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LOCALLY ANALYTICALLY CONNECTED TOPOLOGIES

BY

HELEN P. WANG

We shall prove the existence of two natural analytic topologies which refine
the given topology on a space with a specified collection of continuous
complex-valued functions. Whereas one would expect [2] the two constructions
always to yield the same analytic refinement, we show by example that is not
the case.

This work was motivated by the search for analytic structure in the maximal
ideal space of a function algebra, in particular the existence of nontrivial holo-
morphic mappings of analytic varieties into the maximal ideal space. (For
restrictions on what type of analytic varieties need be considered, see Section
4.)

1. A smallest locally analytically connected topology
We will use a construction similar to the case of associating a smallest locally

connected or locally arc connected refinement to a given topology on a space
[21.

Let r and 5f be two subcategories of topological spaces, a collection of
continuous maps from the members of to the members of 5f, such that the
composition of a morphism in with a map in again belongs to ’. Then
replace the topology of a member of with the finest topology which preserves
the continuity of maps in ,.
Now let be all connected analytic subvarieties of open domains in C, let
consist of topological spaces with a specified collection of continuous

complex-valued functions defined on the space. A member of will be denoted
(X, -, c), where - is the topology on X and c (X, -). Let - consist of
all continuous maps F from V to (X, -, f) 5f such that g F (V)
for all g f#. We will call such an F a holomorphic mapping of V into
(X, ’-, f#). Let the morphisms in 5f be those

f: (X,, -,, ff,)- (X2, -2, (2)
with f: (Xx, -x) (X, -2) continuous and 9 ofo F vg(V)foralloz .
whenever F ff and F: V - (X, -x, ().

Let (X, ’7, c5) Y’. For any subset S c X, s, S, we say s if there exists
s So, sa, s, S, V and F ff with s_a, s F(V) S for
j 1, n. The resulting equivalence classes will be called the analytic com-
ponents of S.
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LEMMA 1. For (X, Y-, if) Y’, let (Y-) be the set ofall analytic components
ofmembers of,Y’. Then (27") is a basefor a topology -’ on X with thefollowing
properties.

(i) Let (X, -, if) r, F + . If F: V--+ (X, ’-) is continuous then

F: V+(X,-’)
is continuous.

(ii) Iff: (X, -,) (X2, -2, if2)is a morphism in then

f: (X,, -] -, (X2, -i)
is continuous.

(iii) (X, Y-, () is locally analytically connected, that is every x X has arbi-
trarily small analytically connected neighborhoods in -, if and only if-’ -.

(iv) Let (X, ’-, if) Y’. Then (X, -’, if)is locally analytically connected.

Proof. Part (i) follows since each V is locally connected. Part (ii) con-
sists of verifying thatf- I(B) e -’x for all B e N(’2). Part (iii) follows from the
alternate characterization of locally analytically connected as analytic compon-
ents of open sets are open, i.e., (X, -, N) is locally analytically connected if and
only if N(3-) c Y-. To prove part (iv), note that by definition of Y-’ each point
in X has arbitrarily small -’-neighborhoods which are analytically connected
in (X, -, f), hence by part (i), also analytically connected in (X, r,,

THeOreM 2. For (X, , if) , ’ is the smallest topology containin9
for which (X, -’, c) is locally analytically connected.

Proof If (X, Y’o, f) is locally analytically connected with - = Y-o, then
applying part (ii) of Lemma 1 to the identity map on X, we have Y" = -b, but
by part (iii)of Lemma 1, - Y-o.
THEOREM 3. If (X 1, -1, (1) is locally analytically connected and

f: (X1, ’1, a31)-* (X2, ’-2,

is a morphism in , then

f: (X1, Y’I, if1) + (X2, ", if2)
is a morphism in .

In other words a morphism from a locally analytically connected space to any
member of:factors continuously throuoh the associated smallest locally analy-
tically connected topolooy.

Proof By parts (ii) and (iii) of Lemma 1, -] Y-1 and

f: (X1, -1) + (Xz, Y’i)
is continuous.
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We now state another characterization of the smallest locally analytically
connected topology ".

THEOREM 4. Let (X, ’-, f#)6 5f and " be the smallest locally analytically
connected refinement of -. Then -’ is the largest topolooy on X with the
followin9 property: if (X x, -, (#x) is any analytically connected and locally
analytically connected member ofSE andf: (X x, - x, f# )-* (X, -, c) a morphism
in SE, then f: (X, -, f#x)- (X, "’, c) is still a morphism in SE.

Proof We show that -’ is the largest topology on X which preserves the
continuity of functions mapping into (X, ) with domain an analytically con-
nected and locally analytically connected member of 6(. Theorem 3 states that

-’ has the required property. Suppose Y-0 is another topology on X which also
has the required property. If (X, -’, (9) is analytically connected, then the
identity map from (X, "’, c) to (X, Y’0, f) must be a morphism, i.e.,
o c -’. If (X, -’, (9) is not analytically connected, apply the preceding argu-
ment to each analytic component of (X, Y"); each component of (X, ’) is
open by the local connectedness of (X, -’).

2. Another natural locally analytically connected topology

The characterization of -’ in Theorem 4 requires that Y-’ be the largest
topology which preserves continuity of maps from analytically connected and
locally analytically connected spaces. One expects Y-’ to be equivalently char-
acterized as the largest topology which preserves continuity of maps from
members of . Surprisingly these are not equivalent; an example is given in
Section 3. (Compare to the case of the smallest locally arc connected topology
on a space being characterized as the largest topology preserving continuity of
all maps from arc connected locally arc connected spaces, or simply preserving
continuity of all maps from [0, 1]; see [2].)
For (X, Y’, f#)e let 7-. be the largest topology on X such that

F: V =-+ (X, ’-*)
is continuous whenever F: V (X, -) is continuous for F , V ;
-* {T* c X: F-X(T*) is open in V for all F "

with F: V (X, ’) continuous}.

LEMMA 5. "* is locally analytically connected and * -’.

Proof
then

By part (i) of Lemma 1 whenever F: V (X, -*) is continuous

F: V --+ (X, (-*)’)
is continuous, hence (-*)’= -*, and "* is locally analytically connected by
part (iii)of Lemma 1, with -* = -’.
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Note that the -*-eomponents (or -’-eomponents) of a member S of ’* (or
of -’) are just the analytic components of S in , since both * and -’
preserve continuity of maps from V , and both ’* and " are locally
analytically connected.
We also mention another method of constructing a locally analytically con-

nected refinement of a given topology, due to G. S. Young [4]. For
(X, , .) let G be the set of all analytically connected subsets of X. Then
Young’s G-topology is the same as ’. First the G-topology is locally analy-
tically connected and contains , hence contains -’. On the other hand sup-
pose x X is a -’-limit point of S c X. If N is a -neighborhood of x, let B be
the analytic component of N containing x. Then B o7-, c G contains an
element of S {x}, hence x is a G-limit point of S.

3. Non-equivalence of the topologies " and -*
We have given two constructions for associating a locally analytically con-

nected refinement to a given topology. Retaining the same notation as the
previous two sections, we note that (3")’= 3-’ and (*)’ 3-*, that is both

" and 3-* remain fixed under the construction of Section 1. We now show
that 3--* may strictly contain -’; our example takes place in the context of
function algebras.

Let be a function algebra and /a its maximal ideal space (all multi-
plicative homomorphisms of onto C) with the weak* topology 3" induced
by . Apply the previous two constructions to (’,, 3", ). Note that 3"
(hence 3-*) is interesting only when some analytic structure is already present
in (/a, -, ); otherwise -’ is discrete.
A stronger topology than W on /a is the metric topology inherited from

*. By a generalization of the Schwarz lemma to Banach-space-valued holo-
morphic functions on analytic varieties, any holomorphic F " from V to
(’a, 3", ) must be continuous with respect to the metric topology on a,
therefore 3"* always contains the metric topology. We give an example of a
function algebra where -’ does not contain the metric topology, hence
where 3-* D 3-’.

Example. Let M’ c Cg(Di be the usual disk algebra A(/3) of all func-
tions holomorphic in the open unit disk D D and continuous on the closed
disk/3, let X I-I= D and let c rg(X) be the function algebra generated
by {i}- 1. M’ cd(X) is the smallest closed subalgebra of_____(X) containing all
functions of the form ai zt where a /i and t: X D is the projection of
X onto D. The weak* topology on ’a X is the usual compact product
topology on 1-I D.

Let b (4)i) ’a with sup, I ,1 < 1 and let



LOCALLY ANALYTICALLY CONNECTED TOPOLOGIES 447

be a metric neighborhood of with e < 2. For ff c W, I1 ,- ,11 I1 -
11 < e for all i, hence n(W) / D for all i. Suppose had a Y-’-neighborhood
B W. Then we may assume B is the analytic component containing ff of a
basic weak* neighborhood I-I N of , where N =/3 for ,all but finitely many i.
Let j be a coordinate index with N =/3, choose ff D\n(W), and let

Then the holomorphic map F: D -} X, z--} (@, b_ , z, bg+ , ...) has b, @
in its image F(D) H N, therefore @ B\W. Hence the metric neighborhood
W of b contains no -’-neighborhood of b, and W -*\’.
We note that I-I D is not analytically connected; the analytic component of

(0) c ’ consists of {b c ’: sup [b < 1}. (For the Gleason part struc-
ture of this example see [1].) In such cases one might wish to include infinite-
dimensional analytic varieties when defining analytic structure [3].

4. Normal analytic structure

In this section we show that it is necessary to define analytic structure on the
maximal ideal space of function algebras in terms of varieties and not just
polydisks. Given a function algebra with nontrivial analytic structure in, let

Holo (’)= {f c (//)"f F c vF(V) for all F" analytic variety V

with a F e (V) for all a },
let

Holoo (z’) {f e cg(///): fo F c (D) for all F" open unit disk D --.

with a F oCg(D) for all a }.
Then Holo (z)= Holoo (), and Holoo (z’) is unchanged if we instead re-
quiref F off(V) for all holomorphic maps F from normal analytic varieties
V into //.
We will look at proper closed subalgebras of the disk algebra A(/3) to

obtain examples where Holo ()4: Holoo ().
For each integer n _> 1 let ’ be the closure on D of the ring of polynomials

in g2, Z2n+ 1; then g.= {fc A(/)" f’(0)=f"’(0)= =ft2n-1)(0)= 0}. We
have /. =/3, since y///, is evaluation at the point d(z2"+)/d(z
(or at 0 if b(z2) 0). Also . =/\D; in fact every 2 /\D is a peak point for., as we can see by taking b z2"+ + 2z2.,

Ib(z)l Iz="l Iz + Xl -< 2 for all z c/,

and Ib(z) 2 if and only if z 2.

The author wishes to thank the referee for pointing out this reference.
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To find Holoo (J.) we first note that since Gx identity" D D ///.
satisfies b G dOg(D) for all b . then Holoo (.) = A(/). Now suppose
G" O/ with b G Ytg(O) for all b .; in particular z--G(z)2" and
z- G(z)2"+ are holomorphic on D. On D\(zero set of Gz"),

is holomorphic. Since G2n is holomorphic it has isolated zeros (or G 0); G is
bounded on D since G(D) , hence G Io\t..otof. extends to a holomor-
phic function on D, which by continuity is G itself. Therefore if 9(z)= z then
O G g(D), and A(5)= Holoo (J.).

Let V. be the analytic subvariety contained in D x D = C2 defined by

V. {(z, w) D D" zZ= wz’+ },
and let F.: V. C be defined by F.(z, w) z/w if w 4= 0 and F.(0, 0) 0. Then
F2.(z, w)= w2"-x so F.(V.)c/ ’.. (in fact F.(V.)= D: for each p 6 D
choose a q 6 D with q2.- p; then (q2.+ x, q2)6 V. with f(q2"+ , q2)= p.)
Also F2"+X(z, w)= z2"-, hence if bx(z) z2, b2(z) z2"+ we have bo F.,
bE F. 6 g(V.). However if 9(z) z then 9 F. f. ’(V.); although f. is
holomorphic on V.\(0, 0) and F. is bounded and continuous on V., F. does not
extend to a holomorphic function at (0, 0)6 V. (V. is not normal at (0, 0)).
Hence 9 6 A(/)\nolo (.), and noloo (.)=/= nolo (.).
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