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THE DIMENSIONS OF PERIODIC MODULES
OVER MODULAR GROUP ALGEBRAS

BY

JON F. CARLSON

1. Introduction

Let G be a finite group and let K be a field of characteristic p > 0. We
shall assume that all KG-modules are finitely generated and hence have
finite K-dimensions. A KG-module M is periodic if there exists an exact
sequence

(1.1)

of KG-modules such that Po Pn-1 are projective. The period of M is
the least length n of any such sequence.
We prove in this paper that if G is an abelian p-group and if M is an

indecomposable periodic KG-module, then there is a subgroup H of G such
that G/H is cyclic and the restriction of M to a KH-module is free. This
implies that the period of M is at most 2. For any finite group G, the
dimension of a periodic KG-module is divisible by pr-1 where r is the
p-rank of G. That is, the maximal elementary abelian p-subgroup of G has
order pr. These results answer some questions raised by Alperin in [1].
The author wishes to thank E. C. Dade for help with the proofs of

Theorem 5.3 and Corollary 5.4. Some of the results of this paper, particu-
larly Corollary 5.6, have also been proved, using different techniques, by
Eisenbud in [8].

2. Notation and preliminaries

Throughout this paper G denotes a finite group and K is a field of
characteristic p >0. The radical of KG is denoted Rad KG. If H is a
subgroup of G and M is a KG-module, then Mr is the restriction of M to a
KH-module. The socle of M, Soc (M), is the sum of the minimal sub-
modules of M. If G is a p-group, then

Soc(M)={mM Ixm=m for all xG}.

Let H=,H h KG, and let I(G)= K denote the trivial one-dimensional
KG-module. The symbol U(KG) denotes the group of units in KG.
For any KG-module M there exists a projective module F and an

epimorphism q" F-- M. Let I)(M) be the direct sum of the nonprojective
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components of the kernel of . It is well known [9] that the isomorphism
class of I(M) is independent of the choice of F and q. Recall that a
KG-module is projective if and only if it is injective (see [6, Theorem
(62.3)]). So there exists a monomorphism 0" M-- F’ where F’ is projective.
If O-I(M) is the nonprojective part of the cokernel of 0, then it too is unique
up to isomorphism. Inductively we define f"(M)=t(f"-l(M)) and
f-"(M) f-l(2-"+(M)) for all n > 1. If there exists an integer such that
fn(M) f"+’ (M) for some n, then M is periodic and its period divides t.
The first three lemmas of this paper are well known and are included only

for completeness.

LEMMA 2.1. Let M, N be KG-modules. If n > O, then

ExtrcG-"+1 (M, N) Ext:G (fn (M), N) Ext: (M,-(N)).

Proof. There exists an exact sequence

0

0- f(M) - F--* M-0

where F is projective. There is a corresponding long exact sequence [13]
0* 0*

(2.2) 0 --> nomr: (M, N) --> HomK6 (F, N) - HomK6 (f(M), N)
0- ExtG (M, N) --> Ext: (F, N) - - Ext,6 (F, N)

n+l -n+l-- Extrco (f(M), N) -- Extr:o (M, N) -- txtrcG (F, N) --Since F is projective Extk:o (F, N)= 0 for all > 0. Thus
.n+lExtr:o (M, N)ExtKo (12(M), N).

Now continue by induction. The second isomorphism in (2.1) follows from
the similar long exact sequence for the second variable of the functor Ext.
Given KG-modules A, B, C there is a standard isomorphism

: HOmKo (A @KB, C)HomKG (A, Hom (B, C))

which is natural in A. Here A @roB and Hom (B, C) are G modules by the
action

g(a (R) b)= ga (R) gb, (gf)(b) gf(g-b)

for all a e A, b e B, g e G, f HomK (B, C). The isomorphism $ is defined by

[(qf)(a)](b) f(a (R) b)

for f e Homrc (A (R)B, C). Using this and the first five terms of (2.2) we get
an induced isomorphism

Ext:G (A (R)KB, C) Ext: (A, nomK (B, C)).
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Let B* denote the dual module B*= Homrc (B, K) where K I(G) has the
trivial G-action. We have an isomorphism 0: B*(R) C-Home (B, C) given
by

O(f (R) c)(b) f(b)" c for f e B*, b e B, c e C.

Now B(R):F is. projective whenever F is projective. So for any positive
integer n, f"(A (R)KB) f"(A))rcB. Using these isomorphisms and Lemma
2.1 we can prove the following.

LEMMA 2.3. If A, B, C are KG-modules and n > 0, then

Ext: (A (R)KB, C) Ext: (A, B*(R):C).

A KG-module N/is said to be bounded if for any KG-module N there
exists a number b=b(N), depending only on N, such that
Dim Ext (M, N)<_ b for all n > 0. Lemma 2.1 implies that every periodic
module is bounded.

PROPOSITION. 2.4. Let G be a p-group. A KG-module M is bounded if and
only if there exists a number b such that Dim,: I)"(M)<_ b for all n >-O.

Proof. Suppose first that there exists such a number b. The connecting
homomorphism 0: Homr (I)(M), N) --* Ext (M, N) is onto. Hence

Dim Ext: (M, N) --< DimHom (II(M), N) _< b Dim N.

Similarly by Lemma 2.1,

Dim Ext: (M, N) _< b Dim N.

Therefore M is bounded.
Now suppose M is bounded. Let N-I(G) in the sequence (2.2). The

homomorphism 0": Homr: (F, I(G))-- HomK (II(M), I(G)) is the zero
map. For if f: F- I(G) is a KG-homomorphism, then f(Rad KG. F)=0.
But O(f(M))_ Rad KG F since O(M) has no free direct summands. There-
fore

Ext: (M, I(G)) HomK (I)(M), I(G)).

Since M is bounded there exists a number b’ such that

Dim Ext: (M, I(G)) Dim HomK (lI" (M), I(G)) --< b’.
But

DimHom (IT(M), I(G)) Dim f"(M)/Rad KG.

1
>--] Dim f"(M).

Therefore Dim fP(M)--<IGI, b’ for all n>0.

LEMA 2.5. Suppose H is a normal subgroup of G with G/H cyclic. IfM is
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a KG-module such that MH is a projective KH-module, then M is periodic of
period at most 2.

Proof. Let I(H) KG(R)Kn I(H). By Frobenius reciprocity

M(R)K I(H)G (MH)

is projective (see [6]). Suppose G (x, H) where x’ e H, x H for 0 < s < t.
We have an exact sequence

0 --* I(G) -- I(H) I(H) -- I(G) --* 0

where r(- x (R) ki)= k and is multiplication by x- 1. If we tensor this
sequence over K with M we get

0 M (Mn)6 (Mn)6 -- M -- 0.

But this says M is periodic.

3. Groups of order

Let G =(x, y) be an elementary abelian group of order p:. Assume
throughout this section that K is an algebraically closed field of characteris-
tic p. Ths main result of this section is the following.

THFOmM 3.1. Let M be an indecomposable bounded KG-module. Either
M(x> is a free K(x)-module or M(> is a free K(y)-module.

Before beginning the proof let us mention some consequences of this
theorem.

COROLLARY 3.2. A KG-module is bounded if and only if it is periodic,
and every periodic module has period at most 2.

As previously noted any periodic module is bounded. If M is bounded,
then Lemma 2.5 and the theorem imply that M is periodic.

COROLLARY 3.3. Suppose M is a nonprojective indecomposable periodic
KG-module. Let ooo x and o y + a(x 1) for a K. Let W (o). Then
oo is a unit in KG and W is a cyclic group of order p. There is exactly one
a, a K or a 0% such that Mw is not a free KW-module.

Proof. By a lemma of Dade [7, Lemma 11.1] there exists one such a.
Suppose there exist two such. Call them a, 3. Let G’ be the subgroup of
U(KG), the units of KG, generated by %, o. Then G’ is elementary
abelian of order p:. The inclusion of G’ into KG induces a homomorphism
q" KG’- KG. An easy calculation shows that

q((’) q((% 1)-(o 1)"-) d if a or /3 ,
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and tO(0’)= (a-/3)-1 otherwise. Since K0’ is the unique minimal ideal,
qt is an isomorphism. Thus M is an indecomposable KG’-module. But this
contradicts Theorem 3.1.
We now proceed with the proof of the theorem. First note that if p 2 the

theorem follows from the classification of all KG-modules given by Basev in
[2] and Heller and Reiner in [ 10]. It is not difficult to show in this case that all
odd dimensional KG-modules are unbounded (compare [11] with Lemma
2.5), while all even dimensional indecomposables are periodic of period 1
and satisfy the theorem. Therefore we shall assume for the remainder of this
section that p 2.
The proof of the following is straightforward and is left to the reader as an

exercise (see also [12]).

PROPOSITION 3.4. Let G (x, y xq y" 1, xy yx) where q p’, r
For all n > 0 there is an exact sequence

(3.5) 0 -- "(I(G)) -- F, -- O"-I(I(G)) -o 0

where F, is a free module with KG-basis al a, and where 0(I)"(I(G)))
Fn is generated as follows.

(i) If n=2m + 1, then 0,(II"(I(G))) is generated by

11 (x- 1)al;

li (y 1)a2j_l + (x 1)q-lazj, ] 1,..., m;

12i+l=(y-1)r-la2+(x-1)a2i+l, ]= 1,..., m;

/2,+2 (y 1)az,+l.

(ii) If n =2m, then 0, (I)" (I(G))) is generated by

11 (x- 1)q-la1;

12i (y 1)azj_l (x 1)azi, ] 1,..., m;

lzi+l (y --1)r-laai (x --1)q-la2i+l, ]= 1, m--l;

/2m+1 (Y 1)-lazm-

We shall use this to prove the following.

PROPOSITION 3.6. Let G be as above. Suppose M* is a bounded KG-
module. If rn e Soc (M), then there exist elements m’, m" eM such that

(3.7) m (y 1)-lm + (x 1)q-lm’’.

Moreover (y 1y-lm’, (x- 1)q-lm are in Soc (M).

Proof. Let mSoc(M) with rnC-0. Let n=2t-1 and choose
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al,...,cttK. Now define the KG-homomorphism [=f(ctl
f/E,-2(l(G)) -- M by the rule

f(/2i-1) ohm, J- 1,..., t,

f(/2) 0, 1 t--1.

Here l ,12,_ are as in Proposition 3.4. Now note that

f(,..., )+f(

and

f(,..., ,) f(,...,

Therefore the collection Vt of all such homomorphisms is a K-subspace of
dimension in HomKo (2t-2(l(G)), M).

In the sequence (2.2) replace M by f/2’-3(l(G)) and replace N by our
module M. Now Extco (F,, M)- 0 since F, is projective. Thus

Extc (fE’-3(l(G)), M) nomKo (f/2’-E(1(G)), M)/O*, (Homco (F,, M)).

Now by (2.1) and (2.3),

Extco (fE’-a(l(G)), M) Ext2 (I(G), M) Ext2 (M*, I(G)).

Suppose that Vt q Im 0,* {0} for all t. Then Ext2 (M*, I(G)) has dimen-
sion at least and M* is not bounded. Since we are assuming M* is
bounded, there exists a non-zero element f f(cl,..., ct,) Vt N Im 0,*, for
some t. Suppose ctj : 0. There exists a KG-homomorphism g: F,--M such
that f= gO, 0,*(g). Then

rn a-ff(12i_x) a-(y 1)-g(a2j-2) av(x 1)q-g(aa_x).

If we let m’ a-g(a_2), m" =-a-fXg(a2_x) we are done.
The final statement of the proposition follows from the fact that

(x 1)m 0 (x 1)(y 1)-Xm’.

So Rad KG. (y- 1)-m’ =0. The same holds for (x-1)q-m’’.

Proof of Theorem 3.1. Suppose M is a bounded KG-module. As noted
in Section 2, Hom (M, M)-M(R) M* is also a bounded KG-module.
Recall that the action of G on HomK (M, M) is given by (zf)(m)= zf(z-Xm)
for z G, f HomK (M, M), and m e M. Hence

End (M) Hom:G (M, M) Soc (HomK (M, M)).

Let I: M--M be the identity homomorphism. Now (M(R) M*)* M(R)M*
is bounded. By the last proposition there exist f, g HOmK (M, M) such that

I (y 1)P-xf+ (x 1)p-1 g.

Whereas (y 1)P-f, (x- 1)P-g EndM and EndM is a local ring, then one
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of these two homomorphisms is not in Rad (End M). For the rest of the
proof we assume that (y 1)P-lf Rad (End M).

Since K is algebraically dosed End M/Rad (EndM)K. Therefore there
exists a nonzero element kK such that (y-1)P-lf=kI+r where re
Rad (End M). Let be a positive integer such that (r)’= 0. If

h k-"f [(y 1),-f],’-,
then I I" =(y- 1)’-h. The proof of the theorem will be complete when
we have proved the following lemma. For we can let (y)= H and M<> L in
the lemma.

LEMMA 3.7 (Gaschiitz, see [6, (62.3]). Let H be a p-group and let K be a

field of characteristic p. Suppose L is a KH-module such that the identity map
I: L----> L is in -I. HOmK (L, L). Then L is a free KH-module.

Proof. There exists g eHom: (L,L) such that I=--Ig. Suppose e
Hom: (L, L). Then for any m e L

o(m) (Ioo)(m) ’. hg(h-o(m) ’. h(go)(h-lm).

Therefore 0 =/(g )_/Homc (L, L).
There is an exact sequence

(3.8) 0 -o n(L) -o F L 0

where F is a free KH-module. The long exact sequence for Ext implies that

HomKH (L, F) -- Homr (L, L) -- ExtOrt (L, f(L)) 0

is exact. Note that Ext:H (L, F)=0 since F is also injective. Given any
q e HOmKH (L, L) there exists cre HomrcH (L, L) with =/-tr. But (3.8)
splits as a sequence of K-modules. Hence there exists r e Homrc (L, F) with
cr k. So q =/($) (/-). Since/7/ HomKH (L, F), we conclude that
$. is onto and ExtH (L, l)(L)) -0. In particular (3.8) must split and L must
be a projective KH-module.

4. Elementary abelian p-groups

We begin this section with a general result which will be used several
times later.

THEOREM 4.1. Let K be a field of characteristic p and let H be a normal
subgroup of a p-group G. Suppose M is a bounded (respectively periodic)
KG-module such that MH is a free KH-module. Then H. M is a bounded
(periodic) K G/H)-module.
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Proof. There is an exact sequence 0 --* I)(M) F M 0 where F is a
free KG-module. The restriction of this must split as a sequence of KH-
modules. Therefore the sequence 0 --/-12(M) /-7/F --/-7/M -- 0 is exact.
Since H acts trivially on these modules they may be regarded as K(G/H)-
modules. Also HF is free as a K(G/H)-module. If 121 denotes the syzygy
operator for K(G/H)-modules, then Ol(/-M)-----/-" O(M), and inductively
f7(/-M) /-. II"(M). If M is bounded, then Proposition 2.4 implies IQM is
a bounded K(G/H)-module. If M is periodic with period n, then f(/-M)
/-I"(M) --/2/M.

THEOREM 4.2. Let G =(Xl,..., x,) be an elementary abelian p-group
order p" where n >- 2. Let K be an algebraically closed field of characteristic p.
Suppose M is a bounded KG-module. There exist units Y1,..., Y, KG which
satisfy the following conditions.

(i) Each y is o]’ the form y 1 +i%1 ai (x 1) ]’or some ai K.
(ii) The group G’=(yl,..., y,)c_ U(KG) is elementary abelian of order

(iii) The inclusion map o]’ G’ into KG induces an algebra isomorphism o]’
KG’ onto KG.

(iv) Let H (Yz,..., Y,) G’. Then Mrt is a free KH-module.
0]’ course the action o]: KG’ on M is induced by the inclusion o]’ G’ into

KG.

Proo]’. Suppose first that n 2. By Corollary 2.3, for each component of
M there is at most one element a e K such that this component is not free as
a K(y2)-module where Y2 xz + a(xl-1). Since K is infinite we can choose a
so that every component is free as a K(y2)-module. Let Yl =xl. As in the
proof of (3.3) we can show that KG’- KG.
Now assume n > 2. Let V (x2 x,). If My is a free KV-module there

is nothing left ot prove. So assume My is not free. By induction on n there
exist units z2 z, KV which satisfy all of the conditions of the theorem.
Let

V’= (z2,..., z,) and U (Z3,... Zrt.
Then KV’KV and Mt is a free KU-module. Let W=(xl, z2,
Now Q’=kQ for some kK, k-0. Hence
k(xl-1)P-lQ=kd=/:O. So the inclusion of W into KG induces an
isomorphism of KW onto KG. Therefore M is a bounded KW-module, and
by Theorem 4.1, UM is a bounded K(W/U)-module.
The action of W/U on rM is the same as that of (xl, z2). According to

the previous case there exists a unit Y2 z2 + a(xl-1) such that tim is free
as a K(y2}-module. Now set yl=xl, y=z for i=3,...,n. Then H=
(Y2-1)-1 t] and

DimM 1
Dim tIM 1

]Dim Mo
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This implies that Mr is a free KH-module (see [4, Lemma 2.1]). It is easy to
check that this particular collection of units satisfies the remaining conditions
of the theorem.

5. Abelian p-groups

The main result of this section is the following generalization of Theorem
4.2.

THEOREM 5.1. Let G be an abelian p-group and let K be an algebraically
closed field of characteristic p. Suppose M is a bounded KG-module. There
exists a group G’_ U(KG) satisfying the following conditions.

(i) G -G’ and the inclusion of G’ into KG induces an isomorphism of
KG’ onto KG.

(ii) G’ has a subgroup H such that G’/H is cyclic and the restriction MH is
a free KH-module.

We shall need the following lemma whose proof can be found in [3] or
IS].

LEMMA 5.2. Let G be an abelian p-group and let H be a subgroup of G
which contains all elements of order p in G. Let K be a field of characteristic p.
If M is a KG-module such that MH is a free KH-module, then M is a free
KG-module.

Proof of Theorem 5.1. Since G is abelian we can write

G =Hx. xH,

where H =(x) and IH[ =p =q. Assume b<_ba<_...<-b. The subgroup

ar <z, --,"/" Ii 1,

is elementary abelian of order p’. We can assume M is not a free KJ-
module since otherwise Lemma 5.2 implies M is a free module. But M is
bounded. There exist units y y, KJ satisfying the conditions of
Theorem 4.2. In particular, there exist a K such that

Yi 1 + aij(zj 1)

for each i= 1 t. If P=(Yl,..., Y,) and Q =(yz,..., y,), then KP-KJ
and Mo is a free KQ-module. We have two cases to consider.

Case 1. Suppose al =0 for all i=2 t. Let A =(z2,..., z,). Then
y KA for all 2,..., t. Now

0 lZI (Yi- 1)p-1 (Rad KA)(t-1)(p-) K.
i=2

(see [4, Lemma 4.2]). Whereas 0 is not zero in KJ, we must have 0
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for some nonzero k K. Hence

1
Dim AM Dim 0M [- Dim M.

This implies that MA is a free KA-module (see [4, Lemma 2.1]). Let
H (x2 x,}. By Lemma 5.2, MH is a free KH-module. Since G/H is
cyclic we are done.

Case 2. Suppose ail 0 for some fixed with 2--<i_< t. Let

to 1 + c(x 1)/q,
=1

where q/P q/P
i =%. Then =y. Now let B=(w), C=(x>...,x,) and

A B x C. Since Ha B, A G. Let +" KA KG be the homomorphism
induced by the inclusion of A into KG. The image of is +()=
(w-1)q-. Now (xi-1)=0 whenever ]= 2 t. So

Therefore is an isomorphism because generates the unique minimal
ideal in KA.
By Lemma 5.2, M is a free KB-module because it is a free K(y)-

module. By Theorem 4.1, M is a bounded KC-module. By induction on
IGI there is a subgroup C’ of U(KC) and a suboup H’ of C’ such that
KC’KC by the inclusion homomohism, C’/H’ is cyclic and (BM)n, is a
free KH’-module. Let G’= B x C’ and H B x H’. It is easy to check that
these satisfy the conclusion of the theorem.

THEO 5.3. Let G be as in eorem 5.1 and let K be any field of
characteristic p. For each 1 n, let (x i). If M is an indecom-
posable bounded KG-module then M, is a free K-module for some i.

Proof. Let N=Hom (M,M)MM*. As before N is a bounded
KG-module. Let S {i,..., i} be a maximal subset of {1,..., n} such that
the restriction of N to a K(x,..., x)-module is free. Let

U (x,..., x) and L UN.

We shall show that s n 1, and hence U for some i. Assume s < n- 1.
By renumbering we get U (x,_+,..., x,). Let V (x,..., x,), n s,
and number the elements so that

Note that L is a bounded KV-module and Soc (N)=Homa (M, M) L.
Let K’ be the algebraic closure of K. Write

M’ K’@riM, N’ K’@N Homn, (M’, M’) and L’ K’
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Now reduce L’ as a K’V-module by the method in the proof of Theorem
5.1. Note that Case 1 can not occur. In the notation of Case 2, let
L1 (to-1)ql-lL’. Then L1 is a bounded K’(xz,..., x,)-module which con-
tains Soc (N’). Continuing we get L"= Lt-2 L’ which is a bounded
K’(Xt_l,X,)-module containing Hom:, (M’,M’). If I is the identity
homomorphism on M, then 1 (R) I is that of M’ and 1 (R) ISoc (L"). Note
that L"* is bounded by Corollary 5.5 (which in this case does not depend on
the present theorem). Applying Proposition 3.6 we get

l(R)I=f,_l+f where f 6 (xi -1)q,-1L" f3 Soc (L’’) for t- l, t.

Let V =(xi, U). Now (x- 1)q,-1L" VN. An easy investigation reveals that

N’ VI Soc (N’) Soc (N’) K’(R): (Nf3 Soc (N)),

where Soc (N) HomK (M, M). Therefore, K’(R)K (N f3Hom (M, M)).

Now t--1 and f, can not both be nilpotent. For convenience assume f is not
nilpotent. We can write f, as a finite sum: ft = aj (R) gj for a e K’ and
g Nf3Hom6 (M, M). At least one of the g’s is not nilpotent, and since
Hom:6 (M, M) is an Artinian local ring, this gi has an inverse h in
Hom:6 (M, M). Therefore I gj h is in V Hom,: (M, M), and by Lemma
3.7, My, is a free KV-module. This contradicts the maximality of S.

Corollary 3.3 now generalizes to the following.

COROLLARY 5.4. Let G =(xl,..., xn) be an elementary abelian p-group
and let K be algebraically closed field of characteristic p. Let M be an
indecomposable bounded KG-module. Let V be the K-subspace of KG with
basis

{xl- 1,..., x,,- 1}.

Let U be the subset of V consisting of 0 and of all v V such that M is not a

free K(1 + v)-module. Then U is a subspace of V of dimension 1. Moreover if
v1,..., v are linearly independent elements of V such that the subspace which
they generate has trivial intersection with U, then M is free as a K(1 +
v1,. 1 + v,)-module.

It was noted in Section 2 that any periodic modtfle is bounded. Thus
Lemma 2.5 and Theorem 5.3 (or Theorem 5.1 if K is algebraically closed)
imply the following.

COROLLARY 5.5. Let G be an abelian p-group and let K be a field of
characteristic p. A KG-module is bounded if and only if it is periodic. Any
periodic KG-module has period at most 2.

Recall that that the exponent of a p-group G is the maximum of the
orders of the elements of G. Since the restriction of a bounded module is
bounded we have the following.



306 JON F. CARLSON

COROLLARY 5.6. Let G be a finite group and let K be a field of characteris-
tic p. Let H be an abelian p-subgroup of G whose order is p and whose
exponent is p. If M is a bounded (or periodic) KG-module then p- divides
Dim:(M). In particular if r is the p-rank of G then p- divides Dim/ (M).
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