special
choice of K.

Again for the special K, except that we allow K to be empty and thus allow
K to be a point or segment, let K = H where H =/( is a convex polygon. Let
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/2 denote /S, L(H), and let f:/S, [0, 1] be chosen so that fig:- 0 and
f IL(K)-- 1. If n is large enough that r/,[L(K)] P(K), then P(K)< f dq,.
Since fdr/< r/[L(H)], P(K) < r/[L(H)] because of the weak convergence of
{r/,}. The fact that L(K) is a countable intersection of sets L(H) gives the right
inequality in (5) for the special K.
For the general K chose K = K = K2 where the K are special. Our

previous work, including Lemma 2, gives

r/[L(K)] <_ P(K1) <_ P(K) <_ P(K2)<- r/[L(K2)].
Taking monotone limits gives the complete result so that the inequalities (5)
are valid.

LEMMA 5. Let p, q be points in .o. Then d is continuous atq if and only if
r/[L(q)] 0. Also, if d is continuous at both p and q, then rl[L(pq) 2d(p, q).

Proof Suppose r/[L(q)] 0, and let q x, q2, be a sequence of points which
converge to q in the plane topology. Let Kx, K2, be a monotone decreasing
sequence of triangles with 0 Ki {q} and qi in K for each i. By Lemma 4,
P(Ki) <_ r/[L(K)]j and since limit r/[L(K)] 0 because of measure continuity
from above, limit P(Ki)= 0. It follows from Lemma 2 that d(q, qi) <_ 1/2P(Ki)
and therefore that limiti d(q, q) O.
Next suppose that r/[L(q)] 6 > 0, and let the triangles {K} be as above. If

rx, rE, r3 are the vertices of K, we have

6 < r/[L(K)] < P(Ki)< 2[d(q, r) + d(q, r2)+ d(q, ra)].
Thus d(q, rj)_> 6/6 for some choice of j, and it is clear that we can find a
sequence {q} tending to q such that lim inf d(q, q) > 6/6.

Finally, suppose d is continuous at both p and q. Let

{K,) ={Conv (r), r), r),

be a monotone decreasing sequence of quadralaterals chosen so that (i)
p- = K/ for each i, (ii) Ki P- w {p, q}, and (iii){r)}, {r)} each converge to
p and {r/a}, (r/} each converge to q. Since

2d(p, q)<_ rl[L(pq)] < r/[L(K/)] < P(Ki),

the triangle inequality together with conti___nuity at p and q insures that
limit P(K)= 2d(p, q). Thus 2d(p, q)= rl[L(pq)].
An important consequence of Lemma 5 is that if d is continuous at each

vertex of a convex polygon K c/(o, then the right inequality of Lemma 4
becomes equality, as does the left if K is nonempty.
We are now easily able to prove part (1) of Theorem 1 for d restricted to go.

The lines which represent atoms of r/will be called comets. A pencil of lines
which, with comets dileted, possesses positive q-measures will be called a star.
It is clear that the finite measure / induces only countable many stars and
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comets. Lemma 5 implies that d is discontinuous at p if and only if p either lies
on a comet or is the vertex of a star. This proves the restricted case.
A line which is not a comet contains only countably many points in/(o

which are points of discontinuity for d. Because of this, one can choose a dense
sequence of points of continuity (Pi} in K" so that (1) no three are collinear, and
(2) any point of intersection between two segments is also a point of
continuity. We omit the simple inductive argument for this construction.

LEMMA 6. Let q’ be a Borel measure on L(/) such that

rl’[L(pq) q[L(pq)] 2d(p, q)

for all pairs p, q in o where d is continuous. Then rl’= rl.

Proof Choose a dense sequence {p} of points of continuity for d in/(o
which possesses properties (1) and (2) described above. Let Q and Q* be finite
subsets of the points in this sequence, and suppose that Q and Q* are separated
by a nonempty lineset L. Then Lemma 5, together with several applications of
equation (3), shows that it must be true that r/’[L] r/[L] a(Conv (Q),
Conv (Q*)). The fact that d is continuous at the point of intersection of the
internal tangents facilitates this computation.
Next observe that if L and /2 are two such separating linesets, then

L c/2 E’ w E" where E’ and E" are again separating linesets, possibly empty,
which are disjoint. This means that r/and r/’ must agree on L c/2. By very
standard arguments used in the theory of measures (see [12, chapter 2]), r/and

’ must agree on the sigma-ring of sets generated by these separating linesets L
These linesets form a base for the topology of L(K) because the sequence {p,} is
dense in K. Therefore /and r/’ agree on all the Borel linesets in L(K). This
completes the proof of Theorem 1 for d restricted to/o.

Now let {/(i} be a monotone increasing sequence of convex polygons whose
union is the whole plane. Let rh be the unique Borel measure on L(/() con-
structed in the manner described above. For each Borel lineset L define r/[L]
limit rh[L c L(/]. The fact that r/[L c L(/)] is nondecreasing in makes it
a simple matter to show that r/is indeed a Borel measure on the lines of the
plane.

It is clear that rl[L(pq)] 2d(p, q)if p, q are points at which d is continuous,
and that r/[L(p)] 0 if and only if d is continuous at p. The uniqueness of r/
follows at once from the uniqueness of each rh.
With the exception that r/is sigma-finite, the previous discussion of comets

and stars carries over so that the set of discontinuities of d satisfies the require-
ments. This completes the proof of Theorem 1.
As a final remark on the proof of Theorem 1 we wish to point out that the

original dense sequence {p} in/(o used in defining q on L(/() could have had
the unfortunate property that 2d(p, p)4= q[L(p---)] for all i, j. Thus the
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discrete version of the theorem given by the first three lemmas is in a sense a
stronger statement about the linearly additive pseudometric d.

4. The converse of Theorem 1

It is clear from Theorem 1 and its proof that there is a unique one-one
correspondence between the pseudometrics which add continuously along the
lines of a plane and those Borel measures on the lines of the plane for which (1)
r/[L(p)] 0 for each point p, and (2) l[L(pq)] is finite for each segment -. The
correspondence is given by setting d(p, q)= 1/2rl[L(pq)].

If r/is required to satisfy condition (2) alone, then there may exist a non-
empty countable family of stars and comets. In this situation there is a rather
complicated class of pseudometrics, each ofwhich gives rise to the line measure
r/. While we do not intend to give a complete characterization of this convex set
of discontinuous pseudometrics, we wish to show that it is certainly nonempty.
Suppose r/is concentrated on a comet with r/[/] 2. If p and q lie in

opposite open halfplanes for l, set d(p, q) , and let d(p, q) 0 if the points lie
in the same open halfplane. There is a large number of ways in which d can be
extended to a linearly additive pseudometric on the plane. The most natural
way seems to be as follows: define d(p, q) 0 if both p and q lie on l, and define
d(p, q)= ct/2 if p lies on and q does not.
Next suppose that r/is concentrated on a star with vertex at r, and that

r/[L(r)] 2. If neither p or q is r, define d(p, q)= l[L(p, q)]. If p 4: r, set
d(p, r) /2. This gives only one of many pseudometrics associated with
The general measure r/ which satisfies requirement (2) may be written as

r/= r/o + r/’ + r/" where r/o possess no stars or comets, each r/’ is con-
centrated on a comet, and each r/" is concentrated on a star. The previous
discussion shows that we may define a pseudometric d associated with r/as

a=ao+Xa’+Xa’.
As was remarked in the introduction, a necessary and suffident condition

that nonollinear triples always yield strict triangle inequalities is that r/assign
positive measure to nonempty open linesets. Even with this ondition it is dear
that there is a huge family of metrics on a plane for which the lines are the
shortest paths between points.

5. A remark on the Hilbert geometries

In discussions of Hilbert’s fourth problem it is traditional to indicate how the
various ideas apply to Minkowski geometries and Hilbert geometries [15,
appendix I]. G. D. Chakerian’s paper [9] together with the work he references
gives a very satisfactory description of the line measure r/associated with a
symmetric two dimensional Minkowski geometry.
A Hilbert geometry is defined in the interior of a bounded convex region D in

Euclidean. space. The lines are the open chords of D. If p, q are distinct points in
the geometry, let p’, q’ be the endpoints of the chord containing p and q, the



LINES ARE THE SHORTEST PATHS 187

order being p’, p, q, q’. The Hilbert distance h(p, q) is defined to be

In e(p’, q) e(p, q’)
e(p’, p) + In

e(q, q’)’

where e is the usual Euclidean metric. As shown by Hilbert, h is a metric which
adds along lines.
The existence of an associated line measure r/h is guaranteed by Theorem 1 as

well as by Pogorelov’s theorem [18]. Nevertheless we wish to give a direct
construction of the line measure r/h when D is a convex polygon which makes
the nature of r/h transparent.

In the Euclidean plane let and l’ be rays which determine a nondegenerate
angle at Po. If p and q are points interior to this angle, let l, and lq be the rays
from Po through the respective points. Define

d(p, q) ln (ll’, lpl)

where the ordered quadruple indicates the usual line cross ratio in the plane. It
is easily checked that d is a linearly additive pseudometric on the interior of the
angle. Also, d(p, q) 0 only if p and q lie on a common ray through P0. The line
measure r/associated with d is none other than the projective angle measure
associated with the angle at Po.

If D is a convex Euclidean polygon with vertices Pl,..., P,, let r/i be the
projective angle measure on the angle at pi. A computation shows that
2h ’= d so that r/h ,’= rh. The computation uses the successive ver-
tices as centers of perspectivities, and is left as an exercise.
The above construction shows that h is a metric which adds along lines, and

simultaneously identifies the line measure r/h.

6. Consequences

Because of the immense number of metrics on a plane for which the lines are
the shortest paths between points, it would seem likely that few interesting
properties are shared by these metric geometries. However, there certainly are
some which should be recorded. In this section we will only consider contin-
uous metrics.

THEOREM 2. In a plane metric #eometry for which the lines are the shortest
paths between points, there is a nontrivial intrinsic areafunction which is invariant
under any isometry.

Proof. The area may be defined with the aid of a standard idea from inte-
gral geometry. If K is a convex polygon, define

(6) Area (K)= f s(l)drl(l)
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where s(l) is the length of the segment c K and q is the associated line
measure. For more complicated sets K we may set s(l) It(K l) where/ is
the Stieltjes measure naturally induced on the line by the metric d.
The fact that this area function is invariant under an isometry follows from a

technical argument which is somewhat similar to the proof that q is unique in
Theorem 1, and we omit this.

THEOREM 3. Suppose d and d* are metrics on a 9iven plane such thatfor both,
the lines are the shortest paths between points. Ifd(p, q)= d*(p, q)for all points
p, q on the boundary of a convex polygon K, then d and d* agree throuohout K.

Proof Let Q be a finite set of points on the boundary of K, and let L be a set
of separating fines chosen for Q. Observe that for any in L either d’(1)=
d(p, s) + d(q, r)- d(p, r)- d(q, s) for some p, q, r, s in Q or d’(l)= d(p, q)+
d(q, r) d(p, r) for some p, q, r in Q. The separating linesets for such finite sets
Q form a base for the line topology on L(K). It follows at once that q and r/*
agree on all Borel subsets of L(K) and hence d d*. throughout K. The proof
extends to more general sets K whose boundary is a simple closed curve.

J. Lindenstrauss [17], E. Bolker [4], and L. Dor [11] have shown that any two
dimensional Minkowski space embeds isometrically in Lx(0, 1). The following
theorem generalizes this result. We only offer a sketch of the proof since a more
complete version will appear in a later article.

THEOREM 4. Any plane metric space for which the metric adds continuously
alon9 lines embeds isometrically in 1 (0, 1).

Proof Let (li} be a dense sequence of fines in the line topology of the plane.
In an arbitrary manner associate the open halfplanes determined by l with 0
and 1, respectively. Define a one-one mapping from the points of the plane into
set of sequences {, 2, 3, ...: {0, 1}} as follows: if p is on l,, set (p) 1,
otherwise set i(p) to be 0 or 1 according to which open halfplane contains p.
Define the lineset H(p) to be the closure of {/: (p) 1}. If r/is the line measure
associated with the metric d, then it may be shown that d(p, q)=
r/[H(p) A H(q)] where A indicates the symmetric difference. If q is a finite
measure, p X(p), where X(p) is the characteristic function of H(p), gives an
isometric embedding of the plane into (r/) (0, 1). A technical argument
deals with the case of r/being sigma-finite. Corollary 5.6 in the book [20] by J.
Wells and L. Williams is also applicable.
The equation d(p, q)= q[H(p) A H(q)] shows that J. B. Kelly’s theorem [16]

holds, and therefore d is a hypermetric. In particular the hyperbolic plane is a
hypermetric space, and this answers a question raised by Kelly. The articles by
H. Witzenhausen [21] and L. Dor [11] give further results of interest concerning
metric embedding and hypermetrics.
The articles [1], [2] by the author and K. Stolarsky show how various metric

inequalities may be applied.to extremal problems in geometry. Many of these
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ideas can now be applied in any plane metric geometry for which the lines are
the shortest paths between points.

6. Nonsymmetric metrics

At present we do not have a complete theory of planar nonsymmetric metrics
d which add along lines, but some interesting things do follow from the
previous work. We say that d is continuous at p if limited(p, p)=
limiti d(p, p)= 0 for any sequence {p} tending to p in the plane topology.
Applying Theorem 1 to the symmetric metric d* defined by d*(p, q)=
d(p, q) + d(q, p) shows that the set of points of discontinuity for d is a countable
union of lines together with a countable set. Since d is nonnegative, the sets of
discontinuities for d and d* are identical.
We call d weakly symmetric if for any triple of points p, q, r,

d(p, q)+ d(q, r) + d(r, p)= d(q, p) + d(p, r) + d(r, q).
This means that the two oriented perimeters of any polygon are equal. If we
define

s(p, q)= d(p, q)- d(q, p)

so that d(p, q)= d*(p, q)+ s(p, q), then it is clear that a weakly symmetric
metric is obtained by adding a suitable conservative path function to a symme-
tric metric. Thus there is a reasonable global description for this type of metric.
Whether or not the global methods of this paper can be modified so as to

characterize all planar nonsymmetric metrics which add along lines remains an
interesting question. The treatise of E. Zaustinski [22] is the standard reference
for nonsymmetric metrics on general geodesic spaces.

Addendum

Since the results of this paper were announced, the following paper has
appeared" R. V. Ambartzumian, A note on pseudo-metrics on the plane, Z.
Wahrscheinlichkeitstheorie verw. Gebiete, vol. 37 (1976), pp. 145-155.

Here a theorem which is intermediate to Pogorelov’s theorem and the main
theorem of the present paper is proved. The arguments involve continuity, but
not differentiability. In addition, Ambartzumian proves our Theorem 3 in the
setting of his paper, and we wish to recognize his independent discovery of this
result.

Also, we have been able to obtain a copy of Pogorelov’s recent book
Hilbert’s Fourth Problem, in which he gives a beautiful extension of his results
to higher dimensional spaces. At present the variational technique discovered
by Pogorelov seems to be the only way of treating the higher dimensional
problem in terms of integral geometry.

Ralph Alexander, A new approach to Hilbert’sfourth problem, Notices Amer. Math. Soc., vol. 26
(1976), pp. A593-A594.
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