
ILLINOIS JOURNAL OF MATHEMATICS
Volume 25, Number 2, Summer 1981

LOCAL DILATIONS
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1. Introduction

A local dilation is an embedding of a metric space which "stretches" in all
small regions. The concept was introduced by the author in [6, p. 309] where
Theorem 3.1 of this paper was proved. Local dilations were also used in [7],
especially a special case of Corollary 3.4 below. These papers have applied local
dilations by noting that a convergent sequence of local dilations, since close
points are pushed apart, is likely to converge to a one-to-one function. Con-
sidered in the setting of elastic behavior, local expansions can be considered as
locally stretching transformations, although the "strain" (see Fritz John [4])
may well be infinite.

In this paper we examine several properties of local dilations. We show that a
local dilation from any closed manifold, with any "reasonable" metric, into
itself is an isometry in the "path-metric". We show that a strictly starlike region
in a hyperplane in E" can be "pushed out" along a right cylinder (and not along
a slanting cylinder) with a local dilation. Convexity properties and fixed point
properties are considered. And we introduce and use the concept of path-
metric. In addition, many counterexamples are included.

2. Basic properties

A global dilation is a continuous function (map) between metric spaces,

f: (X, p) (Z, d),

such that for x and y in X, d(f(x), f(y)) >_ p(x, y). (It’s just the opposite of a
contractive map.) A local dilation is an embedding between metric spaces,
h: X --, Z, such that any point of X has a neighborhood N with h[N a global
dilation. An embedding is a map which is a homeomorphism when the target
space is properly restricted.

LEMMA 2.1. Ifh" (X, p) (Z, d) is a local dilation and X is compact, then h
is a uniform local dilation. In other words, there is a > 0 such thatfor x, y X
with p(x, y} < , we have d(h(x), h(y)) >_ p(x, y).

Received July 24, 1979.
Supported in part by the U.S. Naval Academy Research Council.

c) 1981 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

337



338 MARK D. MEYERSON

Proof For each x X, let Nx be a neighborhood of x in which h is an
expansion. Let Nx, Nm be a finite subcover of X. Then let gi be a Lebesgue
number for that cover (i.e., forf(x) the maximal radius for an open ball about x
but contained in some Ni, f is continuous and positive on X. Let 6 be the
minimum off(x).) |

Note that this can be restated as follows: With the same hypotheses, there is
a 6 > 0 such that if d(h(x), h(y)) < p(x, y) then p(x, y) > 6.
One of the most fundamental properties of local dilations is that the length of

curves are increased or unchanged. This is our next result.

DEFINITION. For : [a, b] X a path in a metric space, let l(), the length of, be

sup ti= d((ti), (ti-x)) a to < <’"< tn b

where the supremum is over all such collections {t}. It will be convenient to call
the image, G a([a, b]), a curve, although we really have in mind the map
We say that {t}’=o as above are in order and if x a(t) we say that
are in order (or ordered).

THEOREM 2.2 (THE PATH LENGTH THEOREM). lfh is a local dilation and G is
a path in the domain of h, then l(G)< l(h(G)).

Proof Each point of G has a neighborhood in which h "expands". G is
compact, so we choose a finite subcover. Given e > 0 (or in the case l(G) ,
N > 0) there exist x0,..., x in order so that

Z d(x,, x,_ )> l(G)- e (or > U).
For {Xo, x,,} {Yo, Y} an ordered subset of G,

by the triangle inequality. By an easy argument, we can add more points to {Yo,
Yk}, so that each y,_ and y, are in the same neighborhood of our finite

cover. Now {h(yo), h(y)} is an ordered subset of h(G) and

E d(h(y,), h(y,_ x)) > Z d(y,, y,_ 1) > E d(x,, x,_ x)> I(G)- e (or > N).
Hence l(h(G)) >_ l(G). I
COROLLARY 2.3. ?or G an open-ended (half-open-ended) curve, a map of(a, b)

([a, b)), we may use a similar definition of length. Just don’t require to a or
t, b (t, b). Then for h a local dilation l(G) < l(h(G)).

Proof Use essentially the same proof as for Theorem 2.2. The only problem
is that G does not necessarily have a finite subcover. But the sub-curve of G
determined by to and t,, does have a finite cover and this suffices. |
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The following amusing example indicates that there are fewer local dilations
than one might expect.

Example 2.4. There does not exist a local dilation pulling a right triangular
region (the domain) onto a rectangular region (the range) with 2 sides of the
rectangle equal to 2 fixed sides of the triangle.

Proof From the Path Length Theorem (2.2) we see that if G is an arc in the
range of h, a local dilation, then l(h-I(G)) < I(G). Suppose there were a local
dilation (hence a homeomorphism) as stated in Example 2.4. Let G be the
diagonal of the rectangle corresponding to the hypotenuse of the given right
triangle. So l(h-I(G)) < I(G). But the endpoints of G are fixed by h, and G is
the shortest arc between them. Hence h- I(G) G. This is a contradiction, since
a homeomorphism cannot take an interior point to a non-interior point. |

This example shows that if we have an elastic sheet with the proper elastic
properties and in the shape of a right triangle, pulling on the hypotenuse to get
a rectangle would cause "puckering".

3. Pushing out part of a hyperplane

It was found to be quite useful in [6] and [7] to be able to "push out" part of a
hyperplane using a local dilation. The first example of this is:

THEOREM 3.1 (in E3). Given a square in a horizontal plane, consider a right
cylinder with the square as base and heioht at least double the lenoth ofa side of
the square. Then there exists a local dilation, h, of the plane onto the plane
together with the surface of the cylinder, minus the original square’s interior, such
that h is the identity outside the square (see Fioure 1).

A proof of this theorem can be found in [6]. Here, it will follow from the
much more general Theorem 3.3. Before considering that theorem however, we
show that local dilations can only push out hyperplanes in perpendicular
directions.

THEOREM 3.2. Suppose K is a compact set in E"- 1(= {x 6 E": x, 0}) and C
is the surface ofa cylinder in E" with K as the base. If the cylinder is not a rioht
cylinder, then there is no local dilationfrom E"- to E"- C (int K) which is
the identity on E"-1 (int K).

Proof (see Figure 2). It is easy to see there is an (n- 1)-hyperplane P,
containing at least one of the generating lines of C, so that C is contained in one
of the two closed half-spaces determined by P. Then P and E"- divide E" into
4 parts and since C is not a right cylinder, we can choose P so that the part of E"
containing C is a dihedral angle of more than 90.
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FIG. (Refer to Theorem 3.1)

Suppose h is as desired. Let x P E"- C. Then h(x) x and x has a
neighborhood in which h is a dilation. But there are points y and z in any
neighborhood of x (see Figure 2)such that:

(l) h(y) C P- E"-. Hence y int K C- {h(y)}.
(2) z E"-x C. So h(z)= z.
(3) No element of C -{h(y)} is as close to z as h(y).

But then d(z, y) > d(z, h(y))= d(h(z), h(y)) a contradiction. |

FIG. 2 (Refer to Theorem 3.2)
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Starlike but not Strongly Starlike

FIG. 3

Following a definition we will prove our most general result for pushing out
a hyperplane.

DEFINITION. An (n 2)-sphere S in E"- is called strongly starlike if there
exists a point x inside S so that for y S, the segment from x to y meets S only
in y. x is called a central point. See Figure 3 for a sketch of a starlike but not
strongly starlike 1-sphere.

THEOREM 3.3. Given S strongly starlike in E"-1, consider a right cylinder
whose base is the closure ofthe interior ofS, ofheiTht H in the direction ofthe nth
axis of E" (E"- E" in the standard position). Then there is a local dilation h of
E"- onto the union ofE"- and the surface of the cylinder, minus the interior of
S. And h is the identity outside S (n > 2).

Proof We can assume 0 is a central point for S. For 0<t<l, let
S, (1 t)S, So S. Since S is strongly starlike, S, S, 0 if 4: r. The map
S,- S given by s-- s/(1 t) is a local dilation since for sl and s2 in St,

1
Ih(sa)- h(sz)l 1 Is1 s-I > Is1 szl.

We may further assume that 1 inf {Is I:s e S}. Let

M sup {Isl s s}.
Let C be a fixed constant, C > H/2 + Mx. Let T Hz/4Cz, 0 < T < 1. Let

f(t)= C(/T + x/t-x//T t), O <_ t <_ T.

So f’(t)= 1/2C((1/x/t + (1/v/T- t)) >_ C/(2x/t).
Let A be the closed region inside S.r, A 2 the closed region between S.r and S,

and A3 the closed region outside S. (Refer to Figure 4.)
Define h: E"- ---, E" by

(s, 0) for s E"- and outside S (s e A3),
h(s) (s/(1 t), f(t)) for s s S,, 0 _< < T (s A2),

(s/(1 T), f(T)) for s inside S-r (s e A1).
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FIG. 4

t T

Note thatf(T) 2Cx/T H. We use the notation (x, t) (x
It is clear that h is an embedding as we desire--we only need check that it is a
local dilation. We can use neighborhoods so small they do not contain points
of both A1 and A 3 (in Figure 4). Just take the diameter less than 1 T.

Let x and y be in E"-. For d(x, y) < 1 T, we must show that

d(x, y)<__ d(h(x), h(y)).

If x and y are in A 3, then h(x) x and h(y) y, so we are done. If x and y are in
A1, then d(h(x), h(y))= (1/(1 T)).d(x, y)> d(x, y) and we are done. There
are three cases remaining"

(1) Suppose x and y are in A2. If x and y both lie on St,

d(h(x), h(y))= (1/(1 r))d(x, y)

and we are done. So we may assume x ison S, and yison Stwith r > t. Let z be
the point of Sr on the radius from 0 to y (z (1 r)y/(1 t)). Let be the
segment from y to z, fl the segment from x to z (refer to Figure 5). Let ’ be the
segment in E" from h(y)to h(z), fl’ the segment from h(x)to h(z).
Then we have e’ perpendicular to fl’, [fl’[ Ifll/(1 r), and I ’1 =f(r)-

f(t). We drop the l" l, so that e, e’, fl, ff also represent the lengths of their
respective segments. Now o(= (r t)f’(rl)for some r/e (t, r), so

’ > (r- t)C/2x/r > (r- t)C/2x/r.
For y’= y/(1 t)in S, e I(1 t)y’-(1 r)y’ ]r- tl ly’l, so

(r t) < <_ M(r- t).
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Z

FIG. 5 (enlarged from 4)

Let d d(x, y), d’ d(h(x), h(y)). Then

dE

_
o2 2t 2 +

<_ M2(r_ t)2 + f12 + 2Mfl(r- t)
<_ MZ(r_ t)2/r + f12 + 2Mfl(r- t),

and

d,2 ,2 + fl,2 > (r t)2C2/4r + ,82/(1 r)2

>_ C2(r_ t)2/4r + f12 + 2rf12,

where we use the fact that 1/(1 r)2 >_ 1 + 2r since r < 1. It suffices to show

(C2/4- M2)(r- t)2/r + 2rfl2 > 2Mfl(r- t).

Assuming fl > (r t)M/r and using the fact that C2/4 M2, the left hand side
of the inequality is not less than

2rfl2 > 2rfl(r- t)M/r 2Mfl(r- t).

On the other hand, let us assume that fl < (r- t)M/r and use the fact that
C > Mx/ (and so C2/4 M2 > 2M2). Then the left hand side of the inequa-
lity we are trying to establish is not less than

(C2/4- M2)(r- t)2/r > 2M2(r- t)2/r > 2Mfl(r- t).
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Y

FIG. 6

(2) Suppose we have x in A1 and y in A2, say with y on S,. Let z be the
intersection of the segment from 0 to y with ST, and let a, 0’, fl, fl’ be as in (1)
(see Figure 6). We have 0’ perpendicular to fl’ and ff > ft. Let d and d’ be as in (1).
Then

’ (f(T) f(t)) C-(x/T- x/t + x//f t) >- C(T- t).
As in (1), a <_ M(T t). It is clear that a _< M and fl _< 2M. So

d’’ d’ >_ ’ + #’ -/’- 2/ >_ ’ ( + 2/),
since fl’ > ft. Hence it suffices to show 0 + 2aft _< a’. But

a2 + 2aft a(a + 2fl) _< M(T t)3M <_ 12M2(T t) <_ C2(T t) <_ a’2.

(3) Suppose we have x in A and y in A2, say with y on S. We proceed as
before (see Fig. 7). We have a’2= (f(t)-f(O))2=(f(t))2> C2t. By the
triangle inequality,

fl <_ d(x, y)+ o <_ d(x, y)+ M.

Since we are assuming x and y are in a neighborhood of diameter less than
(1 T) < 1, we may conclude that fl < 1 + M _< 2M. Also, as in (1), a _< Mt.
So

a2 q- 2aft a(a + 2fl)G Mt(3M)<_ 12M2t < C2t G a’2.

But as in (2), this implies d’2

A special case of the following Corollary was found to be useful in [7].
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COROLLARY 3.4. For h as in the above theorem, h extends to h’: E" - E" a
homeomorphism (h’l E"-1 h). Also, h’ can be taken to be the identity outside
any 9iven neilhborhood of the (solid) cylinder. (The cylinder is the collection of
points (x, t) for x A w A2 and 0 <_ <_ H.)

Proof Let e > 0. We assume 0 is a central point for S as in the previous
proof. Let A be the closed and bounded region in E"-1 determined by
(1 + e)S {(1 + e)x: x S}. Consider the region R in E" consisting of points of
the form (x, t) with x in A, and 0 < < H + e, or points lying on a segment
from (0, -e) to one of these first type points. Let h’ be the identity outside R
and let h’ E"- h.
Then for r in R (0, -e), r determines a segment from (0, -e) to a point

(x, t) in OR, with either x in 8A and > 0 or x in A and H + e. On this
segment lies a point of the form (y, 0). h’ has already been defined on these three
co-linear points, and so we extend linearly between consecutive pairs (see
Figure 8). It is easy to see that h’ is a homeomorphism, and we may choose
e > 0 as needed. I
Note that since standard spheres and surfaces of cubes are strongly starlike,

this is an extension of Theorem 3.1. We next consider some limitations of
dilations.

THEOREM 3.5.
91obal dilation.

No local dilation h with the properties of Theorem 3.3 can be a

h’ (c)= c U/

(0,- e)
FIG. 8
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z outside S

d(h(z), h(y))
FIG. 9

Proof. Suppose h as stated. For some y in E we have h((y, 0))= (x, t)
with t 0. Consider the plane determined by (y, 0), (x, 0), and (x, t). Then
there is a z in En- 1, fixed by h, so that d(z, y) > d(h(z), h(y)). Figure 9 should be
sufficiently explanatory. |

Example 3.6. We give an example of a closed body K in E2 which cannot be
pushed out to a right cylinder in E3 by a local dilation as above. K is a standard
annulus (see Figure 10).

Proof. Some simple closed curve G in int (K) would be carried to $1, the
inner boundary of K at the top level of the cylinder. But then l(G)< l(S1)
which is not the case. |

FIG. 10
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Conjecture 3.7. The interior of any (n- 2)-sphere (a homeomorph of the
standard one) in E"-a can be pushed out as in Theorem 3.3. |

4. Convexity and fixed points

The study of fixed points for dilations is motivated by the great number of
fixed point results in the field of contractions (for example, see [8]). We give
several results with brief proofs.

THEOREM 4.1. If h: A --. E" is a local dilation (A c E") and h(A) is convex,
then the set offixed points of h is a convex set.

Proof Let F be the set of fixed points with x and y in F. Let G be the line
segment connecting x and y. Then, since x and y are in convex set h(A), G lies in
h(A). By the Path Length Theorem (2.2), l(h-I(G)) < l(G). But G is the shortest
arc from x to y. So h-a(G) G, i.e., h(G) G. Hence for z in G, h(z)is in G. If
h(z) 4= z, h(z) is closer to either x or y than z. But then h decreases the length of
the segment from x to z or the segment from y to z, contradicting Theorem 2.2.
So G lies in F. But this implies F is convex. |

More generally, if A c (X, p) with h: A ---, (X, p) a local dilation and each
two points of h(A) may be connected by a unique segment in X, then the set of
fixed points is convex. (See Section 6 for definitions of segment and convex in a
metric space.)
Note that in Theorem 3.1, the set of fixed points is not convex. However, h(A)

is not convex (A E2 here).

COROLLARY 4.2. Example 2.4 also follows from this result. |

THEOREM 4.3. If h: E" ---, E" is a local dilation, then h is onto E".

Proof (suggested by Robert Osserman). Suppose h is not onto. We may
assume 0 e h(E"). Since h is a homeomorphism of E" with h(E"), h(E")is open,
and there is a point x E" h(E") of minimal norm. Let G be the half-open
segment from 0 to x, x G. Then G lies in h(E"). So by Corollary 2.3,

l(h- I(G)) _< l(G) Ix I"
Since h-a(G) is a half-open arc of finite length, h-X(G) c E" is bounded. So
there exists y in E" and t,/ 1, so that h- (t,x) y. Hence, by the continuity of
h,

t,x h(h- ’(t,x)) h(y).
But t,x --, x h(E"), a contradiction. |

COROLLARY 4.4.
convex.

If h: E" E" is a local dilation, the set offixed points is
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Proof By Theorems 4.1 and 4.3 we are done. |

COROLLARY 4.5. For E2 C, the complex plane, suppose h: C C is a local
dilation fixed on {z},= , Zol > 1, Zo g. Then h is the identity map. Both
hypotheses on zo are necessary.

Proof The first claim follows from Theorem 4.4 and the fact that for such a
Zo, the convex hull of z is C. The rest of the proof is elementary. |

THEOREM 4.6. Suppose M is a Riemannian manifold with x and y in M such
that there exists unique minimal 9eodesic G from x to y. If h: M M is a local
dilation which fixes x and y, then h fixes all points of G.

Proof Analogous to Theorem 4.1. |

Note that the uniqueness of the minimal geodesic is essential. IfM S and
x and y are antipodal, then the reflection across the axis through x and y leaves
only x and y fixed and is an isometry.

5. Spheres and balls

In [5, p. 104, # 12], Kaplansky shows how to prove that a 91obal dilation
from a compact metric space into itself must be an isometry. It’s natural to ask
how far we can go with local dilations. Geometric spheres and balls provide
two easy applications of The Path Length Theorem.

THEOREM 5.1. For S the unit n-sphere in E"+ x, if h: S --, S is a local dilation,
then h is an isometry.

Proof First we mention some facts:

(1) For h: S S a local dilation, h is a global dilation. For if d(h(x), h(y)) <
d(x, y), let G and G’ be the minimal geodesics from h(x) to h(y), and from x to y
respectively. Then we would have l(G) < l(G’) < l(h-a(G)) a contradiction.

(2) If h: S S is a local dilation and h leaves x fixed, then h leaves the
antipodal point, x’, fixed since x’ is the unique point of S a maximal distance
from x. Also, for So the equator they determine, h(So) So, since So consists of
those points of S a maximal distance from {x, x’}.

(3) Suppose a local dilation h: S S is the identity on two antipodal
points, x and x’, and on the equator, So, which they determine. Then h is the
identity on S by Theorem 4.6. This theorem may be applied for the following
reason. If y e So, then y, x, 0 determine a plane. The plane meets S in a circle.
x and y determine a quarter of the circle which is the minimal geodesic from
xto y.
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(4) If.f: So- So is an isometry defined on such an equator, f can be na-
turally extended to S. In particular, for

s So s: 0},
tx + se,+ is a general element of E"+ , x e So, > 0, s e R. Let F take this
element to tf(x)+ se,+. One checks that F is an isometry of E"+ and
F(S) S, hence F can be restricted to S. Also note that F(e,+ 1)= e,,+ 1.

Now we prove Theorem 5.1. For n 0, S {-1, 4-1} and the result is
trivial. Now suppose n > 1, and that the result holds for n- 1. There is an
isometryfof S carrying h(e 1) to e 1. Sof h is a local dilation fixed on + e and
carrying the (n- 1)-sphere equator into itself. But then by the induction
hypothesis,f h]So is an isometry. We extend it by note 4 to an isometry F on
all S, F(el) el. Then F- f h is the identity on So and on _+ el, so by note 3
we are done. |

Another proof which applies to more general manifolds will be given in the
next section (see Corollary 6.6 and the notes following it). It will use the
concept of path-metric and Kaplansky’s result for global dilations.

THEOREM 5.2. For B the open or closed unit ball in E", if h" B - B is a local
dilation, then h is an isometry.

Proof LetSr={xeE": xl =r},0<r< 1.
First we show h(x)l <- [x I. Suppose for some x, h(x)l > x I. Suppose B

is closed. Then let G be the longest radial segment outward from h(x) such that
G lies in h(B). Then I(G)< 1 h(x)]. Since h is a homeomorphism with its
range, for h(x) and y the endpoints of G, h-(y) lies in OB. Hence

l(h- I(G)) _> d(x, c3B) 1 x > 1 h(x)[ >_ l(G),
a contradiction.

Suppose B is open. Then let G the longest radial half-open segment outward
from h(x) such that G lies in h(B). Then h- I(G) must approach cB. And we use
the same argument as in the preceding paragraph.

(y,, G, y,, --) h(B), l(h- I(G)) >_ d(x, h-l(y,))___) d(x, OB) > l(G)).
Now we show that h(Sr) lies in S,. By the above, h(0)= 0. So it suffices to

show that h(x)l > Ix I. Let G be the segment from 0 to h(x). Since h(0)= 0,
we can apply the same argument used in Theorem 4.3 to get that h(B)= B.
Hence G lies in h(B). Thus h-l(G) is an arc from 0 to x and so

Ixl <_ l(h-I(G))_< I(G)-
By Theorem 5.1, hiS is an isometry. We radially extend h/$1/2 to an

isometry F of B with F(0) 0. Then F h. For F- h is the identity on 0 and
$1/2 and F- h(S,) lies in S,. If F- h fails to be the identity, it fails on some
closed ball with center the origin and radius between 1/2 and 1. On this closed
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ball let 6 > 0 be such that F-1 h is a global dilation on neighborhoods of
diameter 6. There are spheres Sr and St in this ball with r- < c5 and
F-1 oh the identity on the first but not the latter. So we have
y F- h(x) 4: x for some x and y in St. Then

d(y, y/(2 y ]t- 1/2] < d(x, y/(2 y )),
a contradiction. |

It was conjectured in [7] that a local dilation of a path connected space into
itself must be a dilation. (A three-point space shows the necessity for some sort
of connectivity.) We give below a counter-example.

Example 5.3. A local dilation (in fact a local isometry) from a piecewise
linear 1-sphere onto itself which is not an isometry.

Construction. Consider the following points in the plane:

A(- 2, 0), B(- 1, 0), C(0, 1), D(1, 0), E(2, 0), F(2, 1), G(1, 1), H(0, 0),
I(-1, 1), J(-2, -1). (See Figure 11). Let/map A,B, C,D,E,F, G,H,I,J to
J, I, H, G, F, E, D, C, B, A respectively and be an isometry on each segment.
Thenfis an isometry on any two adjacent segments and so a local dilation. But
d(D, H) 4: d(G, C)= d(f(D), f(H)). |

Note, however, that f is onto. This is necessary for certain spaces (such as
piecewise linear spheres) as we will show in the next section.

A B D E

J I G F

FIo. 11
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6. Path-metrics

In this last section we will generalize several of our results by using a new
metric on (X, p), the path-metric.

Define p"X X R w {oo} by p’(a, b)= inf l() where the infimum is
taken over all paths, 0, from a to b. Then p’ is the path-metric for (X, p). (If
there is no path from a to b, then p’(a, b)= oo.)
We call (X, p) convex if any two points can be connected by an arc isome-

tric to a segment (e.g., see Bing [1]). We refer the reader to Buseman [3, p. 12]
for some conditions implying convexity. Note that the intersection of convex
subspaces may fail to be convex--let T and B be the top and bottom closed
semicircles of S1. Using the path-metric, T and B are convex, but T B (two
points) is no.t.
The first theorem lists some of the basic properties of path-metrics.

THEOREM 6.1. (1) (a) p _< p’.
(b) p’ is a metric, possibly with infinite values. It is finite-valued if and only if

there is a path offinite length between any two points in (X, p.
(c) (X, p’ has a finer topology than (X, p.
(d) If(X, p is convex, then p’= p.
(e) If p’ p and (X, p is compact, then (X, p is convex. The compactness

assumption is needed.
(f) If p’(x, y)-- c then x and y lie in distinct components of fX, p’.
(g) If p’ < c, then (X, p’ is convex.

(2) (a) f (X, p is complete, then so is (X, p’. The converse is jhlse. In
jhct, we may have (X, p’ complete and (X, p not even topologically complete.

(b) If (X, p’ is compact, then (X, p is compact. The converse is false (in
jhct see (2c)). Compact may not be replaced by locally compact.

(c) We y have (X, p compact, locally path connected, and such that
every pair ofpoints can be connected by a path of length at most l, but (X, p’ is
not even locally compact.

(d) (X, p’ is always locally path-connected.
(3) (a) If : l f X, p is continuous and l() < , then : l f X, p’ is

continuous. (I is any standard interval.)
(b) If(X, p is path connected then (X, p’ is path connected and only if

(c) For a path in (X, p, l() is independent of whether we use p or p’.
(d) ."= .’.

Proof (1) All but parts (e)and (f)are straightforward. From the hypoth-
eses of (le) one can conclude that there is an arc of minimal length between any
two points (see Buseman [5, p. 10]). Since p p’, the length of such an arc is the
distance between its endpoints. By the triangle inequality and the definition of
length, these minimal arcs are segments. To see that the second hypothesis is
needed, consider the plane with a point deleted.
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For (lf), it suffices to note that Z {zlp’(x, z) < oo} is open and closed. It is
closed since for w not in Z, {r ]p’(w, r)< oo} cannot meet it.

(2) (a) Suppose (X, p) is complete and {x,} is a Cauchy sequence in
(X, p’). Then {x,} is p-Cauchy and so converges to some Xo in (X, p). Since
{x,} is p’-Cauchy there exists, for each k > 0, an nk (> nk-1) such that for
m, n >_ nk, p’(x,,, X,) <__ 2 -k. Hence there is a path from x,k to x,k+l of length at
most 2-k. Putting all these paths end to end, and throwing in Xo, we get a path
of length at most 1 through all the x, and ending at Xo. With this path we see
that the subsequence {x,} converges to Xo in (X, p’). But a Cauchy sequence
with a convergent subsequence is convergent.
To see the converse is false let (X, p), a subspace of E2, be the cone from

(1, 1) to the rationals in,the interval [0, 2] of the x-axis. Then (X, p) is not
Baire, so not topologically complete. But (X, p’) is complete.

(2) (b) The first statement is true since (X, p’) is finer than (X, p). To see
that compact cannot be replaced by locally compact consider point A in Figure
12.

(2) (c) Consider the "light bulb" space in Figure 13. There are infinitely
many "filaments" each homeomorphic to a circle and with enough "zig-zags"
to be of length 1, all joined at a point ((X, p’) Vn=l S1).

(2) (d) Follows easily from (3a).
(3) (a) Let 0(c) C and let ---, c from either side, say the left. For each t,

0- 1 2 3 4’
FIG. 12
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"Light Bulb Space"

FG. 13

we get a subpath, , el[t, c]. Now l(,)is non-increasing as t c. Suppose
l(z,)--, L > 0. Then choose t’ such that L _< l(a,,) < 5L/4. There are points

-- O < <"" < n--- C with p((ti), (ti-1)) > 3L/4.
i=1

By using more points if necessary, we can assume p((t,), (t,_ 1)) < L/4 so that

n-1

2 P((ti)’ (ti-1)) > L/2.
i=1

Hence l(l[t’, t,_,])> L/2 and l(e,._,)< 3L/4, a contradiction. So l(e,) 0.
Thus as t--, c, p’(e(t), (c))--, 0 and is continuous.
Note that we may have e continuous in both cases but l(a)= oe. Just let

(X, p> E2 and l()=
(3) (b) If (X, p> is path connected and p’ < oe then it follows from (3a). If

p’(x, y)= m, by (10 there is no path in (X, p’> from x to y.
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(3) (c) Let/()(/’()) be the length of in (X, p((X, p’)). Then

l’() sup Z p’((ti), o(ti_ 1))= sup l()= l()
where the supremums are over {ti} in order in the domain of u.

(3) (d) Follows from (3a)and (3b). |

We now apply path-metrics to local dilations.

THEOREM 6.2. Iff: (X, p) - (Z, d} is onto and a local dilation, and

f: (X, p’) (Z,

is continuous, then the latter map is a global dilation.

Proof Given x, y X, there is a path from f(x)to f(y)with l()arbi-
trarily close to d’(f(x), f(y)). By The Path Length Theorem (2.2), l(f-()) <
l() where f-()is a path from x to y (f is a homeomorphism). Hence
p’(x, y) <_ d’(f (x), f(y)). |

To see that we need to assume the map f: (X, p’) --, (Z, d’) is continuous,
consider (X, p) [0, 1] in E and (Z, d) {(x, x sin (l/x))} in E2 where x is
in [0, 1] (an infinitely long curve)andf(x) (x, x sin (l/x)). Then in the path-
length metric, f fails to be continuous at 0.
To see that we need f onto above, consider a local dilation wrapping a

segment almost all the way around a circle.
It follows immediately from Theorem 6.2 that iff: (X, p) -, (Z, d) is a local

dilation and f: (X, p’) (Z, d’) is a homeomorphism, then the latter map is a
local dilation.
Note that the converse to Theorem 6.2 is false: Let (X, p), a subspace of E2,

consist of the segments, S,, from (0, 0) to (1, l/n), n 1, 2, 3, and the
segment S from (0, 0)to (1, 0). Let (Z, d) (X, p) $1. And definef: X --, X
by f(S,)= S.+1 and f(S)= S, such that f doesn’t change x-coordinates.

Since we will repeatedly use the fact that a global dilation from a compact
metric space into itself is an isometry [5, p. 104, # 12] we indicate below more
details from the proof that are in Kaplansky’s book (where it is an exercise with
hint). Let a and b lie in X, a compact metric space. Define a, =if(a) and
b, =f"(b). Then there is a convergent subsequence of {a,}. There is a sub-
sequence of this, say {a,}, such that {b,} is also convergent. So we can find n
and m to make a, and a,+ arbitrarily close to this point of convergence, and so
arbitrarily close together, and we can do the same, simultaneously, with b, and
b,+ But

anan+ 2 a._ an+m_ :> ""> dam and b,b,+m :> bbm.
Thus we can find am and bm arbitrarily close to a and b respectively. Since
am bm >_ al b > ab, al bl ab and f is an isometry. Furthermore, since am can
be found close to a, the range is dense. But X is compact, so fis onto.
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COROLLARY 6.3. IfX E" is convex with the standard metric andf: X X
is onto and a local dilation then it is a global dilation. IfX is also compact, thenf
is an isometry.

Proof For such an (X, p), p p’, so f: (X, p’) (X, p’) is still contin-
uous and we can apply Theorem 6.2. If X is compact we can apply the
previously mentioned fact in Kaplansky [5, p. 104]. |

The next theorem generalizes Theorem 4.3.

THEOREM 6.4. /f (X, p) is complete and a manifold without boundary and
p’ < then all local dilations of (X, p) to itself are onto.

Proof Let h: (X, p) -* (X, p) be a local dilation, Then by Invariance of
Domain, since h is an embedding, h(X) is open in (X, p). Suppose h is not
onto. Let x h(X) and y X h(X). Since p’ < , there is a finitely long path
from x to y. Let fl be a half-open subpath from x to, but not including, the first

point of not in h(X). Let 7 h- l(fl). Then by the Path Length Theorem (2.2),
1(7) < l(fl) < 1()< c. Let T {t}.’f21 be in order such that ] p((t), 7(t- 1))
is within 1 of 1(7).
For each n > 1, let T, {}7’--"1 = T,-1 be in order with p(7(tT), 7(t7= 1))

within 2-" of/(7). Then 7(t,,.) is within 2-" of 7(t) for t,,. < and in the domain
of 7. So {,(t,,.)} is Cauchy in (X, p) and hence converges to some z in X.
Complete the proof as in Theorem 4.2. |

We note that none of the hypotheses can be dropped. To see that com-
pleteness and no boundary are required, consider an open ray and a closed ray
respectively, with the usual metric and h a translation. Having p’ finite insures
that X is connected--consider X {(x, y)[y is a positive integer} E2 and
h(x, y)= (x, y + 1).
The following example shows that (X, p) can be very "nice" but (X, p’)

very "bad". Such behavior dan be avoided by assuming p’ < oo.

Example 6.5. (X,/9) E and (X, p’) is discrete. Let X consist of the reals
with p(x, y) w/Ix Yl. Then (X, p) is a metric space homeomorphic to E1.
But if a and b are at distance c in (X, p), then p’(a, b) > x/cn for every positive
n. |

COROLLARY 6.6. /f(X, p) and (X, p’) are compact manifolds without boun-
dary and p’ < then all local dilations of (X, p) to itself are isometries on
(x, p’).

Proof By Theorem 6.4 a local dilation will be onto. By Theorem 6.2 it will
be a global dilation of (X, p’). And by Kaplansky [5, p. 104] it will be an
isometry on (X, p’). |
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Note that (X, p) can be a manifold and (X, p’) fail to be a manifold.
Consider the "snowflake" curve, an infinitely long loop (or a double cone on
the snowflake curve).

COROLLARY 6.7. If (X, p) is a compact Riemannian manifold (connected and
without boundary) then any local dilation is an isometry.

Proof For a Riemannian manifold, p p’. |

We now have an easy proof of Theorem 5.1:A local dilation of a standard
sphere to itself is an isometry. Although p p’, p(a, b) p(c, d) if and only if
p’(a, b)- p’(c, d). So an isometry on (X, p’) is an isometry on (X, p). Now
apply Corollary 6.6.

Conjecture 6.8. Suppose S En+l is a homeomorph of the unit n-sphere
and S together with its interior, is convex. Then any local dilation of S is a
global dilation (and hence an isometry). |

Note that Example 5.3 shows the necessity of some assumption such as
convexity--piecewise linear doesn’t suffice.
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