ON CONVOLUTION SQUARES OF SINGULAR MEASURES

BY
Sadahiro Saeki

A classical result of Wiener and Wintner [6] asserts that there exists a singular probability measure μ on the circle group T such that $\hat{\mu}(n)=O\left(|n|^{-1 / 2+\varepsilon}\right)$ as $n \rightarrow \infty$ for every $\varepsilon>0$. Such a measure μ has the property that $\mu^{2}=\mu * \mu$ is absolutely continuous and its Radon-Nikodym derivative with respect to Lebesgue measure belongs to $L^{p}(T)$ for all positive real numbers p (cf. [2] and [5]). In the present paper, we shall construct a singular probability measure μ, with support having zero Lebesgue measure, such that μ^{2} has uniformly convergent Fourier-Stieltjes series.

Let λ be the normalized Lebesgue measure on T and let Z be the additive group of integers. We denote by $C_{0}(Z)$ the space of all functions on Z (i.e., two-sided sequences) that vanish at infinity. A mapping of $C_{0}(Z)$ into itself is called continuous if it is continuous with respect to the supremum norm of $C_{0}(Z)$. Our result can be stated as follows.

Theorem. Let K be a measurable subset of T having positive Lebesgue measure, and let ϕ be a continuous mapping of $C_{0}(Z)$ into itself. Then there exists a singular probability measure μ on T satisfying these conditions:
(a) $\operatorname{supp} \mu \subset K$ and $\lambda(\operatorname{supp} \mu)=0$;
(b) $\sum_{n=-\infty}^{\infty}\left|\hat{\mu}(n)^{2} \cdot \phi(\hat{\mu})(n)\right|<\infty$;
(c) The Fourier-Stieltjes series of μ^{2} converges uniformly.

In order to prove this theorem, we need some notation and lemmas. For $f \in C(T)$, we define

$$
\|f\|_{A}=\sum_{n=-\infty}^{\infty}|\hat{f}(n)| \quad \text { and } \quad\|f\|_{U}=\sup _{N}\left\|\sum_{n=-N}^{N} \hat{f}(n) e^{i n t}\right\|_{\infty} .
$$

Notice that the set of all $f \in C(T)$ with $\|f\|_{A}<\infty$ (or $\|f\|_{U}<\infty$) forms a Banach space (cf. [3]). Given $f \in L^{1}(T)$, let $f^{(2)}=f * f$ and let supp f denote the closed support of f. Throughout the following lemmas, we fix an arbitrary continuous mapping ϕ of $C_{0}(Z)$ into itself and write $\Psi(P)=P^{2} \cdot \phi(P)$ for $P \in C_{0}(Z)$. We begin with improving Lemma 3.2 of [5] by applying Körner's idea in [4].

Lemma 1. Given $g \in L_{+}^{1}(T)$ and $\eta>0$, there exists a simple function $h \in L_{+}^{1}(T)$ such that:
(i) $\|h\|_{1}=\|g\|_{1}$ and $\|\hat{g}-\hat{h}\|_{\infty}<\eta$;
(ii) $\operatorname{supp} h \subset\{g \neq 0\}$ and $\lambda($ supp $h) \leq 2^{-1} \lambda(\{g \neq 0\})$;
(iii) $h \leq(2+\eta) g$ on T.

Proof. We can write $g=g_{1}+g_{2}+\cdots+g_{m}$, where $g_{j} \in L_{+}^{1}(T), g_{j} g_{k}=0$ if $j \neq k$, and $\left\|g_{j}\right\|_{1}<\eta / 4$ for all $j=1,2, \ldots, m$. By induction, we choose simple functions $h_{1}, h_{2}, \ldots, h_{m} \in L_{+}^{1}(T)$ as follows.

Let $h_{0}=0$, and suppose that h_{0}, \ldots, h_{j-1} have been chosen for some $j \in\{1,2$, $\ldots, m\}$. By Lemma 3.2 of [5] and its proof, there is a simple function $h_{j} \in L_{+}^{1}(T)$ satisfying these conditions: $\left\|h_{j}\right\|_{1}=\left\|g_{j}\right\|_{1}, \operatorname{supp} h_{j} \subset\left\{g_{j} \neq 0\right\}$,

$$
\lambda\left(\operatorname{supp} h_{j}\right) \leq 2^{-1} \lambda\left(\left\{g_{j} \neq 0\right\}\right), \quad h_{j} \leq(2+\eta) g_{j}
$$

and

$$
\begin{equation*}
\left|\hat{g}_{j}-\hat{h}_{j}\right|<\eta /(2 m) \quad \text { on } \bigcup_{i=1}^{j-1}\left\{\left|\hat{g}_{i}-\hat{h}_{i}\right| \geq \eta /(2 m)\right\} . \tag{1}
\end{equation*}
$$

This completes the induction.
Setting $h=h_{1}+h_{2}+\cdots+h_{m}$, we claim that h has all the required properties. Evidently we need only confirm that $\|\hat{g}-\hat{h}\|_{\infty}<\eta$. To this end, take an arbitrary integer n. If $\left|\hat{g}_{j}(n)-\hat{h}_{j}(n)\right|<\eta /(2 m)$ for all j, then we have $|\hat{g}(n)-\hat{h}(n)|<\eta / 2$. If $\left|\hat{g}_{j}(n)-\hat{h}_{j}(n)\right| \geq \eta /(2 m)$ for some index j, then (1) implies that $\left|\hat{g}_{i}(n)-\hat{h_{i}}(n)\right|<\eta /(2 m)$ for all $i \neq j$. It follows that

$$
|\hat{g}(n)-\hat{h}(n)|<(m-1) \eta /(2 m)+\left\|g_{j}-h_{j}\right\|_{1}<\eta / 2+2\left\|g_{j}\right\|_{1}<\eta
$$

which completes the proof.
Lemma 2. Let $g_{1}, g_{2}, \ldots, g_{p} \in L_{+}^{2}(T)$ and $\varepsilon>0$ be given. Then there exists a simple function h in $L_{+}^{1}(T)$ satisfying the following five conditions:
(i) $\|h\|_{1}=\left\|g_{1}\right\|_{1}$ and $\left\|\hat{g}_{1}-\hat{h}\right\|_{\infty}<\varepsilon$;
(ii) $\operatorname{supp} h \subset\left\{g_{1} \neq 0\right\}$ and $\lambda(\operatorname{supp} h) \leq 2^{-1} \lambda\left(\left\{g_{1} \neq 0\right\}\right)$;
(iii) $h \leq(2+\varepsilon) g_{1}$ on T;
(iv) $\left\|g_{k} *\left(g_{1}-h\right)\right\|_{A}<\varepsilon$ for all $k=1,2, \ldots, p$;
(v) $\sum_{n=-\infty}^{\infty}\left|\Psi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)(n)-\Psi\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)(n)\right|<\varepsilon$.

Proof. Write $C=\left(1+\left\|g_{1}\right\|_{2}+\cdots+\left\|g_{p}\right\|_{2}\right)^{2}$. Since $\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)$ is in $C_{0}(Z)$, we can find a finite subset Y of Z such that

$$
\begin{equation*}
\left|\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)\right|<(30 C)^{-1} \varepsilon \quad \text { on } Z \backslash Y \tag{1}
\end{equation*}
$$

By the continuity of the mapping ϕ, there exists a positive real number $\eta<\min (\varepsilon, 1)$ such that, for $P \in C_{0}(Z)$,

$$
\begin{equation*}
\left\|\sum_{k=1}^{p} \hat{g}_{k}-P\right\|_{\infty}<\eta \Rightarrow\left\|\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)-\phi(P)\right\|_{\infty}<(30 C)^{-1} \varepsilon . \tag{2}
\end{equation*}
$$

Applying Lemma 1 with $g=g_{1}$, we obtain a simple function $h \in L_{+}^{1}(T)$ which satisfies conditions (i), (ii) and (iii) with η in place of ε. By Lemma 3.1 of [5], we may assume that h also satisfies (iv). Notice that (2) and the inequality in (i) with η in place of ε imply

$$
\begin{equation*}
\left\|\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)-\phi\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)\right\|_{\infty}<(30 C)^{-1} \varepsilon . \tag{3}
\end{equation*}
$$

Since $\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)$ is a bounded function and since η may be chosen arbitrarily small, we may also assume that

$$
\begin{equation*}
\left\|\left[\left(\sum_{k=1}^{p} \hat{g}_{k}\right)^{2}-\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)^{2}\right] \cdot \phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)\right\|_{\infty}<(3|Y|+1)^{-1} \varepsilon \tag{4}
\end{equation*}
$$

where $|Y|$ is the number of the elements of Y.
In order to confirm (v), first notice that

$$
\begin{align*}
\sum_{n=-\infty}^{\infty}\left|\hat{h}(n)+\sum_{k=2}^{p} \hat{g}_{k}(n)\right|^{2} & =\left\|h+\sum_{k=2}^{p} g_{k}\right\|_{2}^{2} \tag{5}\\
& \leq\left(\|h\|_{2}+\sum_{k=2}^{p}\left\|g_{k}\right\|_{2}\right)^{2} \\
& <9 C
\end{align*}
$$

by the Parseval formula and (iii). Now we write

$$
\begin{aligned}
& \sum_{n}\left|\Psi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)(n)-\Psi\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)(n)\right| \\
& \leq \sum_{n}\left|\left(\sum_{k=1}^{p} \hat{g}_{k}\right)^{2}(n)-\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)^{2}(n)\right| \cdot\left|\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)(n)\right| \\
& \quad+\sum_{n}\left|\hat{h}(n)+\sum_{k=2}^{p} \hat{g}_{k}(n)\right|^{2} \cdot\left|\phi\left(\sum_{k=1}^{p} \hat{g}_{k}\right)(n)-\phi\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)(n)\right| \\
&= A+B
\end{aligned}
$$

say. By (4), (1) and (5), we have

$$
\begin{aligned}
A & =\sum_{Y}+\sum_{Z \backslash Y} \\
& <|Y|(3|Y|+1)^{-1} \varepsilon+(30 C)^{-1} \varepsilon \sum_{n}\left|\left(\sum_{k=1}^{p} \hat{g}_{k}\right)^{2}(n)-\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)^{2}(n)\right| \\
& <\varepsilon / 3+(30 C)^{-1} \varepsilon \cdot 10 C \\
& =2 \varepsilon / 3
\end{aligned}
$$

Similarly we have

$$
B \leq(30 C)^{-1} \varepsilon \sum_{n}\left|\left(\hat{h}+\sum_{k=2}^{p} \hat{g}_{k}\right)(n)\right|^{2}<\varepsilon / 3
$$

by (3) and (5). This establishes (v) and the proof is complete.
Lemma 3. Let $f \in L_{+}^{2}(T),\|f\|_{1}=1$, and $\varepsilon>0$ be given. Then there exists a simple function g in $L_{+}^{1}(T)$ such that:
(a) $\|g\|_{1}=1$ and $\|\hat{f}-\hat{g}\|_{\infty}<\varepsilon$;
(b) supp $g \subset\{f \neq 0\}$ and $\lambda(\operatorname{supp} g) \leq 2^{-1} \lambda(\{f \neq 0\})$;
(c) $\sum_{n=-\infty}^{\infty}|\Psi(\hat{f})(n)-\Psi(\hat{g})(n)|<\varepsilon$;
(d) $\left\|f^{(2)}-g^{(2)}\right\|_{U}<\varepsilon$.

Proof. Choose and fix a sufficiently large natural number p such that

$$
\begin{equation*}
\int_{2 \pi(j-1) / p}^{2 \pi j / p}\{f(t)\}^{2} d t<\varepsilon \quad(j=1,2, \ldots, p) \tag{1}
\end{equation*}
$$

For each $j=1,2, \ldots, p$, let g_{j} be the restriction of f to the interval $[2 \pi(j-1) / p$, $2 \pi j / p$). Take a natural number N_{0} so large that

$$
\begin{equation*}
\sum_{|n| \geq N_{0}}\left|\hat{g}_{j}(n)\right|^{2}<\varepsilon / p \quad(j=1,2, \ldots, p) \tag{2}
\end{equation*}
$$

An inductive application of Lemma 2 will yield simple functions $h_{1}, h_{2}, \ldots, h_{p}$ and natural numbers $N_{1}, N_{2}, \ldots, N_{p}$ satisfying the following conditions for $j=1,2, \ldots, p$:
(3) $\left\|h_{j}\right\|_{1}=\left\|g_{j}\right\|_{1}$ and $\left\|\hat{g}_{j}-\hat{h}_{j}\right\|_{\infty}<\varepsilon /\left(2 p N_{j-1}\right)$;
(4) $\operatorname{supp} h_{j} \subset\left\{g_{j} \neq 0\right\}$ and $\lambda\left(\operatorname{supp} h_{j}\right) \leq 2^{-1} \lambda\left(\left\{g_{j} \neq 0\right\}\right)$;
(5) $h_{j} \leq 3 g_{j}$ on T;
(6) $\sum_{k=1}^{j-1}\left\|\left(g_{j}-h_{j}\right) * h_{k}\right\|_{A}+\sum_{k=j}^{p}\left\|\left(g_{j}-h_{j}\right) * g_{k}\right\|_{A}<\varepsilon / p$;
(7) $\sum_{n=-\infty}^{\infty}\left|\Psi\left(\hat{f}_{j-1}\right)(n)-\Psi\left(\hat{f}_{j}\right)(n)\right|<\varepsilon / p$;
(8) $\sum_{|n| \geq N_{j}}\left|\hat{h}_{j}(n)\right|^{2}<\varepsilon / p$.

Here and elsewhere $f_{j}=\left(h_{1}+\cdots+h_{j}\right)+\left(g_{j+1}+\cdots+g_{p}\right)$ for $j=0,1, \ldots, p$. We may assume that $N_{0}<N_{1}<\cdots<N_{p}$.

Now we define $g=f_{p}=h_{1}+\cdots+h_{p}$. It is easy to check that g satisfies conditions (a), (b) and (c). So we need only prove that $\left\|f^{(2)}-g^{(2)}\right\|_{U}<C \varepsilon$ for
some absolute constant C. To this end, we write

$$
f_{j-1}^{(2)}-f_{j}^{(2)}=g_{j}^{(2)}-h_{j}^{(2)}+2\left(g_{j}-h_{j}\right) *\left(\sum_{k=1}^{j-1} h_{k}+\sum_{k=j+1}^{p} g_{k}\right)
$$

for $j=1,2, \ldots, p$. Since $\|h\|_{U} \leq\|h\|_{A}$ for $h \in A(T)$, it follows from (6) that

$$
\begin{aligned}
\left\|f^{(2)}-g^{(2)}\right\|_{U} & =\left\|\sum_{j=1}^{p}\left\{f_{j-1}^{(2)}-f_{j}^{(2)}\right\}\right\|_{U} \\
& <\left\|\sum_{j=1}^{p}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{U}+2 \varepsilon .
\end{aligned}
$$

Therefore it will suffice to show that

$$
\begin{equation*}
\left\|\sum_{j=1}^{p} S_{N}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{\infty}<36 \varepsilon \quad(N=0,1,2, \ldots) \tag{9}
\end{equation*}
$$

where $S_{N}(h)$ denotes the N th partial sum of the Fourier series of $h \in L^{1}(T)$.
Now we claim that

$$
\begin{equation*}
\left\|\sum_{j=1}^{k}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{\infty}<20 \varepsilon \quad(k=1,2, \ldots, p) \tag{10}
\end{equation*}
$$

Indeed our definition of g_{j} and (4) imply that

$$
\left\{g_{j}^{(2)}-h_{j}^{(2)} \neq 0\right\} \subset(4 \pi(j-1) / p, 4 \pi j / p) \bmod 2 \pi
$$

for all indices j. Therefore we infer from (5) and (1) that

$$
\begin{aligned}
\left\|\sum_{j=1}^{k}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{\infty} & \leq 2 \sup \left\{\left\|g_{j}^{(2)}-h_{j}^{(2)}\right\|_{\infty}: 1 \leq j \leq k\right\} \\
& \leq 2 \sup \left\{\left\|g_{j}\right\|_{2}^{2}+\left\|h_{j}\right\|_{2}^{2}: 1 \leq j \leq p\right\} \\
& \leq 20 \sup \left\{\left\|g_{j}\right\|_{2}^{2}: 1 \leq j \leq p\right\} \\
& <20 \varepsilon
\end{aligned}
$$

This establishes (10).
Now let N be an arbitrary nonnegative integer, and let M_{N} denote the left-hand side of (9). If $N \leq N_{0}$, then we have

$$
\begin{align*}
M_{N} & \leq \sum_{j=1}^{p} \sum_{n=-N}^{N}\left|\left(\hat{g}_{j}(n)\right)^{2}-\left(\hat{h}_{j}(n)\right)^{2}\right| \tag{11}\\
& \leq 2 \sum_{j=1}^{p} \sum_{n=-N}^{N}\left|\hat{g}_{j}(n)-\hat{h}_{j}(n)\right| \\
& <2 \sum_{j=1}^{p}(2 N+1) \varepsilon /\left(2 p N_{j-1}\right) \\
& \leq 4 \varepsilon
\end{align*}
$$

by (3). If $N_{k-1}<N \leq N_{k}$ for some $k=1,2, \ldots, p$, then

$$
\begin{align*}
M_{N} \leq & \left\|\sum_{j=1}^{k-1} S_{N}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{\infty}+\left\|S_{N}\left\{g_{k}^{(2)}-h_{k}^{(2)}\right\}\right\|_{A} \tag{12}\\
& +\left\|\sum_{j=k+1}^{p} S_{N}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{A} \\
= & P+Q+R,
\end{align*}
$$

say. By (5) and (1), we have

$$
\begin{equation*}
Q \leq\left\|g_{k}\right\|_{2}^{2}+\left\|h_{k}\right\|_{2}^{2} \leq 10\left\|g_{k}\right\|_{2}^{2}<10 \varepsilon \tag{13}
\end{equation*}
$$

A similar estimate as in (11) yields

$$
\begin{equation*}
R<2 \sum_{j=k+1}^{p}(2 N+1) \varepsilon /\left(2 p N_{j-1}\right)<4 \varepsilon \tag{14}
\end{equation*}
$$

Furthermore, we have

$$
\begin{align*}
P & \leq\left\|\sum_{j=1}^{k-1}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{\infty}+\sum_{j=1}^{k-1} \sum_{|n|>N}\left\{\left|\hat{g}_{j}(n)\right|^{2}+\left|\hat{h}_{j}(n)\right|^{2}\right\} \tag{15}\\
& \leq\left\|\sum_{j=1}^{k-1}\left\{g_{j}^{(2)}-h_{j}^{(2)}\right\}\right\|_{\infty}+(k-1) \cdot 2 \varepsilon / p \\
& <20 \varepsilon+2 \varepsilon \\
& =22 \varepsilon
\end{align*}
$$

by (2), (8), and (10). It follows from (12)-(15) that $M_{N}<36 \varepsilon$ whenever $N_{k-1}<N \leq N_{k}$ for some index k.

Finally, if $N>N_{p}$, then (15) with $k=p+1$ shows that $M_{N}<22 \varepsilon$. This establishes (9) and the proof is complete.

Proof of the theorem. Let $K \subset T$ and $\phi: C_{0}(Z) \rightarrow C_{0}(Z)$ be as in the hypotheses of the present theorem. Choose and fix an arbitrary simple function $f_{0} \in L_{+}^{1}(T)$ such that $\left\|f_{0}\right\|_{1}=1$ and $\operatorname{supp} f_{0} \subset K$. We inductively apply Lemma 3 to obtain a sequence $\left(f_{k}\right)$ of simple functions in $L_{+}^{1}(T)$, subject to these four conditions $(k \geq 1)$:
(1) $\left\|f_{k}\right\|_{1}=1$ and $\left\|\hat{f}_{k-1}-\hat{f}_{k}\right\|_{\infty}<2^{-k}$;
(2) $\operatorname{supp} f_{k} \subset\left\{f_{k-1} \neq 0\right\}$ and $\lambda\left(\operatorname{supp} f_{k}\right) \leq 2^{-1} \lambda\left(\left\{f_{k-1} \neq 0\right\}\right)$;
(3) $\sum_{n=-\infty}^{\infty}\left|\Psi\left(\hat{f}_{k-1}\right)(n)-\Psi\left(\hat{f}_{k}\right)(n)\right|<2^{-k}$;
(4) $\left\|f_{k-1}^{(2)}-f_{k}^{(2)}\right\|_{U}<2^{-k}$.

It is easy to check that the measures $f_{k} \lambda$ converge weak* to a singular probability measure μ with the required properties. This establishes the theorem.

Remarks. (I) In order to give an example of a continuous mapping of $C_{0}(Z)$ into itself, let $P \in C_{0}(Z)$, let F be any continuous function on the complex plane with $F(0)=0$, and let α be any mapping of Z into itself such that $\alpha(n) \rightarrow \infty$ as $n \rightarrow \infty$. Define $\phi(Q)=P+F \circ Q+|Q \circ \alpha|$ for $Q \in C_{0}(Z)$. Then ϕ is a continuous mapping on $C_{0}(Z)$. It is obvious that for an appropriate choice of ϕ, condition (b) of the present theorem implies that $\hat{\mu}$ belongs to l^{p} for all $p>2$ (cf. Hewitt and Ritter [1]). However, our method does not seem to yield a singular probability measure μ such that $|\hat{\mu}(n)| \leq \eta(n)$, where η is a preassigned function on Z subject to suitable conditions (cf. Remark (IV) stated below).
(II) A weak version of our theorem holds for every nondiscrete locally compact abelian group. Let G be such a group with Haar measure λ_{G} and dual Γ, and let ϕ be a continuous mapping of $C_{0}(\Gamma)$ into itself. Suppose $f \in L_{+}^{1} \cap$ $L^{2}(G),\|f\|_{1}=1$, and $\varepsilon>0$. Then there exists a probability measure μ in $M(G)$ such that:
(a) $\operatorname{supp} \mu \subset\{f \neq 0\}$ and $\lambda_{G}(\operatorname{supp} \mu)=0$;
(b) $\int_{\Gamma}|\Psi(\hat{\mu})-\Psi(\hat{f})| d \gamma<\varepsilon$, where $\Psi(P)=P^{2} \phi(P)$ for $P \in C_{0}(\Gamma)$.

If, in addition, every neighborhood of $0 \in G$ contains an element of order larger than 2 , then such a measure μ can be chosen to satisfy
(c) $\mu^{2}=g \lambda_{G}$ and $\|g-f * f\|_{\infty}<\varepsilon$ for some $g \in C_{c}(G)$.

These facts can be proved along the same lines as the present theorem. However, in the case that G contains an open subgroup of bounded order, then the proof of the second result stated above requires some ad hoc (structural) technique. We omit the details.
(III) The additional assumption in the second result in Remark (II) is necessary. To see this, first notice that the conditions $f \in L^{1} \cap L^{\infty}(G)$ and $\hat{f} \geq 0$ imply $\hat{f} \in L^{1}(\Gamma)$. Now suppose that $G=\{0,1\}^{\alpha}$ for some infinite cardinal α and that μ is a real measure in $M(G)$. Then $\hat{\mu}$ is a real-valued function on Γ and hence $\hat{\mu}^{2} \geq 0$. It follows from the above remark that $\mu^{2} \in L^{\infty}(G)$ implies $\hat{\mu}^{2} \in L^{1}(\Gamma)$, and, in particular, $\mu \in L^{1}(G)$. Using the last fact, one can easily show that if G contains an open subgroup of the form $\{0,1\}^{\alpha}$ for some infinite cardinal α, then there exists no singular probability measure μ in $M(G)$ such that $\mu^{2} \in L^{\infty}(G)$.
(IV) One might ask if the measure μ in our theorem can be chosen so that $\mu^{2}=g \lambda$ for some $g \in C(T)$ satisfying a Hölder condition. However, the answer is negative. The following observation is due to the referee. If g satisfies a Hölder condition of order $\alpha>0$, then $\hat{g}(n)=O\left(|n|^{-\alpha}\right)$. Thus $\hat{\mu}(n)=O\left(|n|^{-\alpha / 2}\right)$ and μ is supposed to be carried by an arbitrary set of positive Lebesgue measure. This is contrary to Zygmund's classical work on $U(\varepsilon)$-sets (see p. 351 of [7]). However, if we drop the condition on the support of μ, then we can get any Hölder condition of order less than $1 / 2$, by using random processes.

References

1. E. Hewitt and G. Ritter, The Orlicz-Paley-Sidon phenomenon for singular measures, Proceedings of Rome Symposium on Harmonic Analysis, March 24-31, 1977.
2. E. Hewitt and H. S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc., vol. 62 (1966), pp. 399-420.
3. J. P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag, New York, 1970.
4. L. Å. Lindahl and F. Poulsen, Thin sets in harmonic analysis, Marcel Dekker, New York, 1971.
5. S. Saeki, Singular measures having absolutely continuous convolution powers, Illinois J. Math., vol. 21 (1977), pp. 395-412.
6. N. Wiener and A. Wintner, Fourier-Stieltjes transforms and singular infinite convolutions, Amer. J. Math., vol. 60 (1938), pp. 513-522.
7. A. Zygmund, Trigonometric series, 2nd Edition, Vol. I, Cambridge University Press, Cambridge, England, 1968.

Tokyo Metropolitan University
Токуо
University of Washington
Seattle, Washington

