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A RUDIN-SHAPIRO TYPE THEOREM

BY

T. W. K6RNER

O. Introduction

Let Pn(t)=’=larexpik(r)t be a trigonometric polynomial with

=xlarl 1. General considerations show that sup IP,(t)l-> n -1/2. Direct
constructions, of which the most powerful is due to Rudin and Shapiro show
that we can find a constant B and polynomials Px, P2,...with sup
Bn-/2. On the other hand the standard probabilistic constructions only give
the existence of polynomials Pn with sup lPn(t)l<--Bn-1/2(logn)1/2 for
some.
The natural extension to general locally compact Abelian groups G is to

ask what we can say about sup It2n(X)l if Ix is a measure on G with II ll 1

and supp Ix consisting of n points or less. In general we cannot say much,
unless G is a finite Abelian group and we have bounds on the number of
elements of G. This problem was investigated by Varopoulos and by
Kaufman. In the first section we give an exposition of Kaufman’s elegant
probabilistic method and show that it gives considerably better results than
the author claims. Typically, we can show that there exists a constant/3 such
that for each n >-1 we can find al, a2 an R with

lal- 1 and a,.to" < Bn-1/E(log n)
r=l r=l

whenever to is an n-th root of unity.
We give a very detailed description of this method, since in Section 3 we

modify it to obtain, again by probabilistic means, improved results in which
the (log n)1/2 factor is removed. Thus we can find a constant B such that for
each n >-1 we can find al, a2 a, R with

lal=l and a,.to"<Bn-/2
r=l r=l

whenever to is an n-th root of unity. It is easy to deduce (as we do at the end
of Section 2) the result stated in the last but one sentence of the first
paragraph.
That this result can indeed be obtained by probabilistic means is perhaps

the main point of interest for the general reader, but my purpose in writing
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218 T.W. K6RNER

this paper was to investigate a more technical but closely related question.
How well can the Fourier transform of a function of "relatively small"
support imitate the Fourier transform of Haar measure? For finite Abelian
groups we obtain Theorem 2.3B which I believe to be new. In the remainder
of the paper (Sections 4 and 5) we use this result to obtain, in Theorem 5.1,
an improvement (in some cases) of a theorem of Salem.

1. A result of Kaufman

In a short and elegant note [4] which furnishes the inspiration for this paper,
Kaufman proved, by probabilistic means, the following result which simp-
lifies and unifies certain earlier work of Varopoulos.

THEOREM 1.1 (Kaufman) For each e >0 there exists an M(e) such that
any nite Abelian group G of order greater than M(e) contains a subset S with
the properties"

(1)
(2)

log ISI-- e log IGI;
IE,s X(S)l < e ISI for any character X# 1 of G.

(Here I$1 card S, the number of elements of S).
However, it is possible to obtain, using ideas already implicit in his

construction, a somewhat sharper result.

THEOREM 1.2. (i). For each e > 0 there exists an M(e) such that any finite
Abelian group G of order greater than M(e) contains a subset S with the
properties:

(1) ISl <- 40e- log IGI
(2) [Ess X(S)[ <-e ISI for any character X# 1 of G.

The condition IGI> M(e) is troublesome, if we wish e to depend on [G[
itself. In the second section we shall consider the following version of the
theorem in which the condition IG[> M(e) is omitted at the expense of
weakening condition (2).

THEOREM 1.2 (ii). Let G be a finite Abelian group. Then for every
1 > e > 0 we can find a I M+(G) with [IP.II 1 such that:

(1) Isupp/xl <- 40 e-2 log GI;
(2) [/2(X)l-< e for any character X# 1 of G.

The idea of Kaufman’s proof is the following. Let G be an Abelian group
of order m and let S be a finite subset of G chosen at random. More
precisely, let S ={X1, X2,..., Xk} where the X are independent random
variables with uniform distribution on G. We want to estimate

for some particular 1 # X e G.
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Observe that X maps G on to the multiplicative group F of r-th roots of
unity for some 1 < r<_ m. Let to be a primitive r-th root of unity. Then
X-(1) is a subgroup of G with cosets X-(to), x-l(to2),..., X-a(to-a). In
particular the x(X) are independent random variables with uniform dis-
tribution on F.
We now diverge very slightly from Kaufmen’s proof. Consider Y
Y= x(X). We can consider Y as performing a random walk on the plane
C. But for this kind of random walk we know that the probability density of
k-/2 Yk[ tends very rapidly and in a very strong sense to that of a normal
distribution. This convergence to a density which falls away very rapidly
towards infinity enables us to place very good bounds on Pr(lYss X(s)[ <)
and thus to prove our theorem.

For our purposes it suffices to show that Yk is sub-Gaussian. The
following simple proof goes back to S. Bernstein.

LEMMA 1.3. (i) Let X be a random variable in C such that Pr(IXl-< r) 1
for some r >_ 0 and gX" 0 whenever m is odd. Then

exp ( Re X) _< exp (r:2 for all >- O.

(ii) Let X,X: X, be independent random variables in C with
Pr(IXI -< r) 1 for some(r >-0 andX2"+ =0. Then, writing(r2= y%1 rf, we
have Pr(lY% vl_> 4 exp (-z2/6(r2) for all r >- O.

Proof. (i) We have

( X(Re X) )expAReX= I+ReX+
2!

+""

X2(Re X)a X3(Re X)3

=1+ + +...

2r2 3(r3
--<1+ ++’"

2! 3!. 20-2 /40-2
<: 14--i-+..

1! 2!

exp 2r2.
(ii) Since Xx, Xa,... are independent, we have

g" exp I Re g" exp I Re

1 g" exp A Re X
--1

<-- exp A 20.2,.
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Thus

Pr Re X _> 2-/2 Pr exp Re _> exp (z2-/2)

(<--g’ exp X Re exp (Xr2

--exp (,2o-2-

so, setting X 2-32 r/o"2 we have

Pr Re X _>-r2-2
_
exp

Similarly

Pr (Im X, _> 72-1/2) < exp (--72/80"2)
i=l

Pr Re X---r2-/2 _exp(-r2/8o-2),

and Pr Im <_-r2-/2

--< exp (-r/8o’=).
and the result follows.

Remark. A little thought shows that we can improve the inequalities
above to obtain, for example, Pr(l,"= XI-> r)_< 2 exp (-r2/4tr2), but we do
not need such fine estimates.
We can now complete the proof of Theorem 1.2.

Proof o] (ii). Let X1, X2 X, be chosen randomly as described in our
preliminary discussion. We know that if 1 # X e t then Pr(Ix(X)[ 1)= 1
and gx(X) 0 whenever m is odd (1 n). We also know that the x(X)
are independent. Thus by Lemma 1.3,

Pr X() en 4exp(-e2n2/8n)=4exp(-eZn/8)

whenever X# 1 and so

Pr X() e en for some 1 # X e 4(101-1) exp (-e2n/8).

Since IG[= 10[ it follows that

Pr X(N) en for all lxe 1/2

provided only that n >- 20 8
-2 log G I.
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Now there must exist a particular instance of an event with non-zero
probability, so, in particular, we can find x(1),x(2),...,x(n)G with

I’=1 X(x(j))l < en. Setting n-1 Y= x0) we obtain a measure satisfying
the conclusions of Theorem 1.2(ii).

Proofof (i). Again we take Xx, X2,..., X, as in the preliminary discussion.
Then

Pr (X, X2,..., X distinct)

Pr ( for 1 - 1 given that Xa, Xz,...,

_
are distinct)

i=l

exp (-2(/- 1)/IGI)

=exp 2(]-l)/G

=exp(-n(n-1)/IGI)
3/4

provided only that n Gl/10.
Now suppose that IG M(e)= 104 exp e-. Then

(IGIIlO)/ 40e-a log

and we can find an integer n with 40 s-a log IG[ n 20- log IG[. For this
particular n we know by the estimate of the previous paragraph and the
estimate

Pr X() en for all lx 1/2

obtained in the proof of (ii) that

Pr Xa, X X, distinct and X() en for all 1 X 1/4.

Since there must exist a particular instance of an event with non zero
probability, it follows that we can find distinct x(1), x(2) x(n) G with
% X(x())l en. Setting S {x(i)" 1 J n} we obtain a set satisfying the
conclusions of Theorem 1.2(i).

2. A Rudin Shapiro type theorem

If we take G Fn where F, is the multiplicative group of n-th roots of
unity, we may rewrite Theorem 1.2(ii) in the following form.



LEMMA 2.1. Let n >-- 1, 1 > e > 0 be given. Then we can find a t M+(Fn
with I1 11-1 such that

(1) Isupp 1 <- 40e-2
(2) I/2(X)I <-- e(log n)/2 for all 1 X 0.
In spite of the simplicity of its derivation, this is a very good estimate.

Under a slightly different guise, it forms the basis for Salem’s method for the
construction of thin sets by probabilistic means [3, Chapter IX] and for
certain of Kahane’s methods. So far as I know, all such probabilistic
methods give results with a factor corresponding to (log n)v2 in condition (2)
of Lemma 2.1.

However, the following famous result discovered by Shapiro and redisco-
vered independently by Rudin, shows that, at least in the special case when
e is of the order of n-1/2 and so ]supp tx is comparable with n, Lemma 2.1
does not give all the information possible.

Trtzozr 2.2 (Rudin Shapiro). (A) We can find a 6M(F,) with
]({x})l n- for all x F, (and so IIll--1) such that

2n-/a
[(X)l <- for all X42- 

(B) We can find a M+(F,) with I1 11=1, ({x)=({y) or
x, y supp/x such that

(i) Isupp tzl< n/2,
2n-/2

for all I x F,.
(ii)

It2(X)[ </_ 1

Proof. The 2 versions of the result are very dose. Let r n
where o(])= exp 27rii/n (i.e. let r be Haar measure normalised to have mass
1). Then, if t satisfies the conditions of version (A), at least one of tx + cr

and t-o- will satisfy (B).
A proof of version (A) can be found, for example in [2, p. 34].
In the next section we shall prove by probabilistic means a result which,

while not as strong as that of Rudin and Shapiro, is considerably more
flexible in its application.

THEOREM 2.3. (A) Let G be a finite Abelian group with n elements. Then

for every A >_ 2 we can find a Ix M(G) with II/xll 1 such that
(i) Isupp/x I-< n/A
(ii) I/2(X)l _<4.104 (log A)/2 (n/A)-/2 ]’or all X .
(B), Let G be a finite Abelian group with n elements. Then for every A >_ 2

and 1 >-rl > 0 we can find a Ix M(G) with I111 1 such that
(i) [supp 1-<n/A,

1/2 1/2(ii) I/2(X)I <-- 104(log (Arl-)) (n[A)- ]’or all 1 : X
(iii) I(0)-11<
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Remark 1. If /z satisfies the conditions of (B), then

will satisfy the conditions of (A) for some x G. A simpler version of our
proof of (B) will also give (A).

Remark 2. The claim of greater flexibility is based not on the substitu-
tion of G for Fn but on the replacement of the condition Isupp IX[ _< n/2 by
Isupp Ix <- n/A. The result would, however, only become really powerful if
we could remove the factor (log A)1/z in (ii).
We can use Theorem 2.3 to obtain a result on trigonometric polynomials

which, while much weaker than the best known result of Rudin and Shapiro,
is the strongest that I know which is obtained by probabilistic means.

THEOREM 2.4. There is a constant A such that for every n >- 1 we can find
al, a2 a, C with Y,’=I lall 1 and I,’=1 ar exp irtl<-An-1/2 for all
tR.

Since we shall not need the result later, and the deduction is rather easy,
we only sketch the proof. First note that, applying Theorem 2.3(A) to the
multiplicative group of n-th roots of unity, we have the following result.

LEMMA 2.5. There is a constant A1 such that for every n >- 1 we can find a
measure IXM(T) with n supp Ix ={0}, [lixll 1 and Ifx(r)l<-A1 n-1/2 for all
rZ.
Moreover by translation we see that we may add the following condition.

LEMMA 2.5’. In Lemma 2.5 we may demand [ixl(-zr/4, r/4)->4-1.
Now choose f twice differentiable with f(t)= 1 for t[-zr/4, r/4] and

f(t) 0 for t [-r/2, r/2], and set B 7=-oo If(r)i. If IX is as in Lemma 2.5’,
then Ilixfll -> 4-1, supp/z

_
[-r/2, r/2] and I/2f(r)[--< BA1 for all r Z. Thus we

have the next lemma.
LEMMA 2.6. There is a constant A2 such that for every n >- 1 we can find a

measure Ix M(T) with n supp/z {0}, supp/z

_
[-r/2, r/2], Ilixl[ 1 and

[/(r) - Azn-1/2 for all r Z.
Now if h R then we can find bi C with Y,____ [bkl_< 100 and

exp iht =_oo bk exp ikt for all

(see e.g. [2, p. 96]). Thus "unrolling T" we may deduce from Lemma 2.6 the
following result for R.

LEMMA 2.6’. There is a constant A3 such that for every n >- 1 we can find a
measure Ix M(R) with

supp Ix c_ {2wu/n: u Z} f3 [-r/2, r/2], [IIXI[ 1

and

(,.)l<_m3n-1/2 [or all X R.
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In other words,

LEMMA 2.6". There is a constant A3 such that for every n >- 1 we can find
a, C[1 <n/4] with X/__4_,/4 [a,l 1 and lY/__4_n/4 a, exp iuhl<-A3n-1/2 for all
heR.

Since Lemma 2.6" is, essentially, Theorem 2., we are done.
For the reasons given in Remark 1 and also because measures satisfying

condition (iii) of Theorem 2.3(B) are much easier to handle in the construc-
tion of new measures by limit constructions (see for instance our Section 5),
we shall give the proof of Theorem 2.3(B) rather than (A).
Our proof will run as follows. We shall find a measure M(G) which

satisfies (i) and (iii) with something to spare, and satisfies (ii) for most X (.
We then find a/2 of small mass but with support the whole of G such that
1’1 -[- [-2 satisfies (ii) and (iii) with something to spare. We now replace Ix2 by
a measure tx of small support and much the same mass, so that tZl+ tx2
satisfies (i) and (iii), but t2(X) still so resembles I22(X) for most X ( that
[JX -[- k; fails to satisfy (ii) for many fewer X G than Ix1 + Ix2 did. By
successive approximations of this kind we can obtain a measure of the type
required.

3. Proof of the theorem

Throughout this section G will be a finite Abelian group with n elements.
We shall use the term a random measure in M(G) in the usual loose
manner, but if the reader looks closely, she will see that we have actually a
function from a finite sample space to M(G), so that no problems should be
caused by our inexactness.
We begin with yet another version of the results in Section 1.

LEMMA 3.1. For every m >--1 there exists a random measure Ix M+(G)
with Iltxll 1 such that

(i) [supp tl--< m,
(ii) Pr (If(X)l >_ e) <_ 4 exp (-eZm/8) for all lx(,
(iii) t(0) 1.

Proof. Let X1, Xz X,, be chosen randomly as described in Section
1. Take tz m-1 }"= 8xi. Conditions (i) and (iii) are satisfied automatically
and (ii) holds because, as in the proof of Theorem 1.2(ii) we have

Pr (It2(X)l-> e) Pr x(X) >- em <_4 exp (-ezra/8)

LZMMA 3.2. Suppose t is a random measure with range in M(G) such
that

Pr (I/2(X)[ >- e)<_ B exp (-e2-2)
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]’or all 1 # X t for some B, "> O. Then, given A >- 1, we can find a measure

Ix’ in the range of Ix such that/’= gl + g2 with
(i) Igl(x)[ -< A-I for all 1 # X t,
(ii) Yx a Ig2(x)l2 -< 2 Bn&2-2 exp (-&2).

Proof. Take

g1(1) =/2(1),

gl(x) =/2 (X) for

AT-1
g(x) (x)-----[ otherwise (1 # X (),

and g2 t-g. Then gx automatically satisfies condition (i). On the other
hand"

’ g=(x)l== Ig=(x)l=

((r + 1)M’-)2Pr (rAt-1 Ig=(x)l < (r + 1)A-x)
xt r=O

-< ((r + 1)M--) Pr (r.T-1 <--Ig2(x)l)
XO r=O

^ ((r + 1)M’-)2 Pr ((r + 1)M"- _< Iff(X)l)
xO r=O

<-- Y.^ Y. AA2"r-r2 exp (-2r2)
xG r=l

Bn Xz-2 exp (-X 2) r2 exp (-AZ(r2- 1))

<-- BnX’r-z exp (-h 2) r2 exp (-(r2-1))

<-- 2BnA 2"r-2 exp (_2).

Thus condition (ii) must hold for some Ix’ in the range of Ix and we are done.

LEMMA 3.3 (Standard Fourier Transforms). Given f C(J) we can find a
unique Ix e M(G) such that/(X) f(x) for all X G. Further

(i) EgO [Ix(g)[2._ n- Exo If(x)l2,
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Proof. Direct, and standard verification. We have /x(g)
n-1xf(x)x(g). Condition (ii) follows from an application of Schwartz’s
inequality

LEMMA 3.4. Given t M(G) and K >-1, we can find a random measure
tx" M(G) such that

(i) Isupp/x"l--< 2 II/xll K-x, I1 "11-< 2 I111,
(ii) Pr (It2"(x)- t2(x)l-> e) --< S exp (-e2/(100 K II/xll)).

Lemma 3.4 is a direct consequence of a more natural but slightly less
manageable result.

LEMMA 3.5. Given I M(G) and K >-1, we can find a random measure
I’ M(G) such that:

(i) I tr belongs to the range of I’ then ]’or each g G we have either
tr(g) 0 or Ir(g)l >- K.

(ii)
(iii) Pr(Ifx’(X)-(X)l>--e)<--4exp (-e2/(100

[or all 0 <- e <- 3

Proof of Lemma 3.4 from Lemma 3.5.
have

Take t*’ as in Lemma 3.5. We

so Pr (1[’112 I111) 1/2. Take ix" to be a random measure in M(G) defined
by

Pr (/," r) Pr (/’= r I1 ’11-< 2
=0

(That is to say

Pr (t,’’= r)
Pr (t’= r)

Pr (11’11 2111)
for [lll2 Iltxll

0 otherwise.)

Automatically Iltx"ll 2 IIt*ll and, since r range tx" implies r e range
condition (i) of Lemma 3.5 gives Isupp "l-<211[Ig-. Thus tx" satisfies
condition (i) of Lemma 3.4. To prove condition (ii) of Lemma 3.4, we note
first that if e > 3 Iltxll, then, since



A RUDIN-SHAPIRO TYPE THEOREM 227

we have

Pr (I/2"(X)-/2 (X)[-> e) 0 -< 8 exp (-e2/100K

On the other hand, if 0_< e-<3 Ilix]], we have, since

Pr (ix" r) -<
Pr (IX’= r)

Pr (llix’[I -< 2 I[IXlI)
-< 2Pr (IX’ tr),

that condition (iii) of Lemma 3.4 gives

Pr (I/2"(X)- t(X)l > z)-< 2Pr (I/2"(X)- t (X)I > e)
-< 8 exp (-e2/(100K Ilixll))

and we are done.

Proof of Lemma 3.4. Let Ix’=gsG Ix’(g)Sg, where the Ix’(g) are inde-
pendent random variables in C defined as follows. If IIx(g)[ > K or Ix(g)= 0
then we take Ix’(g)= Ix(g). If K> ](g)[>0 then we write a(g)= (g)/l(g)l
and take

Pr (ix’(g) a (g)K) Ig(g)l/K, Pr (g’(g) 0) 1 -Ig(g)l/K.

Thus condition (i) holds automatically.
Again

gG RG gG

so condition (ii) also holds.
To prove (iii) we follow Lemma 1.3. Let X(g)=(’(g)-(g))x(g). If

](g)lK or (g)=0, then X(g)=0. If K[(g)l0, then

(Re X(g)) [X(g)[’

K"Ig(g)+ (1K g)l) [(g)l

K-1 [g(g)[ + ]g(g)l
2W-a ]g(g)[ (r 1)

whilst ----- Ix(g) Re 0 0.

Thus, irrespective of the value of Ix(g), we have

I(Re X(g))rl-<2 Kr-1 ]/x(g)l (r>_ 1), Re X(g) 0.
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It follows that, if 1 >- KA >_ 0,

exp (h Re X(g))=
hrS’(ReX(g))2

h,8(Re X(g))
r=2

1 + 2K [(g)X

1+ 2K I(g)X
1

exp (4 K (g)l

Now #’(X)- #(X)=X(’(g)- (g))x(g) XX(g) so

/

H exp (x Re X(g

exp (4K I(g)l x)

exp (4K IIll )

and

Pr (Re (/2’(X)-/2 (X)) > 2e-1/2) -< exp (4K llll x=- 2e-1/2A)
provided that 1 > KA _> 0.
Suppose now that 0-<e-<31[tx[I. Setting A=e/(IOKIIvcII), we have 0<_

AK_< 1 and so

Pr (Re ((/2’(X)-

Exactly similar estimates give

Pr (Re (to(/2’(X)-/2(X)) > 2-1/2e) < exp (-e2/(lOOK

for to 1, i,-i. Thus

Pr

for all 0 _< e-< 3 ll/x[I and we have obtained condition (iii).
The proof of our main theorem now follows after a little reorganisation.
LEMMA 3.61. Let G be a finite Abelian group with n elements. Suppose
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n/8 > A > 2 and 1 >- rl > 0 given. Then we can find a Ix M/(G) and an

fl e C(G) such that

(i)1 Isupp/*11 -<nA-2-1,
(ii)l [[/d, ll[ 1,
(iii)l Itl(X)+fl(X)l-<2-2 lO(log Arl-1)ln(n/A)-in for all 1 # X e J,
(iV)l EeG If(x)[= 2--16n2"

LEMMA 3.6. Suppose G, A, as in Lemma 3.6. Suppose we are given an
fi_ C(G) such that

(iv)r-1 xG Ifr-(X)2 2-8r2"

Then we can find a e M(G) and an f, C(G) such that

(i), [supp ,l nA- 2-,
(ii)
(iii) la,(X)-f,_I(X)+f,(X)I2-- 104(log An-1)/2(nlA)-/2 for all

I#xG,
(iv) If,(x}l r 2.

Proof of 3.6. By Lemma 3.1 with m [n/2A] (so m nA-14-), we can
find a random measure e M+(G) with II ll= 1 such that

(i) lsupp lmnA-2-,
(ii) Pr (l(X)l e)4 exp (-e2m/8)4 exp (-e2n/(32A)).

Applying Lemma 3.2 with B =4, r =(n/32A)/2,

A r 2.2 104(log A -)/2(n/A)-/2,

f g2 and 1 ’, we see that there exists a 1 in the range of and an

fl C(G) such that

(iii)l la(x)+fi(x)l 2-= 104(log A-)/2(n/A)-I/2,

(iv)l fl(X)[2 <_2BnX2r-2 exp (_2)

_< 8n(2-2 104(log A,rl-1)l/2(n/A)-l/2)2
exp(-n/32A(2-2 104(log A-1)l/E(n/A)-l/2)2)

_< 2-1 108(log ArI-1)A exp (-102 logA-)
2- 108 A(log A-)(A-)-2-62

because A >_ 2, 1 >-a > 0. Since /.L belongs to the range of/x the remaining
conditions of Lemma 3.61 are automatically satisfied.

Proof of Lemma 3.6r. From condition (iv)r_1 and a direct application of
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Lemma 3.3 with f fr-1, =Or we know that there exists a rr 6 M(G) with

(v)r (X) f-l(X) for all X ,
Next, using Lemma 3.4 with , K A n-1 and " g, we can find a

M(G) such thatrandom measure r
(vii) supp ’1 2lgl(An-a)-a 2-4+anA- n m-12-rn,
(viii) I1< 1 21ll 2-,
(ix), er (l(;-m)(x)l e)8 exp (-e2/(100

Applying Lemma 3.2 with B 8, r (2a’n/100 A)an,
a r 2--a 104(log A-*)xI2(n/A)-/2,

=r--r, fr =--g2 and >= "+, we see that there exists a , in the
range of ’ and an f, e C(G) such that (using (v),)

I"(x)m g2()l
2--1 104(1og A-")alZ(u/A)-aI2,

and

(iv) Y I[ (X)I2 -< 2B.Xzr-z exp (-X2)

<_ 16n(2-r-1104(10g Ar-l)/2(n/A)-a/z)2

( 24
(2_,_ 104(10g A-x)1/2x exp

100A
2-r+2 10S(log A-I)A exp (-10 2-- logA-)
2-r+2 108 A(log A-X)(A-*)-x(r+l)

2-8(r+1)

because A _> 2, 1 _> rl > 0 and 23r-2 r -f 1. Since Ix, belongs to the range of
r’, conditions (i), and (ii)r follow from (vii) and (viii)r.

Proof of Theorem 2.3B. Construct , fl as in Lemma 3.6(i). We now
use Lemma 3.6 to construct inductively tx and f for r 2, 3,.... Since
nA-12-’rl--O, we can find an N such that O<--nA-2-rl <--1/2 for all r>_N and
so by condition (i)r we have Isupp/xl_<1/2, i.e. /x=0 for all r>_N. Let
r =2 tx. then by condition (ii) we know that

N

Iio11-< Y__., Ilu,,.ll-< 1/2.

Since ix1 e M+(G), IIt*lll 1, we may set tz (t*l + r)/llt*l + and obtain a
measure t* eM(G) with IIll-- 1 and t2(0)_> 1-rl.
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Clearly supp/x c =1 supp/xr so [supp ix I-<=1 ]supp/xr] and condition
(i) gives Isupp [--< n A-1. All that remains therefore is to verify condition
(ii). Choose M_>N such that

2-8(M+l)r12 < (2-1104(log A,rl-1)l/e(n/A)-l/2)2.
Then, using (iv)M, we see that

fM(X) -< 2-1104(log An-1)l/2(n/A -1/2

for all X ( and so, using (iii), we have

z(x) (x)
r=l

M

r=2

<--(12--r--1+2--1)
104 (log A-I)I/2(n/A),-1/2,

for all 1 # X 0 and we are done.
We note that the measure /x we have constructed is real. Further with a

little extra care (essentially by re-defining /x’(g) in Lemma 3.4 so that if

pK> ]/x(g)]_> (p- 1)K
then

Pr(/x’(g) pc(g)K)=
I(g)l-(p- 1)K

Pr(/x’(g) (p- 1)a (g)K
pK-I(g)l

K
we can obtain a minor refinement of our theorem.

THEOREM 2.3C. In Theorem 2.3A and 2.3B we may replace condition (i)
by the stronger condition"

(i)’ /x(g) is an integral multiple of An--1 for each g G.

Unfortunately this result is not really a true analogue of the corresponding
condition in the Rudin Shapiro theorem. A true analogue would be

(iy (g) takes one of the values An-1, 0 or -An-1

but I have not succeeded in obtaining this.
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4. Measures on the circle

At the beginning of Section 2, we claimed that Lemma 2.1 paralleled
exactly the probabilistic calculations used by Salem to obtain results of the
following form.

THEOREM 4.1. Let h be a positive concave ]:unction on [0, oo) with h(O)= O.
Let to, ---o. Then there exists a closed set E with Hausdorff h-measure 0 and
tx M+(E) a non-zero measure (indeed the L measure o[ E) such that

I/2(n)l= O((tol,Ilog Inl h(lnl-1))1/2 as [nl+.
To support this claim, if the reader has not already granted it, and to show

that our theorem does in fact give some new results, we shall show, in
Section 5, how, using Theorem 2.3 instead of Lemma 2.1, we get the
following result.

THEOREM 5.1. Let h be a positive concave function on [0, oo) with h(O)= O.
Let to,---o. Then there exists a closed translational set E with Hausdorff
h-measure 0 and tx M(E) a non-zero translational measure such that

I(n)l O((ol.llog(In[ h([nl-)) h([n[-1)) */2) as Inl
The version of Theorem 2.3 that we shall use for the circle is the

following.

LEMMA 4.2. Suppose N>_ 104 an integer. Then there exists an A(N)>_ 1
such that, given any rl > O, any integer K >--8N6 and any function

" Z---R/ with
d/ (n rt .._. as n --- oolog n

we can find a P(, ,N, ) with the ]ollowing property. Given M>_

P(b, K, N, rl), we can find a tx(M, , K, N, rl) Mff) such that

(i) II/xll-< ,
(ii) I/2(0)- 11-< rl,

(iii) supp/x

_
{2ru/M: u Z}f’)[-’tr(N-1-N-6), "n’(N-1-N-6)],

(iv) card supp/z <_ k(M)M,
(v) Ig(lN/ s)l <-- 2(Isl / l)/llN/ sl For O IIN/ sI <- N,
(vi) I(s)l <- 2N/Is[ or N <-- IsI <-- K

(viii) IZ(s)l <-- m(N)0og (,(M))-)=(,(M)M)-// 105N3ls1-4
For K<-IsI<-M/2.

Remark. After reading our proof of Theorem 2.4 the reader may very
well be prepared to take on trust the details of the transfer from Theorem
2.3 about measures supported on finite subgroups of the circle. Or she may
well be able to give her own proof in less time than it takes to unravel mine.
If not, the details which are messy rather than difficult are given below and
form the remainder of this section.
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Proof. Without real loss of generality, we may suppose (n)_< 1/8 since
the proof is, if anything, easier if lim sup k(n)> 0 and in any case we shall
only be interested in the case when O(n)---0 as n--. We also suppose,
without any loss of generality, that 1/8-> rl > 0.

Let q be an infinitely differentiable positive function q-R---R/ with

supp q [-7r, 7r], q(t)dt 27r and sup [q(4)(t) -< 10s.
tR

Set h(t)= N6q(N6t) for E[-TrN-6, -n’N-6], h(t)=0 otherwise. By a slight
abuse of notation, we may consider h as a function T---R+ and we shall do
this. Let o-E M(T) be Lebesgue measure on

[-7r(N-1- 3N-6), 7r(N-1 3N-6)]
normalised to give Iltrll 1, and set f tr, h. Automatically:

(viii) f(t) >-- 0 for all T, =_= f(t) dt= 2r and f is infinitely differentiable,
(ix) supp f

_
supp r +supp h [-r(N-1 2N-6), r(N-a 2N-6)].

Next we estimate )(r). Since

1 l
(N-1-3N-6)

exp irt dt
27r(N-x 3N-6)

1 sin err(N- 3N-6)
7r(N-- 3N-6 r

we have the trivial estimates #(r)_< N/r for all r# 0, and, provided Ill_<
N4, O# 1N+s,

,tr(N-1- 3N-6

1
,tr(N-- 3N-6

-I1N+sl

-IlN+s[
Isl+l

Isin (’rrs(N-- 3N-6) 3/TrN-5)[
[lN+sl

Irs(N- 3N-6) 31N-Sl

3I/IN- IlN + sl

I1N+ s] ’rr(N- 2N-6)
3N4NN-5

[lN+ s or(1 2N-5)

Thus I&(lN+s)l<--([s[+l)/llN+sl whenever O#llN+sl<_N5 and we have
the estimates

(x) I(lN+ s)[ I&(lN+ s)l [h(1N+ s)l <-- (Isl + 1)/llN+ sl for all s, integers
with 0 # I1N+ s I<_ N5,

(xi) [/(r)l--< N/lr[ for all r# 0.
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Further, since

sup ]h4)(t)]-< N3 sup [q4)(t)]-< 105N3,
t

it follows that ]/(r)]_< 105N3/r4 and so

(xii) If(r)[ I#(r)l ](r)[<-lOSN3/r4 for all r 0.

It follows from (xii) (or directly from the fact that f is differentiable) that
ZT=- If(r)[ <. Set A(N) 108(L_ [fl(r)] + 1).

Let MK be an integer. Consider the group G consisting of the M-th
roots of unity. By Theorem 2.3B we can find a rM(G) with
1 + /2 such that

< 6(M)M,(xiii)’ card supp
(xiv)’ I(x)l 104(log 4@(M))-)/2(@(M)M)-1/,
(xv)’ (0)= 1.

Since G embeds in a natural way in T, there is a measure rM(T)
corresponding to r with

(xvi) supp {2ulM: u Z}

and l[ru[I 1 + /2 such that

(xiii) [supp ru[ (M)M,
(xiv) IM(r)[ 104(log (4(M))-I)X/2((M)M)-u:

4.104(1og ((M))-)I/2(O(M)M)-/2 for r0,
(xv) (0)= 1.

Set fx(t)=f(t+A) for tT, A T and consider
Since f is positive,

i_ I111 dA Irx(2 u/m)[ dA

fx (2 u/M)I’M(2 u/M)[dA

2 I,(2 u/M)l fx (2 u/M) dA

1 +/2.

Thus we can find a A(M) with IIx([l 1+/2. Take u(M)eZ such that

2u(M)IMA(M) < 2(u(M) + 1)/M

and set x(*
We note at once that
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Since supp /x supp %()M + 27ru(M)/M and supp rx() - supp r, it fol-
lows from (xvi) and (xiii) that

(iv)’ card supp O(M)M,
(iii) supp {2u/M: u Z}.

Again, supp rx() supp fx() supp f + h (M) and

[h (M)- 2wu(M)/M[ 2w/M N-6,
so by (ix),

(iii) supp [-w(N-- N-6), (N- N-6)].

We now have to estimate (r). Observe first that l/x(s)[ ]/(s)[ for all
s Z and so, writing

A(N)
b (log (O(M))-1)-1/2((M)M)-1/2,

2

% 1 for r 0, Vo 0, we have, using (xii), (viii) (to obtain (0)= 1) and (xiv)
that

+

{-r+kM: kZ}, @0

{--r+kM: kZ}, @0,

+. O+Oog

s{r+kM: kZ}, s@0

10N3o

+o (kM+ r)4

+ 4.104(log (O(M)l])-1)1/2(O(M)M)-1/2

b 10N3

2 M4

for all [rl < M/2. But

MS/2(O(M))-l/2(log (0(M)rl)-l)-U2--> as M---).
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So provided only that M is sufficiently large (say M>- Q(, N, 1)), we have

108N30 bM
IV/4 2

and so

(xvii) /x() (r)- fx (r)l b + (r).

For the remainder of the proof we shall always take MQ(O, N, ). Note
that b0 asM.
When r= 0 then fx(0)= f(0)= 1 and (0)= x()(0) so (xvii) gives

(ii)’ as

In general I(r)l= fl ( )l so that (vii) gives

(xviii) I/2M(r)l <-- ba4 +
Thus, using (x) and (xi), we have

(v)’ lim sup Iz(lN+ s)l (Isl + 1)/llN + sl for 0 IlN + sl <- N,
M--oo

(vi)’ lim sup It2(s)[--< N/Isl for s # O,
M--oo

whilst by (xi) we have

(vii)’ 105N3/s4 for all s0.

It follows by the formulae (i)’, (ii)’, (iii)’, (iii), (iv)’, (v)’, (vi)’, (vii)’ just
obtained that /x =/XM/IltXllM will satisfy the conditions of Lemma 4.2 pro-
vided only that M is large enough (say M-> P($, K, N, 4)) and we are done.

Let us briefly recap the proof above. Ignoring the introduction of A(M)
and u(M) as a peripheral step which could, indeed, have been avoided, we
consider IzM f’rM. Formulae (xiv) and (xv) mean that M- 1 in a distribu-
tional sense and so fxu(r)-+f(r) as M---oo. Thus for r very small compared
with M, /2(r) behaves like f(r). On the other hand, if f is smooth, we may
hope that t(r) will behave rather like /(r) for large r and this is the content
of condition (vii). (Note, however, that since t2M(r) is periodic with period
M, the condition "r large" must be qualified by "but not close to a multiple
of M".) Provided that the gap between r large and r small can be bridged
satisfactorily, all that remains is to choose f with nice properties.
For reasons connected with the nature of the inductive proof in Section 5

we require very tight control over the size of/2a(r) and so of f(r) when r is
close to a multiple of N. Bearing in mind that supp/zra and so supp f is to be
contained in an interval comparable with [-I/N, I/N], it is natural to take f
to be a multiple of the characteristic function j of [-Tr/N, 7r/N]. (In the
actual construction we use an interval [-w/N+ 8, 7r/N-8] where 8 is very
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small, but this is to get the technical refinement

supp/.

___
[--7T(N-1- N-’6), (N-1 N-6)]

rather than the obvious supp tx

_
[-27rN-1, 27r N-l].) Since t5 is not smooth,

we convolve it with a smooth function h of small support. The resulting
function f=r,h has f(r) very small when r is close to a multiple of N
(conditions (v) and (vi)) but is smooth, so that the arguments establishing
(vii) can still go through.

5. Construction of a thin set

We are now in a position to complete the paper by giving the construction
required to produce E and tz in Theorem 5.1.

THEOREM 5.1. Let h be a positive concave function on [0, ) with h(O)= 0
and h(t) log t---O. Let o,---o. Then there exists a closed translational set E
with Hausdorff h-measure 0 and tx M(E) a non-zero translational measure
such that

It2(n)l O((ot.i log ([nl

The method we use to obtain Theorem 5.1 from Lemma 4.2 is more or
less standard. The reader who does not want to wade through the details
that follow but who does want to see how this sort of thing is done, could
read [1] instead. In that paper Kahane obtains a result similar to Theorem
5.1 starting from the Rudin Shapiro theorem. Because of the simplicity of
the Rudin Shapiro measures which removes the technical difficulties which
we encounter and because of the lucidity of the authors thought, the paper is
short and easy to read.
Without loss of generality, we may suppose h(t)<_ 10-t for all t->0,

o. _> 220 and o. monotonic increasing. We shall construct sets E., measures
ix. and positive integers P(n), Q(n) and N(n) satisfying the following
inductive conditions.

Inductive conditions.

(i)n
(ii).
(iii).
(iv).

(v).
(vi).
(vii).
(viii).
(ix),

N(n) >- 105(Q(n) + 1)5.
Q(n)>- lOSN(n-1) if n >- l.
N(n)E. ={0}.
E.

_
E._I + [-Tr(1 2-")N(n 1)-1, 7r(1- 2-")N(n 1)-1]

if
card E. h(27rN(n)-l) <_ 2 if n 1.
supp . E..

[n(O)l+2-n-1.

n>_l.
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(x), I.(r)l-2-"(e%llog([rl h(Irl-1))/2 for N(n-1)-O(n-1)<-lr
<_ N(n)- Q(n) if n >- l.

(xi). I.(r)[-< 2-"-s(o(.) log (N(n) h(N(n)-)h(N(n)-))1/

for O(n) <-lr[ N(n)- O(n).
(xii). (.) 2z"+2.

To see that the induction can be started, we note that (ii)o, (iv)o, (V)o, (ix)o
and (X)o are vacuous, whilst conditions (i)o, (iii)o, (vi)o, (vii)o, (viii)o, (xi)o,
(xii)o are automatically satisfied if we put O(0)= P(0)= 1, N(0)= l07, Eo

{2u/N(O)" u Z} and o N(O)-a ZN()u=l 2wu/N(O)"

Proof of Theorem 5.1 (subject to the completion of the inductive
construction). Suppose we have constructed E(n), ,, P(n), Q(n) and N(n)
for n =0, 1,2,... obeying the inductive conditions. By (vii),, 1, is
bounded, so the sequence , has a weak limit point . By (viii),,
(0) 1/2 so is non zero. By fix), and (x), we know that

I.(r)l2-+(og (lrl h(Irl-)) h(Irl-))1

for all N(m 1) Q(m 1) Ir N(m) O(m) and all n m so that

l(r)[2-+(og ([rl h(lrl-1)) h(irl-))

for all N(m 1)- Q(m 1) r N(m)- Q(m). Thus, since N(m)-
Q(m) as m , we have

I(r) 0 (ml log (iri h(irl-)) h(Irl-)) as irish, as required.
On the other hand, writing for the topological limit of the E,, we know

from (vi), that supp . Using (iv), and the fact that N(n + 1) 100 N(n)
we see that

r-1

Er
_

U,. + [-Tr(1 -’2-"-a)N(n)-1, 7r(1 2-"-a)N(n)-a]

E + [-wN(m)-x, wN(m)-1]

for all r>m>0 and so EE+[-wN(m)-x, wN(m)-X]. Thus E can be
covered by card E intervals of length 2wN(m)-x. Since, by (v), card
Eh(2wN(m)-l)O as m, it follows that E has Hausdorff h-measure 0.
We have not shown explicitly that E and are translational, but this will be
implicit in the proof of the next lemma which shows that the induction
required can be performed and so completes the proof.

LEnA 5.2. Given E,, ,, P(n), Q(n) and N(n) satisfying the
inductive conditions (i),, (ii),, (iv),, (viii),, (ix),, and (xii),, we can find E,+I,
+, P(n + 1) and N(n + 1) satisfying all the conditions (i),+ to (xii),+.
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Pro@ By Lemma 4.2, taking q(r)= (2"+2N(n) h(2rr-1)r)-1, we see that
there exists an A(n + 1) such that, given Q(n + 1)>8N(n)6, we can find an
L(n + 1) such that, given N(n + 1)_>L(n + 1), we can find a r.+l eM(T) with

(1)
(2)
(3)

(4)

(5)

(6)

(7)

11o".+111<--1,
Id-.+l(0)- 11_< 1- 2-"-

supp o".+1

___
{2rru/N(n + 1): u e Z}

N [-w(N(.)-1 N(rt)-6), ’rr(N(rt)-1 N(rt)-6)],
card supp o’.+1 <--2-"-2N(n)-l(h(2w(N(n + 1))-1))-1,

2(Is1+1)
for O#[lN(n)+sl-<N(n)sId’.+a(lN(n) + s)[ <--

I1N(n) + sl
I6".+l(s)l<-2N(n)/lsl for N(n)S-<lsl-<O(n+ 1),

Id’.+l(S)[ -< A(n / 1) (log ((N(n + 1)) h(N(n + 1)-1)) h(N(n + 1)-1)) 1/2

for Q(n + 1) -< It[-< N(n + 1)- Q(n + 1).

In particular, taking Q(n + 1)_> 105N(n) and taking N(n + 1) to be a suffi-
ciently large multiple of N(n), we have

(7)’ Id’n+l(S)[--< 2-"-4((.0N(.+1)log (N(n + 1) h(N(n + 1)-1)) h(N(n + 1)-1)) ’/2

for O(n + 1) -< Irl <-- N(n + 1)- O(n + 1)

whilst conditions (i).+1, (ii).+l and (xii).+l) are automatically satisfied.
Set Ix.+1 Ix..r.+l and E.+a supp Ix.+1. Since N(n)E. {0}, N(n + 1) is

a multiple of N(n), and E.+I _E. +supp r.+l, the conditions (iii).+ and
(iv).+l follow from (3). Again, since card E.+-<card E. card supp r.+l and
(iii). shows that card E. -< N(n), condition (v).+l is a direct consequence of
(4). Condition (vi).+l is automatic and condition (vii).+1 follows from (1)
and (vii). just as (viii).+l follows from (viii). and (2). Similarly, (ix). is a
consequence of (1) and (since tol,llog (Irl h(lrl-1))h(Irl-x) is monotonic de-
creasing) (xi),/ is a consequence of (7)’.
Thus all that remains is to prove (x),. We split the range

N(n)- Q(n) -< Ir[ N(n + 1)- Q(n + 1)

into bits and prove

[t.+a(r)l 2-"-(%1 log (It[ h(lr[-1)) h(Irl-))v=

for each bit separately.
(A) N(n + 1)- O(n + 1) >_ Irl >- Q(n + 1). (*) is a consequence of (xi),.

(B) Q(n + 1)_> [rl N(n)s. We have

2N(n)
t2.+a(r)[ _< [.+a(r)[ _< <_[r[-1/z

so (*)r holds.
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(C) r 1N(n) + s with 2 Ill N(n)4, O(n) Isl N(n)- Q(n).

Id.+(lN(n)+ s)l
4
2_,_ll o(. og (() h((n}-) h((n-)1

2--(tt log (Ir h(Irl-*)) h(Irl-*))
(since lrl 2 Ill N(n)), so (*), holds.

(D) r IN(n) + s with Ill 1, O(n) [sl N(n)- O(n). By (xi),,

la.+l()l la.(s)l 2-"- (tt log (ll
(since Irl 2N(n)) so (*) holds.

(E) r=lN(n)+s with l[l[N(n)4, lslO(n). By (5) and (i),,
2(s + 1) ll[_N(n)_4/5 r_/2la.+l(r)l I&,+l(r)l
i1N(n) + s[

so (,) holds.

We have proved Lemma 5.2 and so have proved Theorem 5.1.
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