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ON SETS CHARACTERIZING ADDITIVE AND
MULTIPLICATIVE ARITHMETICAL FUNCTIONS

BY

KARL-HEINZ INDLEKOFER

1. Introduction

A function f: N C is called additive if

(1) f(mn) =f(m) + f(n)

for all coprime m, n 6 N. If (1) holds for all pairs of integers m, n 6 N, we say that
f is completely additive. A function g: N C is called multiplicative (resp. com-
pletely multiplicative) if

(1’) g(mn) g(m)g(n)

for all coprime m, n N (resp. for all m, n N).
Because of the canonical representation

(2) n= l-I p’" with
p prime

of the integers n N we havef(n) Epprimef(pat’) (resp. 9(n) I-Ip prime 9(PP))
An additive fcan be extended uniquely to an "additive" function f*: Q/ C,
where Q/ {a/b: (a, b)= 1; a, b N}, by f*(a/b)=f(a)-f(b). In a similar
manner we get an extension O* of a multiplicative function g by g*(a/b)=
9(a)/o(b) in case 9(b) 4:0 for all b N. In the following we denote by 2! the set
of all additive f: Q/ --, C and by 9.15 the set of all multiplicative 9: Q / C with
9(b) 4 0 for all b N. We write 21 (resp. 9.15c) for the subsets of completely
additive (resp. completely multiplicative) functions in 21 (resp. 9.15).

DEFINITIONS. Let ,/= {a.} c Q+. We say that ,/is a
(a) U-set for 21 in casef 21, f(/)- {0} implies f-0,
(b) U-set for 9.1/in case g 9)5, (,)- {1} implies - 1,
(c) C-set for 21 in casef 2I, limn-,oo f(an) 0 implies f- 0,
(d) C-set for 935 in case 0 9)/, lim._ o(a.)- 1 implies g- 1.
In an obvious manner U-sets and C-sets are defined for 21c (resp. 9.15c).
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Examples. G. Freud [5] gave examples of U-sets and C-sets ’ c N for !
(resp. ’21c) characterized by density properties. P. D. T. A. Elliott [3] showed
that the set of {p + 1" p prime} is a U-set for I. K.-H. Indlekofer [6] in-
vestigated the family of sets ’ {a.} c N defined by the following conditions"

(i) a.<n,nN;
(ii) ,,,.= 1 O(1) for all k N.

(iii) ,x,,,,._=0a)l xp(d)/d + o(x) for all d N, where p > 0 is multi-
plicative and o(.) depends only on d and p.

A special example of these results is the following" lf,/= {a,} fulfills the
conditions (i)-(iii) and if the set {d" p(d) 0} is empty, then , is a C-setfor I.

2. Results

The aim of this paper is to handle U-sets and C-sets from a different point of
view. For this purpose we remind the reader of two well-known facts of linear
algebra and group theory.

(I) Let U be a subspace of the Q-vector space V. Then U :/: V ifand only if
there exists a linear functional A: V Q, A :/: 0, with AU {0}.

(II) (See [7, p. 183]) Let U be a subgroup of the abelian group V and let
A*: U D be a homomorphism, where D is divisible (i.e., for each x D andfor
every n N there exists a y D with ny x). Then A* can be extended to a
homomorphism A: V D, i.e., a A exists making thefollowin9 diagram commute:

An easy (and well-known) consequence of (II) is the following.
(II’) Let U be a subgroup of the abelian group V and let

c,:-{z c: Izl-- }
denote the (multiplicati’ve) circle 9roup. Then U :/: V ifand only if there exists a
homomorphism A: V C*, A :/: 1, with AU 1}.

Proof Let U 4: V and let n: V ---, V/U be the natural homomorphism. Then
V/U :/: {0} and by (II) there exists a homomorphism A*: V/U C*, A* :/: 1.
Thus the homomorphism A A* n: V C* has the desired properties. The
proof for the other direction is obvious.

For each q Q + we have the "canonical" representation q I-If= 1,Pi prime pi
with g e Z. The mapping q- (, , O, ...) provides an isomorphism be-
tween the multiplicative group Q+ and the free (additive) abelian group
V ]Z] Zi with Zi Z. Then, to the subset 0 Q+ there corresponds a
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subgroup U < V. On the other hand the set V generates the Q-vector space
V* * Q and the set U generates the subspace U*. Now, from these facts, (I)
and (II’) we deduce the following.2

THEOREM 1. Let {a,} c Q /. Then the followin9 two assertions are
equivalent"

(1) is a U-set for lc.
(2) For each n N there exist 1, k Q and nl, nk N such that

k

(3) n I-I
i=1

THEOREM 2. Let ’ {a,} c Q/. Then the followin9 two assertions are
equivalent"

(1)
(2) For each n N there exist , k Z and n nk N such that

(4) n l-I
i=1

Remark 1. F. Dress and B. olkmann [2] give a different proof of Theorem
1. Furthermore, they state the following result (corollary in [2]). Letf, 9.11
and {a,} c N. Then the followint two assertions are equivalent"

(i) Iff(a,) g(a,) for all n
(ii) For each prime p there exists a natural number

and p has a representation (4).
This result is not correct because of the following"

Example. Let P0, P be two different primes. Let {p, PoP} w P\{P0}
and define two functions f, 9 9Jl by

f(po) -O(po)= 1, f(p) o(p) 0 if p # po.

Then (ii) holds but (i)is not valid.
By a slight modification of the arguments used in [2] it is possible to give a

different proof of Theorem 2.

DEFINITION. Let
k’

i=1 i=1

be two representations of n in (3) (resp. (4)). We say the two representations are
different in case a,, 4: a,,j for all 1, k, j 1, k’.

COROLLARY 1. Let ’ be a C-setfor I (resp. 9.11). Then there exist infinitely
many pairwise different representations (3)(resp. (4)).

The author proved Theorem in talks given in Ulm, Germany (1976), and in Oberwolfach,
Germany (November 1977).
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Proof If {a,} is a C-set for ’I (resp. 9Jl)then the same holds for {a,+,} for
each nk N. Therefore Corollary is valid.
A result in the other direction is"

COROLLARY 2. Assume that, for each n N, there exist infinitely many pair-
wise different representations (4) having ,k.= [i 0(1). Then / is a C-setfor
41 and

Proofi Letf 4[. Then If(n)l < /k=l If(a.,)l [ai and the assertion of
Corollary 2 is obvious.

Remark 2. There is sometimes another way of checking that a given U-set
is also a C-set. Let p be a prime and v e N. If pV 1-i/k= a,,, aie Z, andf e 4[ c,

then vf(p) Z,k.= aif(a,,). Now, if the right side is o(v)as v ---} , then of course
f(p) =0.

3. Examples and applications

(1) Let a, [an], where a > is irrational. Furthermore, let q N and
0 < e < q- 1. Then there exists a sequence {n} of natural numbers n such that
[0m,] < 0m, < [0n,] + e. Hence

q[a.,] < aqn, < q[an,] + e.q < q[an,] +
and so q [aqn,]/[an,]. Now (4) holds with k 2, a, {- 1, 1}. Thus [an] is a
C-set for 9)l (and ,[).3

(2) Let a. (n + 1)/n. Then, for each n N,

n! n n-1 2

(n- 1)! n- n-2 1’

i.e. {a.} is a U-set for 9)1 and 4!c. Because of n n+ lint there exist infinitely
many different representations (4), and we ask the question whether {a,} is a
C-set for 5}J (resp. ’). The answer will be "no".

Indeed, let f 21 and f(a,) o(1) as n - o. Then, for a given prime p > 3
and v e N, we have the dyadic expansion

Hence

p"= 2’k +... + 2’1 + 1.

vf(p) =f(pV)=f(p)-f(p 1)+ 1f(2)+f(2u’-u’ + ..’+ 1)

k

kf(2)+ Z
/=0

{[an]} is also a C-set for ! (see [6]).
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where k + 1 is the length of the dyadic expansion (5) and Alf denotes the
difference

f(2uk-u’+.--+ 1)-f(2"k-"’+...+2"’+l-u’) (/o=0).
Because of 2u < pV < 2u+ we get

f(2)vf(p) =/k f(2)+ O(/k)= V log P-lg + O(V).

Now, dividing by v log p, we obtain

f(2) log p for all primes p.(6) f(P) log 2

Thus {a,} is not a C-set for Ic (similarly for 9J/c) provided that f(2) #- 0.’
(3) Let a, (an + 1)In, where a is an integer > 1. Then we establish the

following"

LEMMA. Let a

(7)

(an + 1)In. Then, for each j e N,

J + l_ -I (ani+ l )’j i=1

where , {-1, 1}, =1 e, 0, k k(j)= O(4"-1) and n, hi(j)= Oa(j6a- 1).
(The constant in 0,(’)depends only on (a).

Proof. Because of the identity

q3 + 1 q q(q- 1) q- 1
q3 q+ 1 q(q- 1)+ 1 q

we have, for all m N,

(8)
am- 1 aaZm3 + 1 am am(am- 1)
am aaZm3 am + 1 am(am- 1) + 1’

i.e. (am 1)/am is a product of numbers (al + 1)/al. On the other hand, putting
n=(a-1)m- 1,

(9)
an+ 1 a(a- 1)m-(a- 1) am- 1 (a- 1)m
an a((a- 1)m- 1) am (a- 1)m- 1

Thus, by (8) and (9), ((a-1)m-1)/(a-1)m is a product of numbers
(al + 1)/al.

4 p. Erd6s [4] proved that (6) holds iffe 2! andf(n + 1)-f(n)-.O" see also A. S. Besicovich
[1].
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Observing that

(10)
bErn2 1 bm bm + 1

bErn2 bin- 1- bm

we conclude (b a 1) that ((a 1)m + 1)/(a 1)m is expressible as a pro-
duct of numbers of (a,) for all m N. Repeating these arguments, we obtain
assertion (7)of the lemma. The rest of the lemma follows from (8), (9)and (10).
The first consequence of the lemma is that (a,/is a U-set for lc and 9.11c. A

second consequence is that (a.) is also a C-set for Ic and 0)It. To prove this let
f 9![c. Then, by Example (2), f(n)=c log n, but c is zero because
c log (an + 1) c log n c log a 0. Similarly the assertion for 9.11 is proved.

Remark 3.
obtain

If a, (an + b)/n with a e N, b e Z, then, putting n [blm, we

an + b b (am + b/ b am + son(b)

and because of (10) we conclude that the subsequence {albl,,} (and therefore the
whole sequence (a,}) is a C-set for lc and 9.1t if a > 1.

Remark 4. Let f e lc and let f(an + 1) -f(n) o(log n) as n . Then,
by the Lemma, f(j + 1)-f(j)= o(logj) and, using a deep new result by E.
Wirsing [8], f(n)- c log n.

Remark 5. Let us generalize the concept of C-sets for ! in the following
definition" {a,} is called a E-set for ! in casef e , ,_<x f(a.) o(x)
as x oo implies f 0.
Now we prove the following"

THEOREM 3. Let {a.}fulfill (i), (ii)and (iii)ofSection 1 with p 1. Then
is a E-set for I.

Proof We prove a little bit more than the assertion of Theorem 3. Let
us assume that fe and that Z,<_x]f(a,)- c] o(x) holds with a certain
constant c C. We choose a sequence x < x2 <’"o, such that
Z,<_x]f(a,) c] <_ 4-"x for x > xm. If we define a function h" N --, R + by

1
h(n) 2_

for n e [1, X1)
for n [Xm, Xm+)’

we get

If(an)- cl h(n)

1 < E If(a.)- c I/h() 2-"x
n<__x
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for x [x,,, x,,+,). Now, we omit from d those a. for which If(a.) c > h(n)
and obtain a new sequence {a’.}. It is easily verified that {a’,} fulfills (i), (i)and
(iii). By the fact that lim,_,oof(a’,)= c we conclude (see K.-H. Indlekofer [6])
that f= 0 (and thus c must be zero too).
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