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STICKELBERGER RELATIONS AND TAME EXTENSIONS
OF PRIME DEGREE

BY

L. N. CHILDS

Introduction

Let K be an algebraic number field with ring of integers O Or‘. Let L be a
Galois extension of K with group G, and with ring of integers O/. The exten-
sion L/K has a normal integral basis if there exists an element of O/ so that
{tr(0) a in G} is a basis of OL as an Or‘-module, or equivalently, OL is free of
rank one as a module over the group ring Or‘ G. The extension L/K is tame if
for each prime ideal p of Or‘, the ramification index ep of p in L is relatively
prime to p. A theorem of E. Noether asserts that tameness of L/K is a necessary
and sufficient condition for 0i to be a locally free (hence projective)
Or‘ G-module of rank one. Thus tameness of L/K is a necessary condition for
the existence of a normal integral basis for L/K.

Let G be abelian, and let C1 (Or, G) be the group of isomorphism classes of
rank one projective Or‘G-modules. Let R(Or‘G) be the set of classes of
C1 (OrG) which are represented by rings of integers of tame Galois extensions
of K with Galois group G. Then R(Or‘G) measures the extent to which
tameness fails to suffice for the existence of normal integral bases.

In case G is cyclic of order l, prime, and K contains a primitive/th root of
unity (, L. McCulloh [7] showed that R(Or‘ G) is generated by the set of classes
which are images under action by elements in the Stickelberger ideal J of Z[A],
A Aut G (as defined in Section 2 below). The purpose of this paper is to show
that one inclusion of McCulloh’s equality holds without assuming existence of
(, namely, that classes in the image of the Stickelberger ideal are represented by
rings of integers of tame extensions.
A consequence of our result is to show anew that the classical Kummer-

Stickelberger relations on the ideal class group of Z[(], ( a primitive/th root of
unity, prime, are a consequence of the Hilbert-Speiser theorem (tame abelian
extensions of Q have normal integral bases). Our derivation is different from
both the proof via Gauss sums [5, Section 105-109] and the proof of [1], and
shows that McCulloh’s result is not just an analogue but a generalization of the
Stickelberger result for extensions of prime degree (cf. [7, (1.3.2)]).
Our method of proof is essentially a Galois descent argument.
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For the remainder of the paper, is a prime number, ( is a fixed primitive/th
root of unity, 2 1 (. G is cyclic of order with fixed generator a, ( is the
group of complex characters of G; ;to, Z1 in ( send tr to 1, (, respectively. Let
A Aut (G). If 6 in A acts by 6(tr)= tra, 0 < a < l, we write a t(6). Any
non-trivial element Z of ( may be written as Z Z1 6 for some 6 in A.

Let f Gal (Q[(]/Q). If in f acts by (() (a, 0 < a < l, write a t(y). We
let y in f act on Z in G by ,() ), Z.
We refer to [7] for unexplained notation and proofs of numerous facts used

here. I wish to thank L. McCulloh for several stimulating discussions, S. Ullom
for informing me of reference [6], and the University of Illinois at Urbana for its
hospitality during the research on this paper.

I. C1 (OG)
Let K be a number field, K K[(], O be the ring of integers of K, O; the ring

of integers of K;, F Gal (K;/K). We wish to describe CI (OG) and C1 (O;G).
We use the description of Jacobinsky and Frohlich [2] which describes the class
group in terms of ideals of a maximal order. Namely, C1 (O; G) is identified as
the cokernel of the map

U(O,,G) Map

where O;. is the semi-local ring obtained by localizing O; with respect to the
multiplicative set Z lZ, I is the collection of fractional ideals of K; prime to
(l), Map (t, I;) is the set of functions from t to I;, U( )is the units functor,
and i(fl)(Z)= (Z(fl)), the principal ideal generated by (fl), for fl in U(O;, G).
We denote by 4); the canonical map from Map (t, I;) onto the cokernel,

which we identify with Cl (0; G).
The description of C1 (0; G) is based on the fact that the maximal order of

OG is @x O ex where

z(- )rex
i=o

hence Map (t, I;) is the group of fractional ideals of the maximal order of K; G
which are prime to (l).

In a similar way we may identify C1 (OG) as the cokernel of the map

U(O,G) Mapr (d, I;),

where n e MalSr ((, I) if n e Map ((, I;) and n(Z) (n(it)) for all in r. This
description may be obtained by either identifying the group of fractional ideals
prime to of the maximal order OG of KG with its image in Map ((, I) under
the map induced from the inclusion from OG to O;G; or it may be obtained
from [3, p. 428].
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We let b be the canonical map from Mapr (d, It) onto C1 (OG). Putting the
two sequences together gives the commutative diagram with exact rows,

C(OIG Mapr ((, It) C1 (OG). ,1

U(O;,IG Map ((, I;) CI (O;G) ... 1,

where the rightmost vertical map is induced from the inclusion map
OG O G.

It is a fact [7, (2.4.1)] that if m is in Map (6, It) and has the property that
m(x) (ax) where ax l(mod (2-1)), then (m) (1). We will generalize this
useful fact below.

Let 6 in A Aut G act on n in Map (G, It) by 6(n)(z)= n():. 6). With this
action the bottom line of (*) is a A-sequence [7, (2.3.1)]; it is straightforward to
verify that the top sequence of (*) is also a A-sequence.
The above description of C1 (OG) is in terms of ideals. The rings of integers

we study are naturally presented as modules. Here is the translation into ideal
classes.

Let P be a rank one projective OG-module. Since O,G is semi-local,
P Ol Gv for some v in P,, hence P,l O.Gv, where P; O; (R) o P. Then for
each X in j, ez Pc - ez K Gv K;ez v; so ex P; n(x)e; v for some fractional
ideal n()0. Since P Ot Gv, n(Z) is prime to 1, so is in I. To show n is a F-map
we note that F acts on P- O(R) P by acting on the left factor; hence
7(ex P) 7(ex)P e:(x)P. Then (ex P) n(z)),e v ),n(x)e(x)v, whereas
etx)P n(y):)etx)v, and so n(71)= 7n(z) for all 7 in F. Hence n is in
Mapr (G, I).
The class cl (P) of P is then b(n)in CL (OG).

2. The theorem

As above, G is cyclic of prime order l, K is a number field with ring of integers
O. Define C1 (OG) ker CI (;t0), 0 the trivial character on G. Define R(OG)
to be those classes in C1 (OG) which are represented by rings of integers of tame
extensions of K with Galois group G. By [7, (1.2.1)], R(OG)c_ C1o (OG).
We wish to identify R(OG)inside C1 (OG). Recall that A Aut (G), and a is

a fixed generator of G. For 6 e A, let 6(a) #(a) with 0 < t(6) < I. Let 0 A

t(6)6-1. Let J [(/-10)ZA] ZA, the Stickelberger ideal.
Let A be the Z-submodule of ZA with basis consisting of and the elements

(5 t(6) for 6 4:1 in A. Then [7, (4.1.3)] (l-IO)A J.
Now A, hence ZA, acts on CI (OG) by functoriality. Let C1 (OG)J be the

subgroup of C1 (OG) generated by c, e in J. Our result is:
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THEOREM. Let G be cyclic ofprime order l, and K be a numberfield with ring
of integers 0. Then CI (OGy

_
R(OG).

McCulloh’s Theorem [7] is:

If in addition K contains a primitive /th root of unity (, then
CI (OG) R(OG).
Now let J’ be the image of J in Zf, f Gal (Z[]/Z), under the isomor-

phism ZA Zf given by gi.--} if t(6)= t().

COROLLARY. C1 (Z[(])J’ (1).
This gives the classical Kummer-Stickelberger relations on C1 (Z[(])[5,

Satz 136].

Proof of Corollary. We specialize to K Q, O Z. Then R(ZG) (1), by
the Hilbert-Speiser theorem [5, Satz 132]. Hence C1 (ZG)J=(1). But
CI (ZG) C1 (ZG); and CI (ZG) C1 (Z[(])under the map induced by sending
tr (, by Rim’s theorem [8]. Since this isomorphism is evidently compatible
with the isomorphism of ZA with Z the corollary is immediate.
The rest of the paper is devoted to the proof of the theorem.

3. Proof of the theorem

Denote by Mapr (d, I;) the set of maps m in Mapr ((, I;) such that m(Zo)
(1), and Mapr (d, I;)s the subgroup generated by m, in J. (Recall a is in Z[A],
and 6 in A acts on rn by gi(m)C0 m(:o 6).)

Let M be a class in C1 (OG)s, represented by m’ in Mapr ((, I)s. By [7,
Lemma (4.1.5)], there exists a’ in Mapr ((, I;) such that for all in A,

(1) a’/’ m’.

We follow the proof of [7, (4.2.1)], to construct a tame extension L of K, but
we do it in such a way that L will descend to a tame extension N of K with
cl (ON) M. Let R(2) be the group of principal fractional ideals (a) with a
(mod /l), a in O,.
Observe that F Gal (K;/K)maps 1-1 by restriction into f Gal (Q()/Q).

For each coset representative 6 of f mod F, let a(fz) be a prime of K; in the
same class in I/R(2) as a’(fZ), such that a(fza) splits completely from K.
(Recall that Z in G satisfies Z(a)= .) Choose the a(fz) also so that for
different 6, the a(6za) contract to distinct primes of K. Such a choice is possible
since the Dirichlet density of primes of K which split completely from Q is 1,
hence in each class of I/R(2l) there are infinitely many such primes (see [6,
p. V-3] or [4, p. 215].
For 7 e F, let a(,6;1) ,a(6;), and set a(;o) (1). Then for ; 4: ;o in d, the

aC( form a collection of distinct primes. Moreover a is in Map (G, I), and
a a’(u) where (u)is in Mapr, (0, R(2)). From (1) we get (u)m’ a.
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For any , in F and Z in (, (u(Tz)) (?u(z)), so we may alter u(z) by a global
unit if necessary so that u(VZ) Vu(z) (see proof of the lemma below).

Let u(z1) Uo, and set L K[Z]/(Z- Uo) K[z], where z= Uo. Because
(uo) is in R(2’), it follows from [7. (3.1.1)] that L/K is tame ;moreover, since the
a()) are distinct primes, the proof of [7, (4.2.1)] goes through to show that
cl (0) 4)(m’) where

b" Map ((, I) C1 (OG)
is as in Section 1 above.
The rest of the argument proceeds as follows.

(i) F Gal (K/K) extends to a group ’ of automorphisms of L in such a
way that F and G Gal (L/K) commute, hence the fixed filed Lr= N is a
Galois extension of K with group G.

(ii) N/K is tame.
(iii) cl (O) 4(rn’).

These arguments will complete the proof.

Proof of (i). To define an action of r Gal (K;/K)on L, it suffices to
define the action on z. So we look at V(uo) for V in F. Since u is a F-map, for any
7inF,

where/J runs through A Aut (G).
There is an isomorphism of F into A which takes 7 in F, acting on by

y() ’{?), to Y in A, where },l({r)= {r"?}. Hence

(0) FI u(z ,-

r/eA

whr {,, ?)t {,7) (,}(?). nn:

{uo) (0)’{’," u(z- )’{""" {0)’{".
lneA

where s is the quantity inside the brackets. Since u(z) 1 (mod At) for all
Zd,sl (mod
Now in L, z uo. So for each V in F, we define an extension ? of V to L by

(z) ztsr. Then is a well-defined extension of V to L.
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Let F be the set of extensions .
The maps tr’, a in G, 2 in ’, form a set of [G" 1] [F" 1] [L: K] distinct

K-automorphisms of L, for if tri trJ’, then their respective values on z are
equal, namely,

it(T)zt()S jtO")zt(?’)ST,

hence t(7)= t(7’), 7 7’, hence i=j. So L is a Galois extension of K with
Galois group H {r i- 0, l- 1; in F}.

It is quickly checked that and a commute on L. So H is abelian.
Now F is cyclic, being a subgroup of Gal (Q[]/Q). Let , generate F. Then

either has order [F’I] in H, or, since G has index in H, generates all of H. In
the latter case, ;/’ restricts to 7’ /(since [F" 1] divides [Q[]" Q] 1) and ;/
has order [F" 1] in H. So, replacing by if necessary, we can assume that
generates a subgroup F of H, F restricts isomorphically to F on K, and
H=FG.

For future reference we note that since (z)= z")s with s 1 (mod 2),
then 7(z) z’’)s with s -= 1 (mod 2). This is easily seen by induction. So we
may assume, with or without the replacement of by 7t, that

(2) 9(z) z’()c

for some cr in O, with c 1 (mod ,l).
We let N be the fixed field of F. Then N is a Galois extension ofK with group

G, and N; L. This completes part (i) of the proof.

Proof of (ii). We know L=N’K;N(R)rK. Since [N:K]=I, the
ramification index of any prime P of K divides l, so will always be prime to the
characteristic of Or/P if P does not lie over (l). Suppose, then, that P is a prime
ideal of Or lying over (1). Then the ramification index ep(N/K) divides
ep(K/K), ep,(L/K) where P’ is any prime of K; lying over P. But L/K; is tame,
so ep(L/K) 1; also ep(K/K) divides [K; K] < l- 1. Since e,(N/K) divides
l, ep(N/K)= 1. Hence no P lying over (l) ramifies in N, and N/K is tame.

Proof of (iii) (the class of ON in C1 (OG) is M). Following the last para-
graph of Section 1, we find the class of ON in CI (OG) by first finding a suitable
normal basis element of ON,t. Our candidate is

1( )Vo 1 + Z (z"a’)
?F

in L

where 6 runs through a set of coset representatives of F in f Gal (Q[(]/Q).
Evidently Vo is fixed by F, so is in N. To show that Vo generates a normal

basis, we need to show that Vo is in ON, and that the discriminant of {tr(v0)}, in G

is a unit of ON,t.
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To show that Vo is in Ou,, we recall from (2) that ,(z) z")c with c =- 1
(mod 2), and z Uo 1 (mod 2). Thus in the expression for Vo, we may write

We set dto) uo")ct’); then d,)is in 0,,

dt,) 1 (mod 2) and (z)’)=

Since ,6 runs through all elements of fL t(76) runs through all i, 1 _< < 1,
SO

l-1 l-1 .11
2 zidi_

1 o (di- 1)ziVo =-i -t zi +
i=o i=o

The first term is in O, by [7, (3.3.3)], and the second has coefficients of z which
are in O, since d -_- 1 (moO 2t) and (1) (2’- ). Hence Vo is in N
To compute the discriminant of {tr(Vo)}=o t_ we note that

1-1

trJ(Vo 1 ,, (ijzid for each j, 0 _< j _< l- 1.
i=0

So

hence

do dl d2

1 do dl 2d2-- do 2dl ’td2

A{trJ(vo)} (dod d2 ...)2
12

Z

Z
2

det (ij)2m{zi}.

Now A{zi} + (Uo)t-l’, and det ((ij)2 1’, so we get

A{tr(vo)} + (dod, dE’" ")2(u0)’-1,

a unit of O;,. Thus {tri(vo)} is a normal basis of Ou,/Ot.
Following the prescription of the last paragraph of Section 1, we let n in

Map (G, 1;) be such that for each Z in (, exOl n(z)exvo. Then we find that
n(y;t) yn(Z) for in F, just as in the last paragraph of Section 1. Hence n is in
Mapr (t, I;). The class of Ou in CI (OG) is then b(n).
We need to show that el (Ou)= 4(m’). For this we use

LEMMA (cf. [7, (2.4.1)]). Ifm, n are in Mapr (d, I;), and for each 6 in A there
exists (u) in R(2t) so that m(z1 6) (u,)ll(Z 6), then b(m) 4(n) in C1 (OG).
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Proof of lemma. Since m and n are F-maps, it follows that for all V in F, the
ideals (V(uo)) and (u) are equal. Hence 7(u)and uvo differ by a unit factor in O
which is 1 (mod 21). Fix a set T of coset representatives of fl mod F and
replace ua by 7(ua) for :/: 1, 6 in T. Then 7(uo)= u for all 6 in O., V in F.

Let

1
fl exo + uoex,a where ex =-- Z(z)z-’ in KG.

6in

We show fl is in U(OG).
Since u6 1 (mod 2), there exist s6 in 0, so that u6 1 + 12s6. Hence

fl exo + E (1 + 12so)e,,o 1 + E so2(lex,o)

which is in O,G. Similarly for fl- exo + u; ex. So fl is in U(O,tG).
Since u y(uo) for y in F, both fl and fl- are in OG. So fl is in U(O,G).
Now the image of fl in Mapr (, I)is (u), U(Zo)= 1, u(za )= uo. So

(u) (1) in C1 (OG), and (m) (u)(n) (n). That proves the lemma.

We write m n if m, n are in Map (, I) and m(z ) (u)n(z ) with u in

Returning to the proof that cl (Ou)= (m’), we need to show that
(n) (m’).

Let v (1//) Z zi" Then exOL m(z)exv and m m’, by[V, proofof (4.2.1)].
We have n()ex Vo ex OL m()ex v. Now

1
z,O) ande61)

1
exla Vo -i zt)at)-

by the argument of [7, p. 573, line 9]. Thus n(z16)(dto)) m(;l 6) for all 6 in
A Aut (G). But d,o 1 (mod 2t), as we observed in showing Vo was in ON,v
So n m. Thus n m’.
Now both n and m’ are in Mapr ((J, k), and we have b(m’) M, the class in

C1 (OG)J we began with, and b(n) is the class of ON. Thus, by the lemma,
M cl (ON) in CI (OG). Since N is a tame extension of K, the proof is
complete.

Note. Leon McCulloh informs me that he has subsequently obtained re-
suits (forthcoming) which substantially generalize the theorem of this paper.
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