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(1.1)

1. Introduction

In the diagram of topological spaces

E1

let p" E M be a Hurewicz fibration, En obtained from p by pullback along
fl: B M, Pl an arbitrary map and j= p ljn. Let /: //[(pn, j) //[(p, p)
denote the map which is induced on double mapping cylinders.

In this paper we study the map # when the base space M is a homotopy
pushout:

B M

C .., A

Let p: E -* A be the pullback ofp over A andf p the fiberwise join offand
p. We prove:

TNORN 1.3. There is a map W: E(f p) --. (p, j) such that thefollow-
in homotopy commutative square is a homotopy pushout.

W

E(f, Pa) ’(Pn, J)
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The special case of this result having E1 * and A has been studied by
Held-Sjerve [4]. For this case note that E(f, PA)= C * F where F p- (,)is
the fiber of p and hence the result says that #: C--, Cis coclassified by a map
C F--, C. When also B =, the result is classical (cf. [5])and the corre-
sponding coclassifying map C F - SF may be taken to be the Hopfconstruc-
tion on the clutching function : C x F F of p. This follows readily from our
explicit construction of the map W above. However Held-Sjerve only assert
that the coclassifying map C F--, SF and the Hopf construction on are
homotopic after suspension! Another advantage of our treatment as opposed
to that of [4] is that we require no restrictions on the spaces involved. This is
made possible by utilizing the track calculus to bypass standard difficulties
with identification mappings.
Theorem 1.3 is rich in applications. In Section 6 we use it to recast the

classical James-Whitehead homotopy decomposition of the total space of a
fibration. In Section 7 we use it to prove a theorem on the homotopy structure
of the product of two double mapping cylinders. Interestingly enough this
latter result yields two different descriptions for the product of two mapping
cones. One of these is the description recently found by Baues [3] while the
other is closely related to the well-known formula of Atiyah [2] for the smash
product of two Thorn complexes.
Other applications of Theorem 1.3 may be found in [7] and [8].

2. Notation

We assume familiarity on the part of the reader with homotopy pushouts
and pullbacks (see [6], [10], [9]). Double mapping cylinders are denoted
’(f, g) in the unbased category and t’(f, g) in the based category. This nota-
tional convention is used systematically (e.g., Cy ’(0,f)and ty ((0, f)
are respectively the unreduced and the reduced mapping cones off).

Suppose f: C A and : C B are based maps. Let

q: (f, g)( g)

be the canonical quotient map. Note that q becomes a based map by taking
[*c, t] //(f, g), for any t, as base point. When it is unimportant to fix the
parameter t we say that g(f, g) has the variable base point. Recall that a based
space is well-pointed if the inclusion of the base point is a closed cofibration (in
the unbased category). Standard arguments may be used to prove the
following.

PROPOSITION 2.1. If each of A, B and C is a well-pointed space then
q: //[(f, )- /(f, ) is a based homotopy equivalence (with respect to the var-
iable base point of /(f, g)).
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(2.2) Given a diagram

having homotopies F: f_f’7 and G: fl#- g’7 we obtain a homotopy class
/(, 7, fl; F, G): //(f, g) t’(f’, g’)which depends only on the track classes of
the homotopies F and G. An explicit representative of/(, 7, fl; F, G) is the map
/: t’(f, g)- /(f’, g’) specified by

F(c, 4t), 0 _< t _< 1/4
#[c,t]= [7(c),1/2(4t-1)], 1/4_<t_<1/4

G(c, 4 -4t), 1/4 _< _< 1

for c e C. Whenever one or both of F and G is the static homotopy then other
representatives of #(e, , fl; F, G) may be more convenient (cf. [9, Section 2]).

DEFINITION 2.3. The fiberwise join e fl" E( fl)- X of maps e" A --, X
and fl" B - X is defined as usual [9, Section 2]. If now e" A --, X and : B - Y
are maps (with X not necessarily equal to Y), the exterior join

0,fl’E(,fl)-X x Y

is defined to be the join of the mapsx l’A x YX x Yand 1 xfl’Xx
B--* X x Y. In case X Y observe that we have a commutative square"

X a .., XxX

3. The total space as a homotopy pushout

As in Section 1, we suppose p: E --, M is a Hurewicz fibration with M the
homotopy pushout (1.2). We fix a lifting function 2: A(p)--* E’ for p. Here
A(p) {(e, to) e E x MI: to(0) p(e)} and by definition 2 satisfies 2o(e, to)= e
and p2t(e, to)= to(t). For (e, to) e A(p)and t e I, we let 2t(e, to) e E denote the
evaluation of the path 2(e, to) at parameter t.
Now for each c e C let f# (c) be the path in M defined by F (c)(t)= F(c, t).

A map 7: C x A EA-- Ea, called a clutching function for p, is defined by
7(c, e)= (g(c), 21(e, Fe(c))) for (c, e) e C x AEa. (Here C x AEA is the fibered
product of C and Ea over A.)
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PROPOSITION 3.1. The square

C x AEA ER

EA E
JA

with rc2(c, e)= e and G,(c, e)= 2,(e, F (c)) for (c, e) C x a Ea, is an unbased
homotopy pushout.

Proof. This follows by applying [10, Theorem 25] to the cube which has the
square containing G as top and the square (1.2) as bottom.

Let : /(n2, ),)-- E, b[c, e, t] 2t(e, F’(c)) for (c, e) C x aEa, be the
homotopy equivalence given by (3.1). Clearly the diagram

M

is commutative where the unnamed map is. the composite
’{f, 0) --’ M, the first factor induced by the triple of maps (p, , p,) and the
second factor the homotopy equivalence induced by the homotopy F. We leave
open the question of whether 4 is a fiber homotopy equivalence.
We remark that in defining the clutching function for p we clearly could have

chosen to fix B rather than A. Our choice of A is determined by the given
parameter in the homotopy pushout {1.2); i.e., F0 has image in A.
We have so far in this section worked in the unbased category. To enunciate

(3.1) in the based category we suppose that (1.2) is a based homotopy pushout
and that the based map p: E M is a Hurewicz fibration in the based category.
This latter means that p is a Hurewicz fibration for which the given base point
e e E is a regular point in the sense that p admits a lifting function 2 satisfying
2(eo, pe)= e {where the notation x* indicates the path with constant value
x). For such a 2, the above definitions of 7 and G respect base points and the
identical argument {but made in the based category) shows that the square in
(3.1) is a based homotopy pushout.

Remark 3.2. We may apply Proposition 3.1 to the trivial fibration

’(f, g) x Y [(f, g).
This has clutching function g x 1: C x Y- B x Y. Thus by (1.3) the contin-
uous bijection

: /’(f x lr, O x lr)- /’(f, 9) x Y
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is a homotopy equivalence. In the based case, the map (no longer a bijection)

" /(f 1 r, g x 1 r) - ,/(f, g) x Y

is a based homotopy equivalence. This shows that on both the unbased and the
based categories of topological spaces, the functor x Y preserves homotopy
pushouts.

DEFINITION 3.3. If (X, Xo) and (Y, Yo) are pairs of topological spaces we
define (X, Xo) > (Y, Yo) (abbreviated to X > Y if the subspaces Xo and Yo are
(clear) to be the subspace X x Yo w Xo x Y of the product X x Y. In the
evident manner > is a functor in two variables. If (X, Xo) and (Y, Yo) are
based pairs of spaces then (X, Xo) > (Y, Yo) is a based space with the obvious
base point. Observe that (X, ,)> (Y, ,)= X vY and that (X, Xo)>
(Y, Yo)= X x Y if either Xo X or Yo Y.

Suppose given a pair (Y, Yo) with inclusion i: Yo Y. Then with the mapsf
and as in (1.2) we have a homotopy

C x Yo x I--, (/’(f, g), B)> (Y, Yo)

given by (c, Yo, t)-, ([c, t], Yo)for c e C, Yo e Y, t e I.

PROPOSITION 3.4. The above homotopy induces a map

fxl gxi

: d///(A x Yo" C x Yo B x Y) (d/t’(f, g), B) > (Y, Yo)

which is a homotopy equivalence. This proposition holds in the reduced case also.

Proof. We consider the diagram

0xl Ix/

C x Yo B x Yo B x Y

A x Yo ’ d/t’(fg) x Yo d//’(f,g)> Y
ioXl

in which F is the defining homotopy for ’(f, #). By (3.2) the square on the left
is a homotopy pushout. The square on the right is a topological pushout and
hence a homotopy pushout since it x 1: B x Yo---’ #(f, g)x Yo is a closed
cofibration. Therefore the outer rectangle is a homotopy pushout with a homo-
topy which is clearly track equivalent to the above homotopy. Hence is a
homotopy equivalence.
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(4.1)

4. Commuting parameters in double mapping cylinders

We suppose given diagram (4.1) provided with homotopies as shown.

Taking the double mapping cylinders ofthe horizontal pairs (as in (2.2))we get
maps

0’ 0"

’(ao, bo) ’(a, b) -, /’(al, bl).
Likewise taking the double mapping cylinders ofthe vertical pairs we get maps

/[(fo, f) - /[(go, ,) /l(ho, hi).

LEMMA 4.2. There is a homeomorphism /[(0’, 0")- /[(t$’, 6").

Proof In the proof we adopt (see (2.2)) the 0- 1/4- 1/4- 1 division of the
unit interval I to define the maps 0’, 0", ’ and di". Let k: 12 12 be the self-
homeomorphism of the unit square 12 which is defined barycentrically on each
triangle of 12 as indicated below:

U7 U6 U5 U4

Let U be the disjoint union space

U2 U3 U4 5

k

! 0 U7 6

CxI2HAxlHBxlHCoxlHCI xlHAoHBoHA HB.
Now each of ’(0’, 0") and /[(’, ") is a quotient space of U. Define
k’: U U to be lc x k on C x I and the identity elsewhere. A careful check
of the corresponding identifications then shows that k’ induces a homeo-
morphism

o")-+
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Remarks 4.3. (i) Lemma 4.2 is also valid (with the same proof) in the based
category.

(ii) In the proof of (4.2) the maps 0’, 0", ’ and " were defined very precisely
using explicit homotopies and a fixed division of the parameter interval.
Actually we may allow ourselves to vary the homotopies of (4.1) up to track
equivalence and to change the parameter division if we replace the homeo-
morphism of (4.2) by a homotopy equivalence.
More exactly, note that (4.2)provides a (canonical) homotopy making

the square
0"

a homotopy pushout. Now this square (but with a different homotopy of
course) remains a homotopy pushout if the maps 0’, 0", ’ and " are replaced
within their homotopy classes. Also, and in the usual way, any of the four
spaces occurring in the square may be replaced within its homotopy type.

(iii) In the presence of well-pointed spaces, Proposition 2.1 makes it pos-
sible to formulate "mixed" versions of the homotopy pushout in (4.3.ii).
From the point of view of applications in this paper, the following con-

sequence of (4.3.ii) is all we shall need.

THEOREM 4.4. Suppose we are given a homotopy commutative diagram"

B

f
" lf,,

A A"

Then the double mappin9 cylinders on the induced pairs

A ,-- d//l c’,f) dill(9", f ),
dg(f’, 9’)- dg(f c") A"

are homotopy equivalent.

Proofi Consider the following diagram (4.1)situation with corresponding
vertical and horizontal double mapping cylinders as shown:
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B C" A" #(g",f")

C C-, A #(c’,f)

A’ A A t’(a’,l)

d///(f’, #’)- ///(f, c")-, d/t’(1, a")

Since t’(1, a")- A" and d/t’(a’, 1)- A’ the result follows from (4.3.ii).

Remark 4.5. Theorem 4.4 is a generalization of Lemma 3.3 in [9]. This is
seen by applying (4.4) to the following diagram"

C

Y

C B

A X

5. Proof of Theorem 1.3

With notation as in Section 3 we consider the following diagram where

B

(5.1) CC Cx E

A EA E
PA

We define a map W: E(f PA) --’ g(P, J) by the formulas

flY(c, e), 2t], 0 _< _< 1/2t]e, ’P,’2- 2,(e, F#(c)), 1/2 <_t <_ 1

G’=PlG"



352 HOWARD J. MARCUM

for (c, e) C x A EA, and

W(c) O(c), c . C, W(y) PxJa(Y), Y EA.
Applying Theorem 4.4 to diagram (5.1) we obtain a homotopy pushout

(5.2)

W

E(f , PA) l(p,, j)

in which the lower right corner of the square is the double mapping cylinder on
the pair of maps

’(f O)-" /(2, )E1
with 5’ induced functorially by the triple (Pa, u x, Pn) and 5" induced by the
homotopy G’. Observe that the diagram

is commutative with the vertical maps homotopy equivalences. Hence square
(5.2) is a homotopy pushout with the lower right corner being //(p, P x). It is
routine to cheek that the map ’(pn, j) /(p, p 1) is . This completes the
proof of (1.3).

Remark 5.3. The classical case ofTheorem 1.3 arises when A B E *,

yielding a homotopy pushout
W

C,F SF

* C

where F is the fiber of p: E--, SC. Since the homotopy G’ in this case is
clearly the static homotopy, W is homotopic to the Hopf construction h(y) on
the clutching function )," C x F F.

6. The James-Whitehead decomposition

In this section we use Theorem 1.3 to derive the classical James-Whitehead
decomposition of the total space of a fibration [5].
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We assume that p: E X is a Hurewicz fibration and that the pair (X, Xo) is
coclassified by a map C Xo. Further we assume that the fiber F ofp over the
"vertex" of X admits the finite homotopy decomposition

(6.1) Bn-1

B0

fin-1 l ln-I

Yn-1

#o
[ 1o

Yo
This means that for each 0, 1, n, there is a homotopy F such that the

square
fit

Bi Yii

* Y/+l

is a homotopy pushout. For what follows we fix a choice ofsuch homotopies Fi
as well as a lifting function 2 for p. Let

y: C x F - Exo P-l(Xo), y(c, y)= 21(y, F(c)),
be the associated clutching function (where F is a fixed homotopy giving X as a
mapping cone). For each i= 0, 1,..., n, we set

7i=(1 x /i):Cx YEx0
and define maps

by

proj i

f3,’B,,C M,, M,--/(Y,,, C x Y, Exo)

,[b, c, t] {[(c, fl, b), 2t],
I,+ 1(c, F,(b, 2 2t)),

0_<t_<1/2
1/2<t<l

(where y, + y).
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THEOREM 6.2. E admits the homotopy decomposition

with the composite

being the inclusion.

B,,C

Bn_ ,C

Bo,C

E

Mn-

Mo

il
Exo - Mo --* - E

Proof From the following diagram (1.1)situation

CxY CxY/

proj proj

r r/

we obtain a homotopy pushout"

B C M

Since (X, Xo) is coclassified by a map C- Xo, there is a homotopy equiv-
alence M,+ 1- E. Hence E has the desired homotopy decomposition and
clearly the composite Exo Mo ’"- E is the inclusion.
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As in [9, Remark 5.2], the above fibration p: E- X admits a characteristic
function e: C Exo given by e(c)= .1(*, F#(c)) where is some fixed base
point in F. Observe that in giving the homotopy decomposition (6.1), we have
necessarily fixed base points (the "vertices") in Y for each 0, 1, n + 1. If
we suppose that the maps li preserve these given base points, that Yo is a one
point space and that the characteristic function e is defined with respect to the
given base point in F then e Yo: C - Exo. Hence, in this case, we obtain

(6.3) . - .xo U, c(c) Uo CWo c) U , U . cw, c)

We have proven Theorem 6.2 in the unbased category. A similar result is
available in the based category. For this one supposes that p is a Hurewicz
fibration in the based category and that all homotopy pushouts are in the based
category. We leave the exact formulation and details to the reader. Finally
observe that if, in the presence of the hypothesis for the based case, the spaces
Bi and C are well-pointed then a mixed version is valid. This mixed version says
that the decomposition of E given in (6.2), but with the Mi’s replaced by based
double mapping cylinders and with the B C’s having variable base points, is
a based homotopy decomposition.

7. The product of two double mapping cylinders

In this final section we consider two arbitrary pairs of maps

p fl q

XA--P, YBQ.

We may consider the following Theorem 4.4 situation.

PxY

Ax Y AxB Px Q

Xx Y XxB
lxfl io q

We obtain a homotopy pushout

E( fl) J//(P x Y

x ((,p/g

PxB
ilxq

Ixq

J//(x, p) x Q)

//’(o, p) x Q)
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But from Proposition 3.4 we have a commutative square

/(le x fl, X q)

t’(ltt, p) x fl, lat, v) x q)

(’(, P), P) (((fl, q), Q)

with each of the maps being a homotopy equivalence. The composite

is given by

W: E( fl)--, (’(0, p), P) (/’(fl, q), Q)

W[a, b, t]
(pa’ [b, 2t]),
l([a, 2 2t], qb),

W[a, y] (pa, [y]),

W[x, b] (Ix], qb).

Therefore we obtain"

0<t<1/2,
1/2<_t_< 1,

THEOREM 7.1. For some homotopy the square
W

E(a * fl) (/’(a, p), P) < (’(fl, q), Q)

X x Y [(, p) x [(fl, q)
is a homotopy pushout, with W oiven by the above formula.
The based version of (7.1) also holds and consequently so does the mixed

version whenever the spaces A, B, X and Y are well-pointed.
As remarked in the introduction, Theorem 7.1 yields two different represen-

tations for the product of two mapping cones. Firstly, if X and Y then
we recover the following theorem of Baues [3, Satz (3.2)].

THEOREM 7.2. For some homotopy the square
W

A , B (Cv,P) , (C, Q)

’, C x C
is a homotopy pushout, with W defined by

W[a, b, t]
(pa’ [b, 2t]),

t([a, 2 2t], qb),
o_<t<1/2
1/2<t<l
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It should be noted that our formula for W in (7.2) differs from Baues’ formula
for W in that we consider a mapping cone to have vertex at parameter t 0
while Baues takes the vertex at parameter t 1. Note also that we could have
obtained (7.2) by working out a James-Whitehead decomposition for C x C
relative to the trivial fibration C x C C.

Secondly if P =, and Q =, and if in applying Theorem 7.1 we replace
’(, p) and ’(fl, q) by C, and Ca respectively then we obtain the following
theorem.

THEOREM 7.3. For some homotopy the square

E(oc * fl) CvCa

XxY CxCa
ilxil

is a homotopy pushout, with w defined by

t(., [b, 1 2t]),w[a, b, t] l([a, 2t 1], .),
w[a, y] (,, [y])

w[x, b] ([x], ,).

0<t<1/2,
1/2<t<l,

Here, of course, the vertices of the unreduced mapping cones C and Ca are
used in constructing the wedge C v Ca.
As a corollary we obtain Atiyah’s formula for the Thom space of , fl ([2],

[4]).

COROLLARY 7.4. C , a - C ^ Ca (as unbased spaces).
Whenever each of the spaces X, Y, P and Q is a one point space then

Theorems 7.2 and 7.3 coincide in the sense that there is a commutative diagram
W

A*B SAv 1SB

SA oSB
with W as in (7.2), w as in (7.3) and r denoting reversal of parameter in the
suspensions. Here we have used v i, 0, 1, to indicate that parameter t is
used in constructing the wedge SA v SB. (Ofcourse this distinction is unneces-
sary in the based or mixed cases.) The map w" A B SA v SB is just the
generalized Whitehead product map of Arkowitz [1].
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Since E(EA x EB) homotopy retracts onto Z(EA v EB), (7.3)implies that
Ew

_
0 where w: A B EAv EB is the generalized Whitehead product map

(mixed form). In fact Corollary 7.4 together with Hilton’s formula

x v

would suggest that we have Ew 0 for a general w" E( , fl) v (with
well-pointed spaces). To see that this is not true we may consider the following
example. is lx: X X and fl is X. Then E( * fl) has the homotopy
type of X x X and C, vCa has the homotopy type of X. With these
identifications the map w corresponds to the projection X x X X onto the
second factor.

PROPOSITION 7.5. IfA, B, X and Y are well-pointed spaces then thefollowino
diaoram is based homotopy commutative (with E( , fl) havin9 the variable base
point):

(Here 09 is the comultiplication on Y,(X x Y).)

Proof By Theorem 7.3 (mixed version)we have

Y,w
_

(E projc, + E projca) E(ix x ix) E( , fl)

(Z(/, projx)v E(ix projr)) coo E( , fl)
since (21 projc, + projco) inc

_
lr.c, =c.
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