ORIENTATION REVERSING SQUARE ROOTS OF INVOLUTIONS

BY
Robert Zarrow

1. Introduction

Let X be a smooth, orientable, compact surface of genus n and let $g: X \rightarrow X$ be a smooth orientation reversing self homeomorphism with the property that $f=g^{2}$ has prime order p. In this and a subsequent paper [6] we give a geometric description of such maps g as well as a classification of their conjugacy classes in the group of diffeomorphisms of X. An analogous classification of orientation preserving maps has been given by Nielsen [3] and Gilman [2]. In the present paper we consider the case $p=2$, which appears to be somewhat different from the case in which p is odd [6].

Our main theorem is the following.
Theorem 1.1. Let X be a smooth, orientable, compact surface of genus n and let $g_{i}: X \rightarrow X, i=1,2$ be two orientation reversing maps with the property that g_{1}^{2} and g_{2}^{2} both have order two. Then g_{1} and g_{2} are conjugate in the group of diffeomorphisms of X if and only if g_{1}^{2} and g_{2}^{2} have the same number of fixed points.

Although our results are purely topological we sometimes use theorems from, or give results in, the theory of Riemann surfaces. It is well known that it is possible to put a complex structure on X so that g and f are respectively, anti-conformal and conformal. An (anti-)conformal self homoeomorphism of a compact Riemann surface is called an (anti-)automorphism. Such maps must always have finite order if $n \geq 2$, so that the study of (anti-)automorphisms of compact Riemann surfaces is in a sense equivalent to the study of periodic maps of compact smooth 2 -manifolds of genus $n \geq 2$.

We say that a Riemann surface is embeddable if it is conformally equivalent to a smooth surface which is embedded in \mathbf{R}^{3}. If f is an orientation preserving self-homeomorphism of a smooth surface X, then we say f is metrically embeddable if there exists a smooth injection $d: X \rightarrow \mathbf{R}^{3}$ so that $d f d^{-1}$ is the restriction of a rotation. If f is orientation reversing, then we say that f is metrically embeddable if $d f d^{-1}$ is the restriction of a reflection in some plane. Finally, if X is a Riemann surface, f is conformal or anti-conformal and d is conformal, then we simply say that f is embeddable.

[^0]R. Rüedy [4] has shown that any map of order two is embeddable and that every embeddable map has an even number of fixed points.

We now fix some notation used throughout this paper. The surface X is orientable, smooth and compact of genus n and $g: X \rightarrow X$ is an orientation reversing self homeomorphism. The map $f=g^{2}$ has $2 a$ fixed points, where a is an integer. The map g induces a map g^{\prime} on $X^{\prime}=X /\langle f\rangle$ which is orientation reversing and of order two. Let $\pi: X \rightarrow X^{\prime}$ denote the (possibly branched) covering. The surface X^{\prime} has genus m, where by the Riemann-Hurwitz formula $n-1=2(m-1)+a$. All surfaces will be understood to be (at least) smooth, and the word "map" will always mean smooth homeomorphism. If h is an embeddable map then let $\alpha(h)$ denote the angle of rotation. We will normalize by assuming that $0<\alpha(h)<2 \pi$. Thus $\alpha(f)=\pi$.

The following theorem describes a large class of orientation reversing square roots of involutions geometrically.

Theorem 1.2. If X, f, g and a are as above, and if $m \geq a-1$, then $g=H \circ K$, where H is a metrically embeddable map such that $H^{2}=f$ and K is orientation reversing of order two. Also H and K commute. In addition, if X is given a complex structure so that H is conformal, then $\alpha(H)=\pi / 2$. If a is odd then $X /\langle K\rangle$ is orientable of genus $3(a-1) / 2$ with $2(m-a)+3$ boundary components. If a is even and positive then $X /\langle K\rangle$ is orientable of genus $3(a-2) / 2$ with $2(m-a)+6$ boundary components. If $a=0$, then $X /\langle K\rangle$ is orientable of genus zero with $m+1$ boundary components.

Before beginning we need one more definition. By a canonical homology basis on X (henceforth known as a CHB) we mean a collection of $2 n$ loops $A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{n}$ such that $A_{i} \times B_{j}=\delta_{i j}, A_{i} \times A_{i}=B_{i} \times B_{j}=0$, $i=1,2, \ldots, n$, and $j=1,2, \ldots, n$. Here x denotes the intersection number.

2. Preliminaries

We prove here some results which are used in proving 1.1 and 1.2.
Lemma 2.1. If Y is a smooth orientable surface and $\phi: Y \rightarrow Y$ is an orientation reversing map of finite order which has fixed points, then ϕ has order two.

Proof. It is possible to put a Riemann surface structure on Y so that ϕ is anti-conformal. We let x be a point fixed by ϕ. It is easy to find a disc D containing x which ϕ maps onto itself. If Δ denotes the unit disc, and h : $D \rightarrow \Delta$ is a conformal map with the property that $h(x)=0$, then $h \phi h^{-1}$: $\Delta \rightarrow \Delta$ is an anti-moebius transformation. Thus

$$
h \phi h^{-1}(z)=(a \bar{z}+b)(\overline{b z}+\bar{a})^{-1} \quad \text { where } \quad|a|^{2}-|b|^{2}=1
$$

Since $h \phi h^{-1}(0)=0, b=0$. Thus $|a|=1$, so $a=\exp i \theta$ and

$$
h \phi h^{-1}(z)=(\exp 2 i \theta) \bar{z}
$$

It is easy to check that $h \phi^{2} h^{-1}(z)=z$. Thus ϕ^{2} is the identity.
Lemma 2.2. The map g^{\prime} has no fixed points.
Proof. Let $x^{\prime}=\pi(x)$. If $g^{\prime}\left(x^{\prime}\right)=x^{\prime}$, then either $g(x)=x$ or $g(x)=f(x)$. Since $g^{2}=f$ the second equation reduces to the first. By 2.1 this implies that g has order two, a contradiction. Thus g, and hence g^{\prime}, have no fixed points.

Lemma 2.3. $\quad m-a \equiv 1 \bmod 2$.
Proof. We prove this by induction on a. Thus assume first that $a=0$. We assume the contrary, i.e., m is even. In this case it is shown in [5, pp. 225-226] that there is a dividing cycle A on X^{\prime} with the property that $g^{\prime}(A)=A$. Since A is a dividing cycle, it is easy to show that it lifts to two loops on X which are interchanged by f. We label these loops A_{1} and A_{2}. If $g\left(A_{i}\right)=A_{i}, i=1,2$, then $f\left(A_{i}\right)=A_{i}$, a contradiction. If g interchanges A_{1} and A_{2} then $f\left(A_{i}\right)=A_{i}$, again a contradiction. Thus m must be odd.

Now let $a>0$. We assume that X has been given a complex structure so that g is anti-conformal. Suppose f has fixed points q and $g(q)$ which are contained in closed discs D and $D^{\prime}=g(D)$, respectively. Assume that $f(D)=D$ so that $f\left(D^{\prime}\right)=D^{\prime}$. Let $\phi: D \rightarrow \Delta, \psi: D^{\prime} \rightarrow \Delta^{\prime}$ be two holomorphic homeomorphisms, where Δ and Δ^{\prime} are respectively the closed unit disc and the closure of the exterior of the unit disc. Assume $\phi(q)=0$ and $\psi(g(q))=\infty$. The maps $\psi g \phi^{-1}=g_{1}$ and $\phi g \psi^{-1}=g_{2}$ are both anti-conformal and $g_{1}: \Delta \rightarrow \Delta^{\prime}, g_{2}: \Delta^{\prime} \rightarrow \Delta$. Thus g_{1} and g_{2} are anti-moebius transformations, so we may write

$$
g_{1}(z)=(a+b \bar{z})(b+\overline{a z})^{-1}, \quad|a|^{2}-|b|^{2}=1
$$

and

$$
\mathrm{g}_{2}(z)=(c+\overline{d z})(d+\overline{c z})^{-1}, \quad|c|^{2}-|d|^{2}=1
$$

Since $g_{1}(0)=\infty$ and $g_{2}(\infty)=0$ we must have $b=d=0$. Thus we may write

$$
g_{1}(z)=(\exp i \alpha) / \bar{z} \quad \text { and } \quad g_{2}(z)=(\exp i \beta) / \bar{z}
$$

where $-\pi \leq \alpha \leq \pi$ and $-\pi \leq \beta \leq \pi$. This implies that $g_{1}(\exp i \theta)=$ $\exp i(\theta+\alpha)$ and $g_{2}(\exp i \theta)=\exp i(\theta+\beta)$.

We now define a map $l: \partial D \rightarrow \partial D^{\prime}$ with the property that $l g l=g$. Let

$$
l\left(\phi^{-1}(\exp i \theta)\right)=\psi^{-1}(\exp i(\theta+(\alpha-\beta) / 2))
$$

We now calculate

$$
\begin{aligned}
\lg l\left(\phi^{-1}(\exp i \theta)\right) & =\lg \psi^{-1}(\exp i(\theta+(\alpha-\beta) / 2)) \\
& =l \phi^{-1}(\exp i(\theta+(\alpha+\beta) / 2)) \\
& =\psi^{-1}(\exp i(\theta+(\alpha+\beta) / 2+(\alpha-\beta) / 2) \\
& =\psi^{-1}(\exp i(\theta+\alpha)) \\
& =\psi^{-1} g_{1}(\exp i \theta) \\
& =g \phi^{-1}(\exp i \theta)
\end{aligned}
$$

Thus $l g l=g$.

We now construct a surface of genus $n+1$ on which g induces a map. First remove the interiors of D and D^{\prime} from X and identify $x \in \partial D$ with $l(x) \in \partial D^{\prime}$ to obtain a surface Y of genus $n+1$. The condition $l g l=g$ implies that g induces an orientation reversing map G on Y. Clearly G^{2} has order two with $2(a-1)$ fixed points. The surface $Y /\left\langle G^{2}\right\rangle$ has genus $m+1$. Thus by the induction hypothesis $m+1-(a-1)=1 \bmod 2$, so that $m-a=1 \bmod 2$. This completes the proof.

Lemma 2.4. Suppose Y and Z are compact surfaces of genus m, each with $2 a$ distinguished points $p_{i} \in Y$ and $q_{i} \in Z, i=1,2, \ldots, 2 a$. Suppose further that there are orientation reversing involutions $g_{1}: Y \rightarrow Y$ and $g_{2}: Z \rightarrow Z$ such that

$$
g_{1}\left(q_{i}\right)=q_{i+a}(\bmod 2 a), \quad g_{2}\left(p_{i}\right)=p_{i+a}(\bmod 2 a)
$$

Also assume that $Y /\left\langle g_{1}\right\rangle \cong Z /\left\langle g_{2}\right\rangle$ and that these are both non-orientable surfaces without boundary curves. Then there is a map $h: Y \rightarrow Z$ such that $g_{2}=h g_{1} h^{-1}$ and

$$
h\left\{p_{i}, p_{i+a}\right\}=\left\{q_{i}, q_{i+a}\right\}, \quad i=1,2, \ldots, a
$$

Proof. There are covering maps $\pi_{1}: Y \rightarrow Y /\left\langle g_{1}\right\rangle$ and $\pi_{2}: Z \rightarrow Z /\left\langle g_{2}\right\rangle$. Let $r_{i}=\pi_{1}\left(p_{i}\right)$ and $s_{i}=\pi_{2}\left(q_{i}\right), i=1,2, \ldots, a$. Let $h^{\prime}: Y\left|\left\langle g_{1}\right\rangle \rightarrow Z\right|\left\langle g_{2}\right\rangle$ be a smooth homeomorphism. We may adjust h^{\prime}, if necessary, so that $h^{\prime}\left(r_{i}\right)=s_{i}, i=$ $1,2, \ldots, a$. Now it may be shown (see [1, pp. 57-88]) that h^{\prime} lifts to a map $h: Y \rightarrow Z$. Thus $g_{2}=h g_{1} h^{-1}$. Furthermore, $h\left\{p_{i}, p_{i+a}\right\}=\left\{q_{i}, q_{i+a}\right\} \quad i=$ $1,2, \ldots, a$.

Lemma 2.5. If $m \geq a-1$, then there is an embedding $d: X^{\prime} \rightarrow \mathbf{R}^{3}$ so that $d g^{\prime} d^{-1}=h \circ k$, where h is a rotation about the z-axis with fixed points $q_{i}=d\left(p_{i}\right)$ and k is a reflection in the $x-y$ plane. Also $d\left(X^{\prime}\right) /\langle k\rangle$ has genus $(a-2) / 2$ with $m-a+3$ boundary components if a is even, and has genus $(a-1) / 2$ with $m-a+2$ boundary components if a is odd.

Proof. By 2.3, $m-a \equiv 1 \bmod 2$. It suffices to give an example of a surface Y embedded in \mathbf{R}^{3} with an involution of the form $G=h \circ k$ such that $Y \mid\langle g\rangle$ is homeomorphic to $X^{\prime} /\left\langle g^{\prime}\right\rangle$, since by 2.4 there is a map $d: X \rightarrow Y$ with the desired property. To construct such a surface first let S denote the closed square in the $y-z$ plane

$$
S=\{(y, z):-1 \leq y \leq 1,-1 \leq z \leq 1\}
$$

and let $S^{\prime}=S-\bigcup D_{t}-\bigcup E_{j}, t=1,2, \ldots, a-1, j=1,2, \ldots, m-a+1$. The sets D_{t} and E_{j} are open discs constructed as follows. Let N be a positive integer such that

$$
N \geq 2 \max \{2 a-1,2 m-2 a+3\}
$$

Then D_{t} is a disc with center $y=0, z=1-(3+4 t) /(2 a-1)$ and radius $1 / N$ and E_{j} is a disc with center $z=0, y=1-(3+4 j) /(2 m-2 a+3)$ and radius

$1 / N$. It is easy to check that these discs are disjoint. If we construct a regular neighborhood of S^{\prime} with smooth boundary in \mathbf{R}^{3} which is invariant under a reflection in the $x-y$ plane and a rotation about the z-axis, then this surface may serve as our example Y. See the figure.

3. Proofs of main theorems

We prove Theorem 1.2 by lifting loops from a specially chosen CHB on X^{\prime}. Theorem 1.1 then follows from Theorem 1.2.

Proof of Theorem 1.2. We first consider the case in which $a=0$. We remark that by [5, pp. 225-226] there exists a CHB Σ on X^{\prime} with the following properties. First

$$
\Sigma=\left\{A_{0}, B_{0}, \ldots, A_{2 s}, B_{2 s}\right\}
$$

and $g^{\prime}\left(A_{0}\right)=A_{0}, g^{\prime}\left(B_{0}\right) \approx-B_{0}, \quad(\approx$ means homologous $), g^{\prime}\left(A_{t}\right)=A_{t+s}$, $g^{\prime}\left(B_{t}\right)=-B_{t+s}(\bmod 2 s)$. Here, of course, $A_{t} \times B_{j}=\delta_{t j}, A_{t} \times A_{j}=B_{t} \times B_{j}=0$, $t, j=0,1,2, \ldots, 2 s, m=1+2 s$.

We first assert that the loop A_{0} lifts to one loop on X. If A_{0} lifts to two loops, then these loops are interchanged by f. If they are interchanged by g, then both are fixed by f, a contradiction. If both are fixed by g, then they are both fixed by f, again a contradiction. Thus A_{0} must lift to one loop.

We now claim that we may assume that $A_{t}, t>0$, and $B_{t}, t \geq 0$, may be chosen so that each of these loops lifts to two loops on X. Consider first the case $1 \leq t \leq s$. Then there exist integers $m_{t} \geq 0$ and $n_{t} \geq 0$ such that loops A_{t}^{\prime} and B_{t}^{\prime}, homologous to $A_{t}+m_{t} A_{0}$ and $B_{t}+n_{t} A_{0}$, respectively, both lift to two loops on X. the loops

$$
A_{t+s}^{\prime}=g\left(A_{t}^{\prime}\right) \approx A_{t+s}+m_{t} A_{0} \quad \text { and } \quad B_{t+s}^{\prime}=-g^{\prime}\left(B_{t}^{\prime}\right) \approx B_{t+s}-n_{t} A_{0}
$$

also lift to two loops. Finally there is an integer $n \geq 0$ such that a loop

$$
B_{0}^{\prime} \approx B_{0}+n A_{0}-\Sigma\left(m_{t}\left(A_{t}+A_{t+s}\right)+n_{t}\left(B_{t}-B_{t+s}\right)\right), \quad t=1,2, \ldots, s,
$$

lifts to two loops on X. If we replace A_{t} by A_{t}^{\prime} and B_{t} by B_{t}^{\prime} then we obtain a CHB with the desired property. It is still true that $g^{\prime}\left(A_{t}\right)=A_{t+s}$ and $g^{\prime}\left(B_{t}\right)=-B_{t+s}(\bmod 2 s)$, although it may happen that $g^{\prime}\left(B_{0}\right) \neq B_{0}$.

We now construct a planar surface on which g induces a mapping. The set of lifts of A_{t} and $B_{t}, t>0$, the lift of A_{0}, and any lift of B_{0} forms a CHB of X, as can be seen by calculating the intersection numbers and counting the number of loops. Thus the lifts of $A_{t}, t \geq 0$, do not disconnect X. If we cut along these lifts we obtain a planar surface Z bounded by $4(m-1)+2$ boundary components. The map g induces a self homeomorphism of this surface, which by abuse of notation we also call g, such that the two boundary components which come from the lifts of A_{0} are interchanged by this map.

Now there exists a quasi-conformal map $h: Z \rightarrow R$, where $R \subset \mathbf{C}$ is bounded by the circles $|z|=2 / 3,|z|=3 / 2$ and by $4(m-1)$ circles of radius $1 / 8$ and centers

$$
(5 / 4) \exp (j \pi i /(m-1)), \quad j=1, \ldots, 2(m-1)
$$

and the reflections of these circles in $|z|=1$. The map h may be chosen so that the circles $|z|=2 / 3$ and $|z|=3 / 2$ correspond to the boundary components obtained from A_{0} and the circle $|z-(5 / 4) \exp (j \pi i /(m-1))|=1 / 8$ and its reflection in $|z|=1$ correspond to a boundary component obtained from a lift of one of the $A_{k}, k>0$. Furthermore h may be chosen so that the identification on the boundary components of Z becomes inversion in $|z|=1$.

The map $h g h^{-1}$ extends to a map of $\hat{\mathbf{C}}$, so it is an anti-moebius transformation. Since this extension interchanges 0 and ∞, we have $h g h^{-1}(z)=b / c \bar{z}$, where $b c=-1$. Since $\left|h g h^{-1}(3 / 2)\right|=2 / 3,|b / c|=1$ and thus $h g h^{-1}$ fixes the unit circle. The map $\left(h g h^{-1}\right)^{2}$ is a moebius transformation of order two which fixes 0 and ∞. Thus $\left(h g h^{-1}\right)^{2}=-z$. We must therefore have either (1) $h g h^{-1}(z)=i / \bar{z}$ or (2) $h g h^{-1}(z)=-i / \bar{z}$. If (2) holds then conjugate by $z \rightarrow \bar{z}$ to obtain (1). Identify boundary components of R under the map $z \rightarrow 1 / \bar{z}$. We can thus obtain a representation of g as a product of a rotation through an angle of $\pi / 2$ about the z-axis followed by a reflection in the $x-y$ planes. This completes the proof if $a=0$.

Now assume that $a>0$. We first consider the case in which a is odd. We assume that $X^{\prime} \subset \mathbf{R}^{3}$ and $g^{\prime}=h \circ k$, where h and k are as in 2.5 . Since a is odd there are loops $A_{0}, A_{1}, \ldots, A_{2 s}, s=(m-a+1) / 2$, which divide X^{\prime} into two components, and such that $g^{\prime}\left(A_{0}\right)=A_{0}, g^{\prime}\left(A_{t}\right)=A_{t+s}(\bmod 2 s), t>0$.

Our first assertion is that A_{0} lifts to one loop on X. The proof of this is similar to the proof that A_{0} lifts to one loop in the case $a=0$. Also, if A_{t}, $t=1,2, \ldots, s$, lifts to one loop then it may be replaced by $A_{t}^{\prime} \approx A_{t}+A_{0}$,
which lifts to two loops. We then replace A_{t+s} by $A_{t+s}^{\prime}=g^{\prime}\left(A_{t}^{\prime}\right) \approx A_{t+s}+A_{0}$, which also lifts to two loops. The loops $A_{0}, A_{1}, \ldots, A_{t}^{\prime}, \ldots, A_{t+s}, \ldots, A_{2 s}$ divide X^{\prime}. Thus we may assume that each A_{t} lifts to two loops.

Now let A^{\prime} be an annular region about A_{0} which does not contain any branch points and with the property that $g^{\prime}\left(A^{\prime}\right)=A^{\prime}$. This lifts to an annular region A containing the lift of A_{0} and with the property that $g(A)=A$. We claim that by a proof similar to that used in the case $a=0, A$ may be embedded onto an annular region $\{z: r \leq|z| \leq 1 / r\}$ by a map $l: A \rightarrow \mathbf{C}$ so that $\lg ^{-1}(z)=i / \bar{z}$.

We now embed annular regions about lifts of the loops A_{t} into \mathbf{R}^{3}. First denote a point in \mathbf{R}^{3} by cylindrical coordinates (d, r, θ). Embed the annular region A onto the region $\alpha=\{d, 1, \theta):-1 \leq d \leq 1,0 \leq \theta \leq 2 \pi\}$ by a map e_{0}, such that

$$
e_{0} g e_{0}^{-1}(d, 1, \theta)=(-d, 1, \theta+\pi / 2)
$$

Let $A_{t j}, t=1,2, \ldots, 2 s, j=1,2$, denote the lifts of A_{t} and let $\beta_{t j}$ denote a closed annular region with smooth boundary which contains $A_{t j}$ in its interior, and which contains no fixed points of f. Assume that these regions are chosen and numbered so that

$$
g\left(\beta_{t j}\right)=\beta_{t+s j} \quad \text { and } \quad g\left(\beta_{t+s j}\right)=\beta_{t j+1}, \quad t=1,2, \ldots, s
$$

Now let $\alpha_{k j}=\{(d, r, \theta):-1 \leq d \leq 1,|r \exp (i \theta)-(j+1) \exp (\pi i k / 2)|=1 / 4\}, k=$ $1,2, \ldots, 2 s, j=1,2$. Clearly $\alpha_{k j}$ is a circular cylinder. It is easy to construct a map

$$
e_{1}: \bigcup \beta_{t j} \rightarrow \bigcup \alpha_{t j}
$$

such that $e_{1}\left(\beta_{t j}\right)=\alpha_{t j}$ and $e_{1} g e_{1}^{-1}(d, r, \theta)=(-d, r, \theta+\pi / 2)$.
We now embed $X-\bigcup \beta_{t j}-A$ in \mathbf{R}^{3}. To do this we first construct a surface Z_{1} in \mathbf{R}^{3} of genus $3(a-1) / 2$ with $r s+1=2(m-a+1)+1$ boundary components, which is invariant under a rotation ϕ through an angle of $\pi / 2$ about the x-axis. Assume that the boundary components of Z_{1} coincide with the boundary components of $\left(\bigcup \alpha_{\mathrm{tj}}\right) \cup \alpha$ which lie below the $x-y$ plane.

Let $Y_{1}=\pi^{-1}\left(X_{1}\right)-\bigcup \beta_{t j}-A$. We will show that $Y_{1} \cong Z_{1}$. Here \cong means homeomorphic. Clearly $Y_{1} \cong \pi^{-1}\left(X_{1}\right)$ and $\pi^{-1}\left(X_{1}\right)$ is a branched covering, with a branch points, of X_{1}. Now X_{1} has genus $(a-1) / 2$ and has $2 s+1=$ $m-a+2$ boundary components. As we have shown, $2 s$ of the boundary components of X_{1} each lift to two boundary components and the remaining one lifts to one boundary component. Thus from the Riemann-Hurwitz formula $\phi^{-1}\left(X_{1}\right)$ has genus $3(a-1) / 2$. Hence X_{1}, and therefore also Y_{1}, is homeomorphic to Z_{1}. By [3, p. 53], or [2] there exists a map $e_{2}: Y_{1} \rightarrow Z_{1}$ so that $e_{2} f e_{2}^{-1}=\phi^{2}$.

Now let $Y_{2}=\pi^{-1}\left(X_{2}\right)-\bigcup \beta_{t j}-A$ and define the map $e_{3}: Y_{2} \rightarrow \mathbf{R}^{3}$ by $e_{3}(x)=(d, r, \theta)$, where $e_{2}(g(x))=(-d, r, \theta+\pi / 2)$. This map is well-defined since g induces a homeomorphism from Y_{2} onto Y_{1}. Also the maps e_{0}, e_{1},
e_{2} and e_{3} agree where their domains intersect. Thus we may define a map $e: X \rightarrow \mathbf{R}^{3}$ by $e\left|Y_{t}=e_{t+1}, t=1,2, e\right| \bigcup \beta_{\mathrm{tj}}=e_{1}$ and $e \mid A=e_{0}$. It is clear that

$$
\operatorname{ege}^{-1}(d, r, \theta)=(-d, r, \theta+\pi / 2)
$$

so that ege $e^{-1}=\phi \circ \psi$, where ψ is reflection in the $x-y$ plane. Clearly ϕ and ψ commute, and we may set $H=e^{-1} \phi e$ and $K=e^{-1} \psi e$. It is easy to verify that $X /\langle K\rangle \cong \pi^{-1}\left(X_{1}\right)$, that $H^{2}=f$, and that H and K commute. This finishes the proof if a is odd.

We now consider the case in which $a>0$ is even. Let q and $g(q)$ be fixed points of f which are contained in discs D and $g(D)=D^{\prime}$, respectively. Assume that $f(D)=D$ so that, of course, $f\left(D^{\prime}\right)=D^{\prime}$. By the argument used in 2.3 there is a map $l: \partial D \rightarrow \partial D^{\prime}$ such that, if we remove the interiors of D and D^{\prime} and identify the boundaries via l, then g induces a map on the resulting surface. We call the resulting surface Y, and the map which g induces G. Now G^{2} has $2(a-1)$ fixed points so that by what we have shown $G=H \circ K$, where K and H satisfy the conclusion of 1.2.
Let δ be the curve obtained by identifying ∂D and ∂D^{\prime}. We claim that H and K may be chosen so that δ is fixed pointwise by K. First let δ_{0} be the projection of δ onto $\mathrm{Y} /\left\langle G^{2}\right\rangle$. If G^{\prime} is the map induced by G on $Y /\left\langle G^{2}\right\rangle$, then $G^{\prime}\left(\delta_{0}\right)=\delta_{0}$. By a slight modification of the argument used in 2.4 and 2.5 , it may be shown that there is a map $d: Y /\left\langle G^{2}\right\rangle$ onto a surface embedded in \mathbf{R}^{3} (as in the figure), so that (1) $d G^{\prime} d^{-1}=h \circ k$, where h is a rotation about the z-axis through an angle of π, and k is reflection in the $x-y$ plane, and (2) $d\left(\delta_{0}\right)=A_{0}$. Here A_{0} is the curve used in the case a is odd. It is fixed pointwise by k. Now by repeating the construction of H and K in the case in which a is odd, it is clear that K fixes δ pointwise.

To finish the proof we cut Y along δ and glue discs to each of the resulting components to recover X. Clearly H and K may be extended to X to produce new maps, which we also call H and K, so that $g=H \circ K$. It is easy to check that H and K satisfy the conclusion of the theorem.

Before beginning the proof of 1.1 we make several remarks. Necessity in 1.1 is trivial. Also it follows from the work in [3, p. 53], or [2] that the conjugacy class of a map of order two is determined by the number of fixed points. Thus the condition that g_{1}^{2} and g_{2}^{2} have the same number of fixed points is equivalent to the condition that g_{1}^{2} is conjugate to g_{2}^{2}. To prove sufficiency it is not hard to show that this condition may be replaced by $g_{1}^{2}=g_{2}^{2}$. We prove 1.1 by considering separately the cases $m \geq a-1$ and $m<a-1$. The first case follows directly from 1.2 while the second case requires a more complicated argument.

Proof of Theorem 1.1. We first consider the case $m \geq a-1$. We assume $\mathrm{g}_{1}^{2}=\mathrm{g}_{2}^{2}$, By 1.2, $\mathrm{g}_{\mathrm{i}}=H_{i} \circ K_{i}, i=1,2$, where H_{i} and K_{i} commute, $H_{i}^{2}=f$, $\alpha\left(H_{i}\right)=\pi / 2$ and K_{i} is orientation reversing of order two with the properties that $X /\left\langle K_{i}\right\rangle$ is orientable and $X /\left\langle K_{1}\right\rangle \cong X /\left\langle K_{2}\right\rangle$. The maps H_{i}
induce self-homeomorphisms H_{i}^{\prime} on $X /\left\langle K_{i}\right\rangle$. In fact $X /\left\langle K_{i}\right\rangle$ may be embedded in \mathbf{R}^{3} so that H_{i}^{\prime} becomes a rotation about the z-axis through an angle of $\pi / 2$. The map H_{i}^{\prime} fixes either two, zero, or one boundary components depending on whether $a=0, a$ is even, or a is odd, respectively, and permutes the remaining boundary components. Thus by [3, p. 53], or [2] there is a map

$$
h: X /\left\langle K_{1}\right\rangle \rightarrow X /\left\langle K_{2}\right\rangle
$$

so that $h H_{1}^{\prime}=H_{2}{ }^{\prime} h$. Since X may be obtained from $X /\left\langle K_{i}\right\rangle$ by doubling across the boundary components, this map h may be lifted to a map k : $X \rightarrow X$ so that $k K_{1}=K_{2} k$ and $k H_{1}=H_{2} k$. Thus $k H_{1} K_{1} k^{-1}=H_{2} K_{2}$, or $k g_{1} k^{-1}=g_{2}$.

We consider now the case $m<a-1$. We construct a CHB Σ on X^{\prime} such that (1) $g^{\prime}(\Sigma)=\Sigma$ (up to homology), (2) the loops of Σ do not pass through any branch points, and (3) each loop in Σ lifts to two loops on X. We first construct a CHB which satisfies (1) and (2) by drawing an appropriate set of loops on X^{\prime}, as it was represented in 2.5 . See the figure for example. Let A be a loop in the CHB and let σ be a small loop about a branch point. If A lifts to one loop then replace A by a loop A^{\prime} homologous to $A \sigma$. Then A^{\prime} lifts to two loops. We replace A by A^{\prime} and still have a CHB . If $g^{\prime}(A) \neq A$ then $g^{\prime}(A)$ is another loop in this CHB which lifts to one loop. Also $g^{\prime}(\sigma)$ is a small loop about another branch point. The loop $g^{\prime}\left(A^{\prime}\right)$ is homologous to $g^{\prime}(A) g(\sigma)$ and this loop lifts to two loops. We continue in this way, each time using loops about different branch points, until all loops are replaced by loops which lift to two loops. Since $2 m<2 a-2$ we may do this. We thus obtain a CHB satisfying (1), (2) and (3).

If q is a fixed point of f denote by $\alpha(f, q)$ the angle f makes at q with respect to the orientation of X. Now label the branch points $p_{1}, p_{2}, \ldots, p_{2 a}$ so that if q_{i} is a lift of p_{i}, we have that $\alpha\left(f, q_{i}\right)+\alpha\left(f, q_{i+1}\right)=0$. By [4] we may do this. It is not hard to find non-intersecting Jordan curves $\delta_{i}, i=$ $1,2, \ldots, a$, such that δ_{i} joins $p_{2 i-1}$ and $p_{2 i}$ and does not intersect the loops in the CHB constructed in the previous paragraph. Assume that these curves are chosen so that $g^{\prime}\left(\delta_{i}\right)=\delta_{t}, t=a-i+1, i=1,2, \ldots, s$, and $2 s=a-1-m$. By a slight modification of the argument used in Lemma 2 [4], it follows that the lifts of $\delta_{i}, i=1,2, \ldots, a$, divide X into two components which are interchanged by f.

We now construct a surface Y of genus $n+m+1-a$ from X on which g induces a map G with the property that G^{2} has $2(m+1)$ fixed points. First lift δ_{i} to $X, i=1,2, \ldots, s$, and $i=a-s+1, \ldots, a$. If we cut along the lifts we obtain a surface of genus $n-2 s=n+m+1-a$ with $2 \cdot 2 s=2(a-1-m)$ boundary components. See Lemma 2 and Figure 2 in [4]. Each boundary component consists of two arcs, and the map f induces a map f^{\prime}, defined on these two arcs, which interchanges them and which has order two. Now identify these two arcs via f^{\prime} and call the resulting surface Y. We call the arc
obtained by identifying the two arcs of a boundary component $\delta_{i j}, i=$ $1,2, \ldots, s, a-s+1, \ldots, a$ and $j=1,2$. Clearly g induces a map G on Y and $F=G^{2}$ has order two with $2 a-4 s=2(m+1)$ fixed points. Also F interchanges $\delta_{i 1}$ and $\delta_{i 2}$. From the Riemann-Hurwitz formula the surface $Y^{\prime}=Y \mid\langle F\rangle$ has genus m. If we assume that these arcs are numbered so that $G\left(\delta_{i j}\right)=\delta_{t j}$, then we must have $G\left(\delta_{t j}\right)=\delta_{i j+1}$, where the second subscript is taken $\bmod 2$.

Since Y^{\prime} has genus m and F has $2(m+1)$ fixed points we may apply Theorem 1.2. We showed that $G=H \circ K$, where H and K have certain properties. We now claim that H and K may be chosen so that K fixes each $\delta_{i j}$ pointwise. To see why this is so we examine the proof of 1.2 . If $m+1$ is even we have a loop A_{0} on Y^{\prime} which is fixed by G^{\prime}. This loop lifts to a loop on Y which is fixed pointwise by K. It is easy to replace A_{0} by a freely homotopic loop which contains the arcs $\delta_{i}, i=1,2, \ldots, s, a-s+1, \ldots, a$, and which is fixed by G^{\prime}. The lift of this freely homotopic loop, and hence also $\delta_{i j}$, will thus be fixed pointwise by K.

If $m+1$ is odd then an analogous argument can be used. We now have two loops A_{1} and A_{2}, each of which lifts to two loops on Y which are interchanged by G^{\prime}. We replace A_{1} by a freely homotopic loop A_{1}^{\prime} which contains each $\delta_{i}, i=1,2, \ldots, s$, and we replace A_{2} by $G^{\prime}\left(A_{1}^{\prime}\right)$. The loop $G\left(A_{1}^{\prime}\right)$ contains each of the arcs $\delta_{i}, i=a-s+1, \ldots, a$. If A_{1}^{\prime} and $G^{\prime}\left(A_{1}^{\prime}\right)$ are used in place of A_{1} and A_{2} in the proof of 1.2 then the lifts of these loops will be fixed pointwise by K. Hence each $\delta_{i j}$ will be fixed pointwise by K.

Now suppose that $g_{i}: X \rightarrow X, i=1,2$, are two orientation reversing maps such that $g_{1}^{2}=g_{2}^{2}=f$. We may construct surfaces Y_{i} on which the maps g_{i} induce mappings $G_{i}, i=1,2$, as was just done. The surfaces Y_{1} and Y_{2} are homeomorphic. Also Y_{i} contains a set of curves $\delta_{i j k}, i=1,2, j=1,2$, $k=1,2, \ldots, s, a-s+1, \ldots, a, s=(a-1-m) / 2$, and by cutting along these curves and reglueing one can recover X. Now, as was previously shown, $G_{i}=H_{i} \circ K_{i}$ where H_{i} and K_{i} satisfy the conditions of H and K in Theorem 1.2. Furthermore K_{i} fixes the curves $\delta_{i j k}$. Now $Y_{1} /\left\langle K_{1}\right\rangle \cong Y_{2} /\left\langle K_{2}\right\rangle$ and H_{i} induces a mapping H_{i}^{\prime} on $Y_{i} /\left\langle K_{i}\right\rangle$ which has $m+1$ fixed points and either one or no fixed boundary components, depending on whether $m+1$ is odd or even.

We now construct a map $h: X \rightarrow X$ such that $h g_{1} h^{-1}=g_{2}$. First observe that by 1.2 we may embed Y_{i} in \mathbf{R}^{3} so that H_{i} becomes a rotation about the z-axis and K_{i} becomes reflection in the $x-y$ plane. Thus we may identify $Y_{i} /\left\langle K_{i}\right\rangle$ with that part of Y_{i} which lies beneath and in the $x-y$ plane. The maps H_{i}^{\prime} are induced by rotations about the z-axis through an angle of $\pi / 2$. Thus by [3, p. 53] or [2] there is a map $e: Y_{1} /\left\langle K_{1}\right\rangle \rightarrow Y_{2} /\left\langle K_{2}\right\rangle$ so that $e H_{1}^{\prime}=H_{2}^{\prime} e$.

Let $\lambda_{i j k}$ be the image of $\delta_{i j k}$ in $Y_{i} /\left\langle K_{i}\right\rangle$. We now show that we may find a map

$$
e^{\prime}: Y_{1} /\left\langle K_{1}\right\rangle \rightarrow Y_{2} /\left\langle K_{2}\right\rangle
$$

such that $e^{\prime} H_{1}^{\prime}=H_{2}^{\prime} e^{\prime}$ and such that $e^{\prime}\left(\lambda_{1 j k}\right)=\lambda_{2 r t}$ for some r and t, where $r=1$ or 2 and $1 \leq t \leq s$ or $a-s+1 \leq t \leq a$. To construct this map we first observe that e induces a map $l: Z_{1} \rightarrow Z_{2}$, where $Z_{i}=\left(Y_{i} /\left\langle K_{i}\right\rangle\right) /\left\langle H_{i}^{\prime}\right\rangle$. Let $\delta_{i k}$ denote the projection onto Z_{i} of $\lambda_{i j k}$. Then all of the curves $\delta_{i k}$ lie on one boundary component of Z_{i}, so that we may continuously deform l to a map $l^{\prime}: Z_{1} \rightarrow Z_{2}$ with the property that $l^{\prime}\left(\delta_{1 k}\right)=\delta_{2 t}$ for some t. Then the map l^{\prime} lifts to a map $e^{\prime}: Y_{1} /\left\langle K_{1}\right\rangle \rightarrow Y_{2} /\left\langle K_{2}\right\rangle$ and $e^{\prime}\left(\lambda_{1 j k}\right)=\lambda_{2 r t}$ and $e^{\prime} H_{1}^{\prime}=H_{2}^{\prime} e^{\prime}$.

We now use e^{\prime} to construct a map h such that $h g_{1} h^{-1}=g_{2}$. First, Y_{i} may be recovered from $Y_{i} /\left\langle K_{i}\right\rangle$ by doubling across the boundary components. We may thus lift e^{\prime} to a map $\phi: Y_{1} \rightarrow Y_{2}$ such that $\phi H_{1}=H_{2} \phi$ and $\phi K_{1}=K_{2} \phi$. Therefore $\phi H_{1} K_{1} \phi^{-1}=H_{2} K_{2}$ or $\phi G_{1} \phi^{-1}=G_{2}$. Since $\phi\left(\delta_{1 j k}\right)=\delta_{2 r t}$, we may cut along the curves $\delta_{1 j k}$ and $\delta_{2 j k}$ and ϕ induces a map of the resulting surfaces. If we reglue to recover X, then it is easy to check that we obtain a map $h: X \rightarrow X$. Also $h g_{1} h^{-1}=g_{2}$. The proof of 1.1 is now complete.

References

1. N. L. Alling and N. Greenleaf, Foundations of the theory of Klein Surfaces, Lecture Notes in Math., vol. 219, Springer-Verlag, New York, 1971.
2. J. Gilman, On conjugacy classes in the Teichmüller modular group, Michigan Math. J., vol. 23 (1976), pp. 53-64.
3. J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Danske Vid. Selsk. Mat.-Fys. Medd., no. 1 (1937), pp. 1-77.
4. R. Rüedy, Symmetric embeddings of Riemann surfaces, discontinuous groups and Riemann surfaces, Ann. of Math. Studies 79, Princeton University Press, 1974.
5. R. Zarrow, A canonical form for symmetric and skew-symmetric extended symplectic modular matrices with applications to Riemann surface theory, Trans. Amer. Math. Soc., vol. 204 (1975), pp. 207-227.
6. - Orientation reversing maps of surfaces, Illinois J. Math., vol. 23 (1979), pp. 82-92 (this issue).

Northern Illinois University
DeKalb, Illinois

[^0]: Received June 20, 1977.

