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CHEVALLEY GROUPS AS STANDARD SUBGROUPS,

BY

GARY M. S,rrz

1. Introduction

Let G be a finite group and A a quasisimple subgroup of G. Then A is
called a standard subgroup if K Co(A) is tightly embedded (i.e. IKI is
even, but IKf’)KgI is odd for gqN6(K)), No(A)=No(K), and [A, Ag] 1
for all g G. The importance of such subgroups is evident from the work of
Aschbacher (see Theorem 1 of [1]).
The recent approach to the classification of all finite simple groups

requires the determination of those groups, G, having a standard subgroup,
A, such that A/Z(A)= A is one of the currently known simple groups. This
paper and its sequels are concerned with the case of a group of Lie type
defined over a field of characteristic 2. Our results aim at finding the
possibilities for G when A has Lie rank at least 3, although we will not treat
the cases A -Sp(6, 2), U6(2), or 0+/-(8, 2)’. Our proofs will be inductive so
we require information about the rank 1 and rank 2 configurations as well as
information about the four cases above. The necessary results, not covered
to date, are assembled in the following hypothesis.

Hypothesis(*). Let P be quasisimple with [Z(P)I odd and P/Z(P)-
Sp(6, 2), U6(2), or 0+(8, 2)’. If P is a standard subgroup of a group X with
O(X)= 1 and Cx(P) having cyclic Sylow 2-subgroups, then one of the
following occurs"

(a)
(b)
(c)
(d)

P_X.
E(X)--Px P.
E(X) is a group of Lie type defined over a field of characteristic 2.
P 0+(8, 2)’ and E(X) M(22).

For a group, X, we set X X/Z(X). Our main result is as follows.

MAIN THEOREM. Assume that Hypothesis (*) holds and that the B(G)-
conjecture holds. Let A be a quasisimple group with IZ(A )I odd and fi a finite
group of Lie type defined over a field o[ characteristic 2 and having Lie rank
at least 3. Suppose that A is a standard subgroup of G and that C(A) has
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cyclic Sylow 2-subgroups. Let be an involution in C6(A). Then Go
E(G)>_A and one of the following holds"

(a) Z*(G).
(b) o- fi, and interchanges the [actors.
(c) o is a group of Lie type defined over a field o[ characteristic 2, and

induces an outer automorphism of Go.
(d) AGL(4,2) and G/O(G)Aut(HS).
(e) A 0+(8, 2)’ and G/O(G) Aut (M(22)).

Listed below are the possible pairs (fi, o) that occur in (c) of the
theorem above.

PSL(n, q)
O+(n, q)’, n even
O-(n, q)’, n even
PSU(n, q)
PSp(n, q)

E.(q),n=6,7,8
2E6(q)
v4(q)

PSL(n, q2)
O+(n, q2)
O+(n, q2)
PSL(n, q2)
PSL(n, q), PSL(n + 1, q), O+(n + 2, q)’, O-(n + 2, q)’
PSU(n, q), PSU(n + 1, ), PSp(n, q2)

E6(q2)
E6(q), 2E6(q), F4(q2)

The assumption that C6(A) has cyclic Sylow 2-subgroups is justified by
Corollary 2 of [2] together with the theorem in [6]. We remark that if is
defined over Fq for q _> 4, then we do not need Hypothesis (*) for the cases
PSp(6, 2), PSU(6, 2), or O(8, 2)’.
The proof of fhe main theorem is in three parts, after assuming fi (.

The first part, the subject of this paper, is fusion-theoretic. For an
involution in K, we first study t6fq N(A) and then find a subgroup X-<A
such that N6(X) contains a standard subgroup Y of Lie rank less than that
of A and having (t) as a Sylow 2-subgroup of N(X)fq C(Y). At this point
induction can be applied. In the second paper we use this information to
construct a subgroup Go-< G with (o either a group of Lie type on which
acts as an outer automorphism, or Go isomorphic to the direct product of
two copies of fi, interchanged by t. In the third paper we will show that
Go - G (hence Go= E(G)).
As mentioned above this paper concerns the fusion-theoretic information

needed for the proof of the main theorem. These results are in 3. The
proofs use a theorem about transitive extensions, which is proved in 2. In
4 we apply the results of 3 to show that certain proper sections of G have
standard subgroups.

Notation is as in [5]. Throughout the paper we make use of standard
isomorphisms and only consider orthogonal groups of dimension at least 8.
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Furthermore, the groups O(2n + 1, 2")’ will be considered as the symplectic
group Sp(2n, 2").

2. A result on transitive extensions

In this section let X be a perfect central extension of L, (qo), for qo even,
and let tr act on X, inducing a graph field or graph-field automorphism on
J. Setting Y= 02’(Cx(o’)), we have Y a central extension of PSp(n-1, q),
PSp(n, q), PSU(n, q), or PSL(n, q), for some q

(2.1). Let G be a 2-transitive permutation group on a finite set fL Choose
a #/3 in I and assume that X-G, Y-Ga, and C(X) is cyclic. Then
X-L2(4), Y-L2(2), and G’-L2(11).

Let denote the subgroup of Aut() generated by together with all
field and diagonal automorphisms of . Let M be the usual module for
SL(n, qo). Even though . L,(qo) does not necessarily act on M, there will
be times when we consider subgroups of . acting on M. For example, if T is
any 2-subgroup of , then there is no ambiguity in discussing the action of T
on M.

If we view J as a Chevalley group, the root subgroups of J are groups of
transvections in a given direction and fixing a given hyperplane of M. From
the action of tr on the root subgroups of J, and from the fact that qo is even,
it follows that there is a root subgroup Vo, of Y, such that V Ill(Vo) is
contained in a root subgroup of X. In fact, Vo V unless n is odd and

PSU(n, q).
The following is well known.

(2.2) Assume Z(X)= 1, so that X X.

(a) There is a unique root subgroup, D, of X such that V<_ D. In fact,
D Z(O2(Cx(V))).

(b) For y Y either

IV, V’]= 1, (V,

In the latter case Z((V, V’)) V.
(c) For x e X,

or (V, V) Syl2(L3(q)).

[D, D] 1, (D, D’> -L2(qo) or <D, D>e Syl2(L3(qo)).

In the latter case Z(<D, D>)eDx.
(d) Nc(V) is transitive on {V: y e Y, (V, V>L2(q)}.

Fix a subgroup V_e Vv such that H=(V, V_>L2(q).

(2.3) Let Z(X) 1 and regard Y <-X <- Aut (X) K.

(a) D: Dx.
(b) If- Aut (Y), then either V" V" or Y Sp(4, q) and V, V are root

subgroups of Y for roots of different lengths.
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(c) VrcfqY=VY.
(d) jK f3 Y JY.

Proof. To prove (a) one shows that K=XNK(D). This is proved by
simply checking that, under the assumption of qo even, D is normalized by
suitable graph, field, and diagonal automorphisms of X. Similarly we prove
(b), taking into account the one exceptional situation. To see (c), first use (a)
to observe that if kK with V<_Y, then V-<D* for some gX.
Consequently, V is a group of transvections with a given direction and
fixed hyperplane of M. We conclude V Vv.

Finally we prove (d). Assume k K and J<-Y. Conjugating by an
element of Y we may assume V= V (here we use (c)). So V Vv and
satisfies (V, V)-SL(2, q). So by (2.2)(d), (V, V_) is conjugate to J by an
element of Ny(V).

(2.4) If Z(X)= 1, then Z(Y)= 1 and Y= OZ(Nx(Y)).

Proof. Assume Z(X) 1. Let Y Nx(Y), C Cx(Y), and for A <_X let
A* denote the preimage of A in X*= SL(n, qo).
Write M=M.. "MgMo, where dim(M)=2 for i= 1,..., k and

dim (Mo)--< 1. We may choose this decomposition so that there are Y-
conjugates J,..., J of J satisfying [OZ(J*), M] 0 for each i# j. Letting
I= J... J we certainly have [C, I]= 1, and so [C*, I0] 1, where Io
OZ(I*). From the action of Io on M we conclude that for each g C* and
each i= 0, 1,..., k, g induces a scalar matrix on M. As O"(J*) and OZ(J)
are conjugate in Oz(Y*), for each {1,..., k}, and since [Oz(Y*), C*]
1, we conclude that g induces scalar matrices on M...M. In particu-
lar, ]gl is odd and Z(Y)= 1.

It will suffice to show Oa’(Y) < Cx(cr). Let S Syla(Y). From

[Y, Y1, (r)] [Y, <r), Y1]= 1,

we conclude [Y,(r), Y]=I. Setting Co=[Y,r], we then have Co<-C.
From the above paragraph we have [So, Co*] 1, where So 02’(S*). Also,
So 02’(SC0)* is r-invariant. So

S So and [So, tr]_< C*o fq So 1.

This proves [S, tr] 1, and the result follows.

We now begin the proof of (2.1). Suppose the result false and let G be
a counterexample of least order. Let

S SylE(G,,a), S Syl2(G,) and S -< S.

Choose S such that S contains a Sylow 2-subgroup of N,(Ga). We first
show that G does not contain a regular normal subgroup, N. Otherwise
IN(S)" SI 2 and N(S) inverts CN(S). This implies N,3(S)= SNox(S). This
contradicts the facts that IN(G,a)" G,,al is even and INx(Y): YI is odd. By
Theorem 3 of [3] we may assume Z(X)= 1 C(X). So by (2.3) we now
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write X 2, Y= , and regard Y<-X_G, <_ Aut (X). Also, we may as-
sume (X, Y)(Lz(4),Lz(2)), as otherwise G has dihedral Sylow 2-
subgroups and G is determined.

(2.5) Assume Y Sp(4, q). Let Zl, 2, be the sets of fixed points of V, J,
respectively. Then N(V)zx and NG(J) are each 2-transitive.

Proof. Suppose g G and Vg _< G,. As X_ G,, Vg -< X f3 G,. Since
Y-G,, V <-Nx(Y), so by (2.4) and the definition of Y, we have Vg -< Y.
Now, apply (2.3)(c) and conclude Vg VY_ V-,. Therefore, V% f3 G,
V-., and Witt’s theorem implies that N.(V) is transitive on A-{a}.
Let be an involution interchanging a and/3. If Y Y, then N(Go)

N(Y). So in this case (2.3)(b) implies W Vv
_
V-,. It follows that N(V)

moves a, and hence N(V)a is 2-transitive. Similarly N(J) is 2-transitive.
Suppose then that Y’ < Y. Then Y PSL(2, 2) or PSU(3, 2). Even here

the above arguments work provided W Vv. So the only difficulty is when
Y OZ’(G,) and V’ Y. Here IV] 2, so let V= (v). Then v’ G Y, so
v’G,-X. Also, C6(v)=C6(v), for otherwise N6(V)zx would be 2-
transitive. However, comparing the structure of C6 (v) with that of Cx(vt)
(see 19 of [5]) this is seen to be impossible. Consequently, we again have
N6(V)a 2-transitive and we obtain N6(J) 2-transitive as well. This proves
(2.4).

(2.6) The Lie-rank of Y is at least 2.

Proof. Suppose Y has Lie-rank 1. Then (Y,X)=(L(q),La(qo)),
(L2(q), L3(qo)), or (U3(q), L3(qo)). Since IX" YI is even, li21 is oaa. Suppose
X L2(qo). As noted before, qo> 4. Using Theorem 4 of Goldschmidt [9]
we conclude that S fqX is strongly closed in S Syl2(G). Now apply the
main theorem of [9] to obtain a contradiction. Therefore X -L3(qo).

Let U S f3 X and rechoose notation so that V-< Z(U). Let N N6(V).
Then, N contains Cx(V) as a normal subgroup and O(Cx(V))= U. So
U <IN,. Since U Y we have Ua 1. Also, Cx(V) is solvable, and so Na is
solvable. From the results of O’Nan [14] and Goldschmidt [9] we conclude
that either Na contains a regular normal subgroup or Co(V)a is 2-transitive
and (C6(V)a)’= L2(q), U3(q), or Sz(q) for some q dividing IUI. The cases
(C6(V)a)’ U3(q) or Sz(q0 are each out by observing U=f(U).
Suppose (Co(V)a)’L(qO. Then U’ is trivial on /X. As U’ is a root

subgroup of X, q qo and Y--- L(q) L2(qo). So U f3 G0 V and Ua is
elementary of order q=q. But then, in Na the normalizer of Ua is
transitive on (Ua)#. Using a Frattini argument we see that this contradicts
the fact that U 12(U) and exp (U)= 4. Therefore, Na contains a regular
normal subgroup. It follows that Ua cannot contain a non-cyclic, abelian,
normal subgroup, semiregular on/x-{a} (otherwise write the regular normal
subgroup of Na as a product of centralizers).

If V=Z(U), then Y--L2(q)=Lz(qo), so Ua- U/V is semiregular of
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order q. This contradicts the above. So V< Z(U) and Z(U)’x is semiregular
or order qoq-1. Therefore, qo 4, q 2, and [A[-1 [No,:N,al 23k, where
k is a divisor of 12 lOut (x)l. On the other hand, Ua is extraspecial of
order 25, so the representation theory of Ua forces IAI rb, where r is an
odd prime and b-> 4. This is a contradiction, proving (2.6).
The proof of the theorem will be complete once we establish

(2.7) The Lie-rank of Y is at most 1.

Proof. Suppose Y has Lie-rank at least 2. Recall the subgroups V, V_, J,
and D. Let Dg be the unique root subgroup of X with V__<Dg (use (2.1)
(a)). Then J_< (D, Dg (D, Dg} L(qo). Also,

Nx(J) J x _< (D, Dg) x/[ Nx((D, Dg}) where /[ GL(n 2, qo).

Finally, Cx(D)= Cx(V)= O/, for O Oa(Cx(V)).
Assume Y Sp(4, q) and set M= N6(J). Then (2.5) implies that M is

2-transitive. From the minimality of G we conclude that

(X, Y) (L4(4), L4(2)) or (L4(4), U4(2)).
Now let N= N(3(V) and consider the 2-transitive group Na. Let Q=
O2(N). Since we know Qe, it is easily seen that Qa V. Therefore, Oa is
extraspecial of order 29 and so the central involution in Oa is in Z*(Na).
By the Z*-theorem we see that Na contains a regular normal subgroup, say
of order rb. The representation theory of Qa forces b>24. However
]AI- 1 IN]" Nel < 2l" 3.5 < r 1. This is a contradiction.
The remaining case is Y- Sp(4, q). Here X L4(qo) or Ls(Qo). Suppose

that N(3(J)r" is 2-transitive. Then as above Nx(J)r’-Lz(4) and Nc(J)r’
L2(2). This implies Y-Sp(4, 2) and X L4(4). But there is no automorph-
ism of L4(4) with such a centralizer. This is a contradiction and so we now
assume N(3(J)r" is not 2-transitive.

First, we claim that Y is weakly closed in G, with respect to G. If q > 2,
then Y Y’, and since G,/Y is solvable, the claim is clear. Suppose q 2.
Since Y X fqG we certainly have Y weakly closed in G with respect to
G. So let be an involution interchanging e and/3. If Y’= Y, then N(3 (Y)
is 2-transitive on the fixed points of Y, so the converse of Witt’s theorem
gives the result. Therefore, we may assume Y’ Y. Let xl, x2 be representa-
tives of the classes of involutions in Y-Y’ (recall Y-Sp(4, 2) $6). Since
(y,)t T, xi G Y for 1 and 2. So there is an involution j C(3.,(Y)
such that x’i is Y-conjugate to xd or xz. Now, j induces an outer au-
tomorphism on X. It is easily seen from the action of j on the Dynkin
diagram of X that j-xlj or xzj. Consequently, C(3.(xj) or C(3.(x:zj) is not
2-constrained. Since C(x) and C(x2) are 2-constrained, C(x):;-G, for
i= 1 or 2 (see 4 of [5]). On the other hand, x-NG x,. So Witt’s
theorem implies that C(3(xi) is 2-transitive on the fixed points of x on f,
and consequently x NG x,

_
Y. This contradiction proves the claim.
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Let g G and suppose J _< G0. The argument used at the beginning of
the proof of (2.4) shows that Jg _< Y, and then (2.2)(d) implies that Ja jv

_
J6,. So, No(J) is transitive on E-{a}. Since No(J):;" is not 2-transitive this
means No (J) No (J).

Let be any involution interchanging ct and/3. By the claim, yt= y and
by the above, Jt JY. As above, V (3 G0 V,. If No(V)a is 2-transitive,
then we may choose with W V. But this forces Jt JY. Therefore
No(V)a is not 2-transitive and as above No(V)= No(V). But from Y Y’
we have the embedding of Y in Go and it is easily checked that
Co,(V) G0. This is a contradiction, proving the result.

We mention, in passing, that Theorem (2.1) can be generalized to cover
Chevalley groups other than L,(q0). The arguments are a bit more compli-
cated, but similar to the above.

3. Fusion of involutions

In this section, A will denote a finite group of Lie type having Lie rank at
least 2 and defined over a field, Fq, of characteristic 2. Suppose A is a
standard subgroup of G and that is an involution in Co(A). We assume
IZ(A)[ odd, Co(A) has a cyclic Sylow 2-subgroup, R, and R. In addition,
assume fi L3(2), Gz(2)’, Sp(4, 2)’, L4(2), U4(2), or 0+(8, 2)’.

Let E be the root system for A and U Sylz(A). Set B N,(U), a Borel
subgroup, and choose a Cartan subgroup, H<_B. In the Lie notation,
N[H= W, the Weyl group, and W=(sl,..., sk), where sl, sk are the
fundamental reflections. For each s E, there is a root subgroup, Us, of A,
and U is the product of those groups, Us, for which s E+. For s E, let
V =Ol(U) and let r be the positive root of highest height. Set J=
(V, V_,} SL(2, q).

(3.1) Let X be a finite group of Lie type having Lie rank at least 2 and
defined over a field of characteristic 2. Suppose Z(X)= 1. Let re(X) be the
order of the Schur multiplier of X.

(i) If re(X) is even, then (X, (re(X)) is one o]: the following:

(L3(2), 2), (L3(4), 48), (L4(2), 2), (Sp(4, 2), 2), (Sp(6, 2), 2),
(O+(8, 2)’, 4), (F4(2), 2), (G2(4), 2), (U6(2), 12), (2E6(2), 12).

(ii) If 1 re(X) is odd, then (X, re(X)) is one of the following:

(L,(q), (n, q- 1)), (U,(q), (n, q + 1)), (E6(q), (3, q- 1)),
(E6(q), (3, q + 1)).

Proof. For (i) see Table 1 of [10]. To get (ii) let be the universal group
associated with X (see [15] and [16] or details). Assuming re(X) odd is
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equivalent to the fact that is a covering group of X. So re(X)= Iz(2)[ and
the result follows from 8 of [15] and 9 of [16].

(3.2) (i) CI A#(t) O.
(ii) CA(t)<_Ag.

Proof. Notice that R cyclic implies K solvable, and hence N(A)/A
solvable. Conjugating by g we have N(Ag)(o_< Ag, from which (ii) follows.
For the first assertion we use the results in 19 of [15]. Assume

N(A)-AC(A). In most cases each involution in t*(CA(t*)) is conjugate to
g. For these cases the result follows from (ii) and symmetry. The exceptions
are the groups fix -PSL(n, q), PSU(n, q), O+/-(n, q)’, all with n even, to-
gether with A E6(q) or 2E6(q). In each case, g is in the coset of a graph
automorphism of A.

First assume PSL(n, q), PSU(n, q), E6(q), or 2E6(q). Then (19.9) of
[5] implies that when is viewed as an automorphism of fi, * is
conjugate to try, where cr is the involutory graph automorphism of A and
v Vr (which we are identifying with VrZ(A)/Z(A)). From the root system,
E, we see that there is a root subgroup,/, of ft, with (I, I’) I I’, and so g

is fused to an involution t*CA(t). On the other hand we know that
CA (tg) CA (or) CA (tr) fq CA (v) T and T= T (we use here (19.7) and
(19.8) of [5], the structure of T given in (19.9) of [5], and also the fact that
q -> 4 if A -PSL(4, q) or PSU(4, q)). So (i) follows from (ii) and symmetry.
Now suppose fi --O+/-(n,q)’, n even, and f3A#t=O. By (3.1), fiA

and so A(t*)-O+/-(n,q). We identify A(t) with the orthogonal group and
let V be the natural module. Notation will be as in 8 of [5]. The involution

is of type bt, for some l_>l, and we set X=CA(t*). If l=l, then
X--Sp(n- 2, q), so X X<-Ag. As in the previous paragraph, * is fused
to an involution in tgx# (here g is conjugate to the graph automorphism) so
the symmetry argument gives the result. From now on we take > 1.
We claim that ---tga for some involution a X’. Suppose this is true.

Then from the structure of Aut(Ag) and the fact that X<--N(A) we
conclude that a AgKg. This implies (i), and so it will suffice to prove the
claim.
Write the matrix for in the basis 0], given in (8.3) of [5]. If 3, let

1 --{X2, X3, Xl+I, Xn--b Xn--I+2, Xn--l+3t
and set 2----1" If l> 3, then set

I --{X2, X3. X4, X5,Xn-l,+2, Xn-l+3, Xn-|+4, Xn-l+5}

and set 2-----1" In either case, let V () for i= 1, 2 and note that
V VI+/- V2 and g acts on each of V1 and V2. If 3, g induces a2 on V1
and b on V2, while if l> 3, tg induces a4 on V and bl_4 on V2. In any case
g O(V) O(V2) and it will suffice to check that y ya in O(V) for some
a (C(y) O(V))’, where y is the restriction of g to V1.
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Suppose > 3. Let

I=
1

1
and E=

01
1 10

In the basis 1 we then have

y=( ) andweset a=( 0U)
Then ya is of type a4 and a c (C(y)fq O(V1))’. This follows from the facts
that C(y)fq O(VI) contains all matrices of the form ( c) with X c Sp(4, q)
and that E c Sp(4, q)’, even if q 2.
Now suppose 3. Here O(V)-O/(6, q) and O(V1)’ -SL(4, q). With

this identification, an a2 involution in O(V1) corresponds to a transvection
in SL(4, q). Checking matrices in SL(4, q), we easily find a transvection a
with y-- ya and a c (C(y)N O(V))’. Indeed, this is possible with y, a, ya all
transvections in the same direction. This proves (3.2).

(3.3) If L3(q), then NA#t (k.

Proof. By (3.2), fqA#(t)=p. Let cA(t}, t t. If cA, then choose
S cSyl2(A) with c Z(S) (A has just one class of involutions). Then
S<-N(Ag). For ucS-Z(S), [u,S]=Z(S). As q>_4, SfqAgZ(S), so we
choose u c S fq A g -Z(S) and conclude that Z(S)Ag. But then tgc Ag, so
g c Z(Ag), contradicting the assumption that Z(A)I is odd.

(3.4) Suppose that rank ()=2, fi La(q). Let scL;,+ be such that
u+u.

(a) If fit Gz(q) or U(2), then either fq Vt or fq Ut.
(b) If fi, GE(q) or U5(2), then either fq Vt# or fq U(t) : .
Proof. Suppose fi has rank 2 and fiLa(q). Then, either fi has 2

classes of involutions with representatives in V and U, or fi PSp(4, q)
and fi has a third class of involutions with representatives in UUs (see
(6.1), (7.7), and 18 of [5]).
We claim that either tfq Vr(t)O or tf3 Us(t). Suppose false. By

(3.2), -PSp(4, q) and the projection of fqA(t) to A contains UU.
Choose S c Sylz(N(A)) with UR <- S. Further, choose S so that g c Z(S) and
note that Z(U) UrU. For x an involution in UR we have Cs(x)_> UrUR.
On the other hand, if x c S- UR is an involution, we use (19.5) of [5] to see
that m2(Cs(x)) < m2(UrUsR).
Now, S c Syl2(N(Ag)) and the above remarks imply that fx(UR)<_ AgKg.

So I"x(UR)’ UrU <-A g. Therefore, c U,Ut and f’l U,U(t)= U#, Ut.
Now, A, Ag contain subgroups Y1, Y2, respectively, with Ya Y2-
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Zq-IZ,,-1 and Yi regular on UU, for i= 1,2. Namely, just take
2-complements in NA(UrUs) and in NA,(UrUs). Then (Y1, Y2> is 2-transitive
on the set UUt U # gUs t. But this contradicts Theorem 1 1 of Hering-
Kantor-Seitz [12], proving the claim.

Suppose g e V or Us. If g e CA (tg)(z) (second derived group), we argue as
follows. In each case Out (A g) has cyclic Sylow 2-subgroups, and K
O(Kg)Rg. It follows that g e Ag, contradicting [Z(Ag)I odd. For the excep-
tional groups use the results of {}18 of [5] to see that te CA(tg)(2), unless
G2(q) and tge Us. So we may take -PSp(4, q), PSU(4, q) or
PSU(5, q). First assume tge V, so that g corresponds to a transvection.
Using the fact that q > 2, if fi PSp(4, q), we check g e CA(t)(2) using (6.2)
or (7.10) of [5] (or by using the Lie structure). Suppose tge Us. For
A -PSp(4, q) use the existence of the graph automorphism interchanging V
and Us. Finally, for PSU(4, q) or PSU(5, q) just use the natural embeddings
of PSp(4, q)<-PSU(4, q)<-PSU(5, q). This proves (3.4).

(3.5) Suppose that rank (A)>_3 and O:(n, q)’. Then

f3 A#(t) f3 C(J) .
Proof. Suppose otherwise. By (3.2), f3A(t)#{t}. Let tA(t) with

g -t. Assume that t" is not A-conjugate to an involution in D x (t), where
D 02’(CA(J)). From (13.3), (14.3), (15.5), (16.21), and (17.18) of [5] we
conclude that A must be a classical group.
The idea of the proof to follow is this. We will choose a certain elemen-

tary abelian normal 2-subgroup, Q, of CA (tg) and then look at the action of
N(Q(t)) on flQ(t). The action group will turn out to be a certain
2-transitive group or rank 3 group, and we show this to be, impossible. The
contradiction follows since we will know the structure of the 1-point
stabilizer and the 2-point stabilizer. However, before we can do this we need
to show that Q(t)= Q(tg), where Q1 plays the same role in CA,(t) as does
Q in CA(tg).
Let V be the natural module for the appropriate covering group, A, of fi.

We have D]Z(D) PSL(n 2, q), PSU(n 2, q) or PSp(n 2, q). Also V
Vx V2 where V is a 2-space (non-degenerate if V is unitary or symplec-
tic), 3 /5 acts on V and on V2, 3 trivial on V2, and/3 trivial on V1.

Let x be the projection in A of g. The only way x can fail to be
A-conjugate to an involution in D is for dim (IV, 2])= l, where l= In/2] (see
(4.2), (6.1), and (7.7) of [5]). So this must occur for each such element
g A(t)-{t}. If ft, PSp(n, q) with n0 (mod 4), then 2 may be of type a
or q (in the notation of 7 of [5]). In this case choose 2 to be of type a, if
possible. We define an elementary abelian 2-group, Q-< A, such that

O C(IV, ]) n C,(V/[V, ]).
Then Na(Q) is a parabolic subgroup of A. If a m Q#<t), then [V, #] [V,
where y is the projection of h to A. Using the results of 4-7 of [5] we see



that, except in one situation, x and y are conjugate in NA(Q). The
exceptional case is when fi PSp(n, q) for n 0 (mod 4), one of x or y is of
type a and the other of type c.

Let C=Co((t,t)) and note that C<_C(t)fqN(A). We will use the
following facts about C. First, O2(C)= 02(CA(tg)) 02(Csz(t)). This can be
checked using the results in 4-7 and {}18 of [5]. What is relevant is the
action of an involutory outer automorphism on C,(tg)/O2(CA(t)). The
other remark is that unless 2 is of type c we have Q(t)= fI(Z(02(C))). (In
fact Q 02(C (tg)) unless dim (V) is odd (4-7 of [5]).) Now set Qo Q(t)
and Q1 Q0 [’ Ag.

Case 1. Suppose there does not exist h e G with a A(t} and projecting
to an involution of type q, where l= n/2. As above Nn(O) is transitive on
o and on fqQ#t (one of which may be empty). As CA(t) <-
C(t)CIN(Ag), induces an inner automorphism on Ag, and by symmetry,
Ca(tg).--Ca,(t). From the above we have QI= Z(O2(Cn,(t))) and Nn,(Q)
transitive on the involutions in Q that are A-conjugate to the projection
of t. Then Y=(N,(Qo),NA,(Qo))} acts on Qo, on lI=tv, and ya is a
2-transitive group or a rank 3 group.

If ya is 2-transitive, consider Cv(t)a, the 1-point stabilizer. If
PSL(n, q), then Cv(t)a contains a normal subgroup, X, with X a central
product of two copies of SL(I, q) (see 4 of [5]). For SL(1, q) SL(2, 2), this
contradicts O’Nan[ll]. If SL(1, q)=SL(2,2), this contradicts O’Nan [12].
Suppose G -PSU(n, q) or PSp(n, q). Here Cv(t) contains a normal sub-
group X with XaGL(I, q2) or GL(I, q), respectively. From (6.2), (7.9),
and (7.10) of [5] we see that ya satisfies the hypotheses of Theorem (2.1).
We conclude XaL(4). But then 2, n-< 5, whereas we have assumed
rank (A) _> 3.

Therefore ya is a rank 3 group. In particular, Y is transitive on O(t)CI
and f3O O f3 Or. Moreover, for each g E Q(t)-{t}, t--. tgt. As x
we may assume that tg=x. Let h E Q-{tg}. Then considering h Qo<

Ag(tg) we have ttg--tg, by symmetry. However, it is easy to check (see
(6.2) and (7.9) of [5]) that can be chosen so that ttg is a transvection in
A. This is a contradiction.

Case 2. Suppose that is of type ct. Then fi PSp(n, q) and n
0 (mod 4). Notation is as in 7 of [5]. With Q as before, Nn(Q) induces
SL(l,q) on Q. This case differs from Case 1 because here Ttf3
AS Oz(Cn(tg))(see (4.3) of [5] for the definition of Tt). In fact Cn(x)/Q is
isomorphic to the centralizer of a transvection is Sp(1, q). In particular

Let K= O(K)fqC(t). From (7.11) of [5] we have

O:z,:z(C) O:z(C, (tg)) KR.
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By symmetry, CA,(t) contains a normal elementary subgroup Qt with
NA,(Q1) inducing SL(I, q) on Q1. We set Q2 QtRg and claim that Q2
Q(tg) Qo. First, we note that, by symmetry, Qx-< O2,2(C), so Q2 projects
into O2(CA(tg)) when considered as a subgroup of AK. Suppose we can
show that 02 projects into Q. Then Q2< Q KxR and by orders Q2
(QR)" for some kK1. If [RI =2, then we are done. If [R 1>2, then
fI((QR))=(t), whereas ((Qz))=(tg). This is a contradiction. So we
need only show that Q2 projects into Q.

Suppose false and let Q2 denote the projection of Q2 to A. Then
Q2"-CA(t) and from (7.11) of [5] we conclude that either

020/0 <- Z(O2’(CA (t))/O)
and is of order at most q or Q2Q--O2(CA(tg)). In either case, Q2f’IQ<_
Z(Q2Q). For notation and computations use (4.3), (7.11), and (7.12) of [5].

In the first case Q" Z(QQ2)I-<q and some element, u, of 02 satisfies

X(u)= x0.
x I

An easy computation shows that IQ: Co(u)l>q, so this case is out. In the
other case, Q2CIQZ(O2(CA(tg)))=P. However, computing, we check
that Q fq P consists of matrices of the form

(i)where M rI_2
r

and r, y, ix, 5 satisfy the conditions of (7.12) of [5]. Checking orders, we have
a contradiction, establishing the claim.

Since we now have IRI 2, we necessarily have t C(t)’. On the other
hand we will show x CA(x)’, which will imply fqA =. Actually, we
show x C(x)’, where Ao O+(n, q)’, viewed as a subgroup of A. We do
this in order to handle a similar configuration arising in the proof of (3.6). So
consider V equipped with a quadratic form for which A stabilizes the
underlying bilinear form. Write V Vx _1_. _t. Vk where k 1/2 and each V
is an x-invariant 4-space. We write xi for the restriction of x to V, and we
may assume that each xi is a c2 involution in O(V). For each i= 1,..., k
there is an involution y e O(V) and a transvection t e O(V) with [x, y] 1
and [ti, yi]=x. So fix i{1,..., k} and choose ]i. Then titj O(V)’ and
It&, y] x implies xi CAo(X)’. Hence x CAo(X)’, as claimed.

It follows from the above remarks that Y=(NA(Qo),NA,(Q)) is 2-
transitive on l)=tv =t N Qo. Let S ya and, fixing aS/3 in fl, set
So=02(S,a). Since Ns(S,a)<--Ns(So), we have Ns(So)>Ns,(So). Let A de-
note the set of fixed points of So on fl. Then Ns(So)a contains a normal
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elementary abelian 2-group, D, extended by Sp(/-2, q). Here [Dl=q-2
and is semiregular on A-{a}. So D. is a strongly closed subgroup of a Sylow
2-subgroup of Ns(So)a and we apply the main theorem of [9] to conclude
1-2 =q 2. At this point one can obtain a contradiction by applying
Sylow’s theorem to S.

Case 3. Here A -PSp(n, q), n 0 (mod 4), x is of type at for n/2,
but for some h A(t}, h projects to an involution, y, in A of type q. We
may choose y so that CA(th)=CA(y)<_CA(tg). Indeed, choosing a basis for
V as in (7.6) (3) of [5] we take

=( )and 2=( 0i)for M=(ll 1)"
As before, consider Y=(NA(Qo), Na,(Qo)) acting on Qo. Let f= " and
S-- Ya. If the projections of the involutions in f to A are all of the same
type, then we use the argument of Case 1 or of Case 2. So suppose this is
not the case. Let a t,/3 , and /= g, with/3, /e fL As in Case 2, t"
and we set So Oe(S). The embedding of E(S,) in E(S,) and in U(S) is
the natural embedding of Sp(l, q) in SL(1, q). Except for the case -4 these
embeddings determine the embedding of So in E(S,) and in E(S,). In the
case of l= 4, E(S,.) could be twisted by a graph automorphism of Sp(4, q).
But in all cases

N(So) E(S) S.
So we consider (N(So)f’IE(S,), N(So)fqE(S.)) acting on the fixed points of
So on . As in Case 2 we have a contradiction to the main theorem of [9],
unless 1= 4 and q 2.
For the exceptional case, argue as follows. First check that a4 and c4

involutions in Sp(8, q) are each in the derived group of their centralizer. As
q=2, N(A)=AK and tC6(t)’. Thus 6A= and Y acts on f as a
rank 3 group. The orbit of g under C(t) has length IGL(4, 2)" Sp(4, 2)1
28 and the orbit of a underCy(t) has length 420. So IIl =449, and we
obtain a contradiction from Sylow’s theorem. This completes the proof of
(3.5).

Next, we prove an analogue of (3.5) for the orthogonal groups. If
O+(n, q)’, then by (3.1), A O+(n, q)’. Also, OZ(CA(J)) Jo x Do,

where Jo" J in A and Do O(n-4, q)’.

(3.6) Suppose fi O+/-(n, q)’. Then, either

(i) f3A<t)f3C(JJo)#{t}

or

(ii) there exists xC(t) such that A(x)O:(n, q), x induces a transvec-
tion on A, and there exists t g C(t) CI C(x); moreover D x (x) x (t),
where Sp(n 2, q) D CA (x).
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Proof. First suppose that

f’IC(t)CI(N(A)-AC(A))fJ.

Choose h e C(t)-AC(A). If A(th)CO+(n,q), then h induces a field or
graph-field automorphism on A and A -O+(n, q)’. By (19.1) and (19.6) of
[5] we see that all involutions in CA (th)th are fused. Since n >- 8, CA (th)
CA (th )() A, and so (i) holds. Suppose then that A (ta) O+/-(n, q). Then a

induces an involution of type bt on A, and therefore centralizes a transvec-
tion x eA(ta}. So here (ii) holds. We assume from now on that fqC(t)<-
AC(A). Let x be the projection of g to A. Then x is of type at or q,
assuming (i) false; the possibilities are given in the following table.

n =--0 (mod 4) n 2 (mod 4)

a(rt-2)/2, c(rt-2)/2
a(rt-2)/2, c(rt-2)/2

If possible, choose g SO that x is of type
Consider A acting on the natural module, V, for O+(n, q) and set

V0 IV, tg]. If x is of type at, then Vo is totally singular, while if x is of type
q, Vo contains a unique totally singular (l-1)-subspace, V1 (see (8.4) of
[5]). Let Q=CA(Vo)fqCA(V/Vo). Then Q is an elementary 2-group. If
yQ is A-conjugate to x, then [V,y]=Vo, so x-y in NA(Q). The
arguments here will be similar to those of (3.5) for the case fi PSp(n, q).
We begin with the following observations. If yeN(A) with A(y)

O+/-(n, q), and if x is of type at, with < n/2, or of type xt, then (ii) holds. For
in these cases x centralizes a transvection in A(y) (consider an orthogonal
decomposition of V into a 2-space and an (n- 2)-space). So in the presence
of a graph automorphism of A, we may assume that x is of type
with l= n/2. In the latter case N(Q)f3N(A) does not contain an involution
acting as a graph automorphism on A. Let C=(t fqC((t, tg)). Then
C<-AC(A)CIAgC(Ag). We check that

02(C((t tg)) O2(C) x 02(CK(t) <_ 02(C)R,

and using (10.2) of [5] we have

ClOd(C) o’(c,, (t)/o(c,, (t))).

Say l= n/2. The arguments here are similar to those in the proof of (3.5)
for PSp(n, q). However, note that here we cannot have t# a Q(t) with
h projecting to an involution of type different from that of x. So Case 3 in
(3.5) does not occur here. The analogue of Case 1 goes as before, but in
Case 2 things are a bit different. Again we obtain a 2-transitive group
S ya. But here a computation shows that, for a f, S is an extension of
a parabolic subgroup of L(1, q) corresponding to the stabilizer of a hyper-
plane of the usual module for SL(l, q). We also have the structure of Sa for
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a /3 f (see (8.8) of [5].) Using O’Nan [12] we obtain a contradiction. So
now assume that 1<-(n-2)/2.
Assume first that x is of type a-2/2. Then, from (8.6) of [5] or from the

Lie structure of A, we compute

0 Z(O2(Ca(tg))) and Oo O(t)= fl(Z(C)).

The usual argument shows that Y=(NA(Qo),NA,(Qo)) induces a 2-
transitive group or rank 3 group on Y. The 2-transitive case is out by (2.1).
In the rank 3 case we may assume g Q. Choose a basis for V as in (8.2) of
[5]. Then g has matrix form

1

Let h be the element of O with matrix form

0
where M= I_4

1
1 1

Then tgth has type a2. But g tgt "t, and by symmetry tgta- g. Therefore,
2, whereas n >- 10 here.
Next, assume that x has type a(n-4)/2. As above, consider the groups Qo

and Y, with Y 2-transitive or rank 3 on Y. The rank 3 case does not occur
for n =8. This is because x is then of type a2, so x CA(x)’. We are
assuming there are no graph automorphisms in this case, so t C(t)’.
Therefore t7c x. So in the rank 3 case l>_ 4 and the argument of the previous
paragraph gives a contradiction. In the 2-transitive case the contradiction
follows from (2.1) (as above), except when 2. So now assume l= 2 and
let I Oz(C). Then x is a 2-central involution in A, I fqA is special with
center of order q, and

C/I= (C1/I) x (C2//) L2(q) x L2(q2).
Considering the embedding of C in N(Ag), we see that g may be assumed
to normalize C. So recalling the definition of U Syl2(A), we may assume
g N(U(t)), and hence g N(I1) for 11 U(t) fq C1. Notice that 11 is just the
product of I with a root subgroup of A.
We will consider the group W1 U(t)CI C(I). Computation within the

Lie structure of A shows that W1 W(t), where W O2(P) and P NA(W)
is the stabilizer of a singular 1-space of V. Now S (P, g) acts on W1 and we
consider 0 s fq W1. The involutions in W are of type a2 and c2, so since (i)
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is false, each involution in s projects to an involution of type a2. As usual,
xCA(x)’ implies ts_ Wt. Therefore, SO is 2-transitive and 101= l+n,
where n =(q3+l)(q2-1) is the number of a2 involutions in W. Also
C(t) f3 SO contains a cyclic normal subgroup of order q- 1. So for q > 2 this
is against Theorem 3 of [3].
For q 2 we use a special argument as follows. First note that SO

normalizes W (thtk: h, Wt). We have P WL for L -S0-(6, 2). Let a
be an involution in SO interchanging and g. Then setting a, g =/3, we

o 0have a stabilizing Sa, where Sa is the extension of an elementary group of
order 24 by S0-(4, 2)A5. Let Z Syls(Sa). Then IN(Z)SI- 20 and
Sylow’s theorem (applied to S) gives [N(Z)I 60. From the action of Z on
W we have an element of order 3 in S-S, centralizing Z and irreducible on
the klein group Cw(Z). Now, L preserves a non-degenerate quadratic form
on W and, of course, the associated alternating bilinear form. The non-zero
singular vectors in W are just the a2-involutions. Viewing Z <-S0-(6, 2)-<
Sp(6,2) we see that the above mentioned 3-element is necessarily in
Sp(6, 2) It is then easy to conclude that S- Sp(6, 2). But then [SO. SI
56 > 10[, a contradiction.
The remaining case is when x is necessarily of type ct, for l= (n-2)/2.

Again we set Qo=Q(t). As in (3.5), xCa(x)’, and as before, tC6(t)’.
Therefore 6 fq A 0. From (8.8) of [5] we have

C/02(C) Sp(I- 2, q) SL(2, q).

We will show that Qo can be recovered from the abstract structure of C.
Once this is done we will have Y=(Na(Qo),NA,(Qo)) 2-transitive on
6N Qo, at which point the earlier arguments for x of type c,/2 give a
contradiction.
To recover Qo from C argue as follows. First assu..rne l-2> 2. Let H1 be

the complete preimage of.the SL(2, q) factor of C/02(C). This group is well
defined as l-2> 2. Let Ho be a (q + 1)-Hall subgroup of H1. Then Ho is
determined, up to conjugacy, within C. Also, it is easy to check that
OZ(CA(Ho)) SO:(21, q) and Cc(Ho)/Ho has the structure of the centralizer
of a q involution in SO(21, q). The arguments in Case 2 of (3.5) show that
Q is determined from the abstract structure of Cc(Ho). This shows that for
l- 2> 2, Qo is determined by the abstract structure of C.

Finally we assume 2 2, 4. Then

ClO(C) SL(2, q) x SL(2, q).

If q>2, then C/02(C) contains precisely two proper normal subgroups,
while if q 2, C/02(C) contains precisely two normal subgroups of order 3.
Let C and Cz denote the preimages of these factors. One checks that if C
corresponds to the factor centralizing Q, then [Z(C1)[> Iz(cgl. So c --Hx
is determined by C, and we can choose Ho as before. This completes the
proof of (3.6).
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4. Standard subgroups

For this section we assume the notation of 3. The results in this section
are aimed at showing that for a suitable subgroup, X<-A, the group C6(X)
contains E(CA(X)) as a standard subgroup.

(4.1) Notation. Assume A has Lie rank at least 3. We define a subgroup
of N(A) as follows. If A O+/-(n, q)’, then let X be a (q+ 1)-Hall subgroup
of J-SL(2, q). If fiO+(8, q)’, let X=O2,(F), where F<_fi is the
stabilizer of a non-degenerate 2-space having index 1, of the natural
orthogonal space for A. Here X is cyclic of order q- 1 (recall, q > 2 here)
and E(CA(X)) 0+(6, q)’. Finally, suppose - O+/-(n, q)’, but

0+(8, q)’. In the notation of (3.6), let X be a (q + 1)oHall subgroup of
JJo if (3.6)0) holds and X=(x) if (3.6)0) fails to hold. In all cases set
D E(Ca (X)).
Let J J, if A O+/-(n, q)’ and J J x Jo, otherwise. Set Do E(Ca (J)). If

fi O+/-(n, q)’, then =J= (Vr, V_r) and Do is the Levi actor in Ca(Vr) that
is generated by root subgroups for certain roots in E.

(4.2) There exists g with C(X) f3 C(t) and Ca (t) 2-constrained.

Proof. If fi O+(n, q), then this follows immediately from (3.5). Suppose
A O+(n, q)’, but A 0+(8, q)’. Then (3.6) gives the existence of g with
g C(t) fq C(X). The only way Ca (t) could fail to be 2-constrained is that
A(tg)O+/-(n, 61) with g corresponding to a transvection. I this occurs
consider Ca (tg) Sp(n 2, q). Then Ca (tg) Ca (tg)() A g and tga for
a an involution in the center of a Sylow 2-subgroup of Ca (tg). Using the
symmetry between N(Ag) and N(A) we get the result.

Finally, suppose A PSO/(8, q) and let V be the natural module for A.
Choose g according to (3.6) and argue as above that we are done if g

induces a transvection on A. So Ca(t) is 2-constrained and it suffices to
show that g can be chosen to centralize a non-degenerate 2-space of V with
index 1. If (3.6)(i) holds, this follows as g will centralize the 4-space
IV, JJo]. Suppose (3.6)(i) fails to hold. Choose g Dx(x)x(t) as in (3.6)
(ii). Assuming the result false, we see that must induce an inner au-
tomorphism of type a4 or Ca. The former is impossible as centralizes the
transvection x. So all such involutions project to involutions in A of type Ca
and we can use the argument in the fourth paragraph of the proof of (3.6) to
get a contradiction.

(4.3) If A O+/-(n, q)’, then D Do. If ., O+/-(n, q)’, but fi 0+(8, q)’,
and if (3.6)(i) holds, then D Do.

Proof. If A O+/-(n, q)’ (in fact if A/Z(A) is any classical group), then
this can be checked directly by considering the natural module for A.
Otherwise, we argue as follows. We first will show that for g A, X<-J*
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implies Jg J. This implies that NA(X)<_ N(J)<_ N(Do) and the result fol-
lows.

Suppose, then, that g A and X-<Jg. If A/Z(A)= G(q) is an untwisted
Chevalley group, consider X-< G(q2) Z. If G(q) is twisted, let Z be the
Chevalley group from which A/Z(A) is constructed (e.g. A/Z(A)-2E6(q),
Z--E6(q2)). Then J<-JI<_Z, where JI-SL(2, q2) is generated by root
subgroups. Now X is contained in a Borel subgroup of J1 and hence a Borel
subgroup of Z. So Nz(X) is easily determined using the Bruhat decomposi-
tion (see (4.2) of [4]), and one sees that JI J. That is X is contained in a
unique conjugate of J. So Jg-<J1 and we have Jg--J, as desired.

(4.4) Assume that O+/-(n, q)’ or fi O+(n, q)’, but fi 0+(8, q)’, and
(3.6)(i) holds. Let Y=O(C(X)) and let bars denote images in C6(X)/Y.
Then D is standard in C6(X) and R Syl2(C(D)f3 C6(X)).

Proof. We first claim R Syl2(C(D) f3 C6(X)). Otherwise, there is a
2-element u C6(X) such that t e C(D) and u eN(R)-R. Then u C(t) <
N(A), so u N(D). As fie C(D), we have u C(D) f3 N(A). However,
02’(N(A)fqC(D))<_K. This is a contradiction and proves the claim. The
rest of the lemma follows easily.

(4.5) With hypothesis as in (4.4), D; C6(X).

Proof. Suppose false. Then RO(C(X))_C6(X). The idea is this. Let
I_< CA,(X) be t-invariant, where is as in (4.2). Then

I <-- N(RO(C(X))) and I’ I.

Therefore, [I, t] <_ I fq O(C(X)), and if I is quasi-simple, then [/, t] 1. For
example, suppose X and Xg are conjugate in Ag. Then I=E(CA,(X)) D,
so I<_ C(t), and I= I <-N(A) A. This forces I= D, whereas tg C(D).
So X and Xg are not Ag-conjugate. In fact, we can argue:

(*) For no a cA is X" <-C(t) and xaKg"XgKg in Ag.

The rest of the proof will be concerned with either providing a suitable
!<_A g or contradicting (*). Let C=Co((t, tg)) and C1--02’(C).

First suppose fi is an exceptional group and q > 2. Then J ]= ](-<
N(Ag)(l=Ag, so XAg. From the description of centralizers in (13.3),
(14.3), (15.5), (16.20), (17.15), and {}19 of [5] we see that teAK and
CA(tg)--CAg(t). It follows that we may choose g to normalize (t, tg). Let
NA(U) B <-P be the minimal parabolic subgroup of A subject to P->
CA(tg). This parabolic subgroup is obtainable from (13.2), (14.2), (15.4),
(16.19), and (17.14) of [5] and in each case P= pwo, where Wo is the word of
greatest length in the fundamental reflections {s,..., sk}. Then L =Lwo,
where L O2’(L) and L is the Levi factor of P. Since g e N(C), g N(Y),
where Y C(-<Ag f)A. Conjugating by an element y Y, we have Xr -<
Lg. Now set I (Z, Zo ), for Z Z(CAg(t)). The group Z is given explicitly
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in [5] in terms of the root system E (all carried to Ag, via g) and in each case
I is quasi-simple with Iz(I)l odd. As projects to an involution in I we have
a contradiction to the first paragraph.
Say A is a classical group and let Z Z(02(C1)). One checks that

o(c,(z)) (x,)o(c(t)).

This can be computed from the results in 4-8 of [5] or by passing to the
Lie structure and computing within certain parabolic subgroups of A. Let
C2 02(Cc,(Z)), so that C2=(XC,)O(CK(t)). Now look at C2/C3, where

c o(c)o(c)= o:((xc,))o(G,(t)).

In most cases the class of XC3/C3 is uniquely determined by the structure of
C2/C3 (for example, in most cases, J-< C2 and the class of JC3]C3 is uniquely
determined (see Timmesfeld [17])). In these cases we read all of this in
C(t) <_ N(Ag) and contradict (*). The exception is when C2/C3 Sp(4, q)
and J -SL(2, q.). But here, choose a Hall subgroup, ., of C2 containing
X, set I E(CAg(X)) and contradict the first paragraph of the proof, unless
A Sp(6, 2). In the latter case, first argue that we may take g N((t, t)).
Then g acts on OZ(C((t, tg))) L and induces an outer automorphism on
L/O2(L)--Sp(4, 2). Considering the action of L(g) on O2(L), we have a
contradiction.

If fix is an exceptional group with q=2 and if IZ(f,,(t)l>2, then
A F4(2) (see [5] and [6]) and we can argue as in the second paragraph. For
all other cases we will contradict (*). Let Y= CA(t) and let bars denote
images in Y/O2(Y). Then O2’() 12, a central product of Chevalley
groups, where notation is chosen so that J_< Y2.
We now have A an exceptional group and q 2 IZ(fA(tg))l. In most

cases we argue by setting Y C() CA(t)() CAg(t)), noting that J" --< Y
for some a A and that Y/O2(Y) has just one conjugacy class of (2, 3, 4)-
root involutions (Timmesfeld [17]). In these cases we contradict (*) im-
mediately. The exceptions are as follows, where we list the isomorphism
type of A and the notation for the projection of g to A as given in [5]:
(E6(2), z), (E8(2), z) (E7(2), u), (2E6(2),/9). For the last case note that there
is an error in (14.3)(iii) of [5], corrected in [6]. The essential change is that

CA(v)/O2(CA(V))--L2(q)xU3(q) and Iz(f(v))l--q--2.

Also, the L2(q) factor is covered by J" for some a A. Let

Y1 O2,3,2(C) CA (1))03,2(CK(t)),

and check that

oz(YlO(VO c c((vlO(V))())) J"o(Y)lO(V).
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So this factor is determined by the abstract structure of C and we again
contradict (*). Similarly, if fi E6(2 or E8(2), then

C/02(C) f3 C(Y/O:(Y)) J"O.(C)/O(C) for some a A.

Finally, assume fi E7(2). Here Y/Oa(Y)- F4(2) and X <-Ja <- Y, for
some a A. We may choose g to normalize (t, tg), hence g N(C)f3 N(Y).
The only difficulty is when g induces on Y/O2(Y) an element in the coset of
a graph automorphism of F4(2). However, checking the action of fundamen-
tal reflections of F4(2) on O2(Y) we see that Y admits no such automorph-
ism. This completes the proof of (4.5).

We need analogues of (4.4) and (4.5) when A-O+(8, q) or Am
O+(n, q)’ and (3.6)(ii) holds.

(4.6) Assume fi -0+(8, q)’ or fi -O+/-(n, q)’ and (3.6)(i) does not hold.
Let Y O(C6(X)) or O(Co(X))X, respectively,_and let bars denote images in
C6(X)/Y. Then D is standard in C6(X) and R e Syl(C(D)fqCo(X)).

Proof. For fi 0+(8, q)’ this follows as in (4.4). Suppose

A O(n, q)’, A 0+(8, q)’,

and (3.6)(i) fails to hold. This is also similar to (4.4), although there is a
difference. Namely, in trying to show

R Syla(C(D) f3 C6(X))

we assume otherwise and obtain an element u e N(R(x))-R(x) such that
u C(X)fqC(D). So it is possible that t" =tx. If this happens consider
N6(AU). As n>_8, D=D()<_A and A’(t)O+/-(n,q) with inducing a
transvection on A’. If 1 d D is in a root group of D Sp(n 2, q) for a
short root, then x-- dx by an element of A, so --- t’d. By symmetry, (3.6)
(i) does hold, contrary to our assumption.

(4.7) With hypotheses and notation as in (4.6), D:C6(X).

Proof. If fit 0+(8, q)’ (where g > 2), then the arguments of (4.5) apply.
So assume fiO+(8, q)’. Then X=(x) with A(x)-O+/-(n,q) and x a
transvection. Assuming the result false, let C CAg(X). Then [C, t]_< C fq Y,
and so either tx or

[C, t]<_Cfq O(Co(X))<_ O(C)= 1

(see (3.1)). In the first case consider D x (tx)<_ C(tx) and argue that (3.6)(i)
holds, which is not the case. Therefore, [C, t]= 1 and C,,(x)_< C,(t).
The results of 10 of [5] imply that either x---t(mod C(AS)) or x

corresponds to an involution of type b with l= n/2 and corresponds to an
involution of type a_x. As mentioned in the proof of (8.12) of [5], each
involution in O+/-(n, q) centralizes a transvection except for the one case of a
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involutions in O+(2/, q). Consequently, g cannot project to an an/2 involu-
tion in A.

First suppose that g can be chosen in C(X)nAC(A). Let

zx n c(t) n c(t).

Since (3.6)(i) is false we necessarily have A(xg)AgK (see 19 of [5]).
Assume also that x---t (mod C(Ag)), so that CA,(x)= CA,(t). From this we
conclude that A_ Co(x). Now view this in N(A) and apply (10.6)-(10.8) of
[5] to conclude that g induces an involution of type b on A. This
contradicts the choice of g. Therefore, the earlier remarks give AgC(A)
projecting to an a-i involution, x corresponding to a b involution, and
l= n/2. Since CA,(t)<--N(A), we easily see that g must project to an a_l
involution in A.
Let W be the natural module for A and let y be the projection of g to A.

Then Wo [W, y] is a singular (l- 1)-space and

01 Z(O2(Ca (t)(x))) C(Wo) n C(W/Wo).

Let Q Q1 x (t). One checks that O n consists of together with involu-
tions projecting to involutions in A of type at_l. Now consider N=
(Na(Q), Na,(Q)) acting on n Q f. At this point we argue as in Case 1
of the proof of (3.5), using the permutation group N. The only difference is
that in the case where Na is rank 3 on l we first choose tg A and then
notice that there is an element h Q f"l A with thtg of type a2. This leads to
a contradiction as in Case 1 of (3.5).
Now assume that it is not possible to choose AC(A) and g G C(X). So

A(x)-O+(n,q) and each involution tth 6AC(A) projects to an involu-
tion in A of type a, where l= n/2. Choose t a AC(A) (possible by
(3.2)(i)) and let W be the natural module for A. If y is the projection of t"
to A, we have [W,y]= Wo, a singular /-space. As above let Q1
Ca(Wo)nCa(W/Wo) and Q= Q x(t). Then Q is elementary abelian. As
CA (ta) <--N(A h) n C(t), it follows that projects to an involution of type at
in A h. This time set N=(NA(Q),NA,(Q)) and obtain a contradiction by
considering Na, where f tn Q. This completes the proof of (4.7).
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