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MIDDLE DIMENSION
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Introduction

This paper studies the modules that can occur as the homology modules
below the middle dimension of the complement of a codimension-two imbed-
ding of compact manifolds and it therefore forms a continuation of [26]. Parti-
cular attention is focused upon the modules that can occur as the homology
modules of a certain covering space of the complement which, in the case of
knots, is the infinite cyclic cover.
The only case of this problem that has been studied before is that of high-

dimensional knots. In [19], Kervaire characterized thefirst nonvanishino homo-
logy module of a knot complement when its fundamental group is Z. This work
was continued by Levine in a series of papers that culminated in [20] in which
he obtained a complete and simultaneous characterization of the homology of
the infinite cyclic cover of a knot complement, except for a slight difficulty in
dimension two. The present work studies classes of imbeddings, known as
realizations of Poincar6 imbeddings (these are defined in Section 1), that in-
clude high-dimensional knots as well as other well-known classes of imbed-
dings such as local knots and knotted lens spaces and obtains complete
characterizations, in many cases, of the homology of the complement below the
middle dimension. The results of this paper apply equally to smooth, PL, and
topological imbeddings and manifolds.

In constructing imbeddings with prescribed homology modules in the
complement, an algebraic K-theoretic obstruction is encountered, called the
g-invariant in this paper, that takes its value in a relative algebraic K-group and
which incorporates aspects of both the Wall finiteness obstruction and White-
head torsion.

In Section 2, where this invariant is discussed, it is shown that all elements of
the relative algebraic K-group K’o(f)(see [4, Chapter 9])occur as -invariants
of suitable chain complexes so that we get a 9eometric interpretation of K’o(f).

In a special case that occurs in the study of knotted lens spaces, this invariant
is explicitly calculated; it is shown that, in this case, it can be interpreted as an
alternating product of "Alexander polynomials" of complementary homology
modules evaluated at a primitive root of unity. Specifically, our result is:
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THEOREM. Let L2k- and Lk+ be homotopy lens spaces of index n (i.e.,
quotients of spheres by free Z,-actions), where n is an odd integer, and suppose
there exists a locally-fiat imbedding of L in [-2. Iff: I. -- L2 is a locally-fiat
imbedding ofL in L 2 such that the homology modules of the infinite cyclic cover
of the complement are {Hi}; then

2k+

lI P-t/,(z)t-l’ A(L)A(L2)-I(za- 1)
i=1

up to multiplication by an nth root ofunity. In thisformula A(Li) denotes Reide-
meister torsion, z is a primitive nth root of unity, d’d(L1)=-d(L2) (mod n)
(where d(L) is a homotopy invariant defined in 1.9)and Pst/,(*)is the "Alexander
polynomial" defined in Section 2 of this paper. B

Remark. If we regard an imbedding of L in /-2 as unknotted when its
complementary homology vanishes, this theorem has the interesting con-
sequence for some pairs of homotopy lens spaces (L 1, L 2) that, although there
exists a locally-flat imbedding ofL in/. 2, there does not exist an unknotted one.
The extent to which an imbedding must be knotted is precisely measured by the
;t-invariant. See the discussion following 2.12 for a concrete example of this
phenomena.

Section 3 studies the properties of the complementary homology modules,
particularly in dimensions 1 and 2 where there is considerable interaction with
the fundamental group.

Section 4 contains our main results characterizing complementary homology
modules of codimension-two imbeddings, below the middle dimension. Essen-
tially, they show that, in the range from dimension three up to the middle
dimension, the homology modules are direct sums of complementary homo-
logy modules of a standard imbedding with any finitely generated modules that
become "homologically trivial" over the group ring of the fundamental group
of the ambient manifold. See Section 4 for a precise statement.
These results are applied to knotted lens spaces in Theorem 4.9. This

theorem paves the way for a result which will appear in a future paper in this
series which gives a complete and simultaneous characterization of the homo-
logy modules of the infinite cyclic cover of the complement of knotted lens
spaces that is analogous to Levine’s results on knot modules in [20].

Future papers in this series will also study the effect of Poincar6 duality in
the middle dimension and its interaction with the cobordism theory of the
imbeddings, and homology above the middle dimension.

Part of this paper is an expansion of results in my doctoral dissertation and I
would like to thank my advisor, Professor Sylvain Cappell, for his guidance
and assistance.

I would also like to thank the referee for an extremely careful reading of this
paper.
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1. Codimension-two Poincar imbeddings

In this section we define a homotopy-theoretic analogue to an imbedding of
compact manifolds, known as a Poincarb imbeddino. This paper will study
actual imbeddings of manifolds that are modeled upon a given Poincar6
imbedding--these will be called realizations of the Poincar6 imbedding.

DEFINITION 1.1. Let M and lm+ 2 be compact manifolds. Then a Poincar6
imbedding 0 (E, , h) of M in V consists of the following:

(1) a 2-plane bundle over M with associated unit circle and unit disk
bundles S(), T()respectively;

(2) a finite CW-pair (E, S()) and a simple homotopy equivalence

h: V--*

with the homology class im (h([V])) e H,.+ 2(E w T(), E)going by excision to
a generator of the top-dimensional homology of (T(), S()); in the non-
orientable case we use homology with twisted integer coefficients.

Remarks. (1) If the map h is a homotopy equivalence with Whitehead
torsion an element, #, of Wh(nl (V)) we will call 0 a #-Poincarb. imbedding.

(2) If M and V have boundaries we will assume that E is a quadrad and

h" (V, OV)--, ( (E T()), F J T() )
is a simple homotopy equivalence of pairs.

(3) The definition above is due to Cappell and Shaneson (see [7, Section 5])
and is a specialization of the usual definition found in [29].

(4) Condition 2 above and Proposition 2.7 in [29] imply that (E, S())is a
Poincarb pair with local coefficients in Zn I(V). The Poincar imbedding 0 will
be called regular if (E, S()) satisfies Poincar6 duality with local coefficients in
z  te).

(5) The composite h-lz: M V, where z is the inclusion of M in T() as
zero-section, will be called the underlyin# map of 0; if this map preserves orien-
tation characters 0 will be said to be orienrable.

(6) Clearly any actual locally-fiat imbeddingfofM in V induces a Poincarb
imbedding Oy (E, , h)T() is a tubular neighborhood off(M) and E is its
complement.

DEFINITION 1.2. Let 0 (E, , h), 02 (E2, 2, h2) be Poincar6 imbed-
dings of M" in Vm+ 2 and V’m+ 2, respectively, where V’ is homotopy equivalent
to V via dp" V V’. Then a map 0 02 of Poincar imbeddings, with respect
to b, is a map f: E- E2 such that f [S() is a bundle isomorphism and
h2 (f t..) 1). h, up to homotopy. A map 01- 02 with respect to the
identity map of V will simply be called a map of the Poincar6 imbeddings. If a
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map exists between two Poincar6 imbeddings, they will be said to be
equivalent. I

Remarks. The mapf in the definition above will be called the complemen-
tary map of the Poincar6 imbeddings. It follows by excision and the additivity
of Whitehead torsion over finite unions (see [11] or [22]) that, if 0 and 0 2 are
both g-Poincar imbeddings, f will induce a simple Zn l(V)-homology equiv-
alence, which will be simple if b is the identity.

DEFINITION 1.3. If 0 is a Poincar6 imbedding ofM in V"+ 2 andf: M --. V’,
where V’ is homotopy equivalent to V, via b: V’ V, is an actual imbedding
such that there exists a map 0f 0 with respect to b, f will be said to be a
realization of 0.

In this paper f will always be assumed to be locally-fiat.
Note that, in this definition, V’ can be any manifold homotopy equivalent to

V. Since we will often want to insure that V’ is homeomorphic to V we make the
following definition:

DEFINITION 1.4. Let 0 and f be as in 1.3; then f will be called a normal
realization if (V’, c w 1), where c is the complementary map off, and (V, h)are
s-cobordant. I

One important property of regular Poincar6 imbeddings is:

PROPOSITION 1.5. Let c be the complementary map of a realization
f: M ._ v,m+ 2 of a regular Poincarb imbedding 0 (E, , h) ofM into V’+ 2.
Then c induces split surjections in homology and, in particular, if Ef is the
complement off(M)in V’,

H,(Ef; Znl(E))= Hi(e; Znl(e)) K, for all i,

where Ki are the homology modules of the mapping cone off.

Proof. This follows from the fact that, by the remark following 1.2, the
complementary map is a Znl(V)-homology equivalence and therefore, in
particular, a degree-1 map. Since 0 is regular its complement, E, is a Poincar6
complex and the conclusion follows from Lemma 2.2 of [27].

Our main results in Section 4 will actually characterize the kernel modules Ki,
of the complementary map of realizations of a Poincar6 imbedding and the
Poincar6 imbeddings will be required to be regular.
Here are some examples of Poincar6 imbeddings and their realizations"

Example 1.6 (Classical Knots). Let O, (S x Dm+ 1, , h)be the Poincarb
imbedding defined by the standard inclusion of spheres i: S --, S’+ 2. It is well-
known that all imbeddings of Sm in S’+2 are normal realizations of Oi.
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Example 1.7 (Local Knots). Let T() be the total space ofthe unit disk bundle
associated to a 2-plane bundle over a manifold Mm, and let z: M T() be the
inclusion as zero-section. Then Cappell and Shaneson show, in [6] that all locally-
fiat imbeddinos of M in T() homotopic to z are normal realizations of the
Poincarb imbeddin# Oz (S() x I, , h) defined by z, where S() is the unit circle
bundle associated to .

Example 1.8 (Parametrized Knots). Letf: S x M -- Sn+ 2 x M denote the
imbeddin9 x 1, where is the standard inclusion of S" in S"+ 2. Imbeddin#s
homotopic tofwerefirst studied by Cappell and Shaneson in [6] in the case where
M is simply-connected and closed. The oeneral case was studied by Ocken in his
thesis [24] under the additional assumptions that the imbeddin# is homotopic to
x 1 relative to S x dM. They showed that all imbeddin#s of this type are

normal realizations of the Poincarb imbeddin9
Oy=(D+1 x M x S1, ,h),

where is a trivial bundle.

Before we can state an example for knotted lens spaces we must discuss some
of the algebraic invariants of homotopy lens spaces. Let n be an odd integer and
let R, be the ring of algebraic integers in a cyclotomic field generated by a
primitive nth root of unity, z (which will be fixed for the remainder of this
discussion). If L2k- is a homotopy lens space of index n, A(L) will denote its
Reidemeister torsion (see [29] for a definition) and d(L) Z. will denote its
image in lk./Ik. + , where I. is the principal ideal of R. generated by z 1; see
[29, p. 205] for a proof that lk./I.+ Z,. Theorem 14E.3 on p. 207 of [29]
proves that d(L) determines the homotopy type of L in a given dimension and
A(L) determines its simple homotopy type. The exact sequence on p. 32 of [23]
shows that Wh(Z.) is isomorphic to the quotient of the subgroup of the group
of units of R. mapping to 1 under f: R. R./1. Z, by the subgroup of nth
roots of unity, i.e., the Reidemeister torsion of a complex that is acyclic over
Z[Z.] will be a unit of R,. We will usually regard elements of W(Z.) as
multipliers of units of R. by arbitrary nth roots of unity.
Our main result is"

Example 1.9 (Knotted Lens Spaces). Let L2k- and L22+ be homotopy lens
spaces of index n, i.e., quotients of spheres by free Z.-actions, and suppose there
exists a locally-fiat imbeddino ofL1 in L 2. Then all locally-fiat imbeddinos ofL1
in L2 are normal realizations of the o-Poincarb imbeddino

O= (S x D2k, , h),
where A(L1)(zd 1) A(L2)-1, d d(L1) d(L2) (mod n), and is the 2-disk
bundle over L1 with Euler class e with ed 1 (mod n).

Remark. The discussion on p. 205 of [29] implies that the d-invariant of a
homotopy lens space is always a unit of Z, so that e and d are well defined.
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The following proof is largely an expansion of a discussion in Section 9 of [6].
I feel that, since Example 1.9 will be used heavily in forthcoming papers in this
series, it will be worthwhile to give a more detailed discussion than was done by
Cappell and Shaneson.

Proof. Letf: L L2 be a locally-fiat imbedding with normal bundle and
suppose T and S are the total spaces, respectively, of the associated unit disk
and unit circle bundles. Let p" S2k- L be the universal covering projection
and let g p- (S). Consider the low order portion of the exact sequence of the
fibration S S ---, L t"

Comparison with the universal circle fibration over a K(Z, 1)shows that
the Euler class of S (and, therefore, the imbeddingf) can be identified with the
class of the group-extension, E, above; this identification proceeds by the iso-
morphism H2(Zn, Z)-- H2(Lt, Z) induced by the characteristic map of L1.
The proof of proposition 1.1 on p. 64 of [21] shows that this extension class can
be determined from E as follows:

Ifa e nt(S)maps to a generator, v(a), ofnt(L t)letb e tt(St) beu-1(an). The
image of b in Z/n Z is the class of E in H2(Zn, Z).

Since we can identify n(S with t t() (via p,), this procedure is equivalent to
the following:

If a e nt(S) maps to a generator nt(L1) and p,(b) an for some b e n() the
image of b in nt(g)/n, n (g) is the Euler class of .

Suppose this Euler class is e Z.. If a Z, is a generator, define a Z-action
onS2-t xD2by

a(s, z)= (a s, z .exp (2hie/n)),
where the action of S2k- is defined to be the same as that on the universal
cover of Lt.
The discussion above (regarding the Euler class of ) shows that

(S2k- x D2)/Z (with the action we have just defined) is the total space of
a 2-disk bundle over L with Euler class e. It follows that is isomorphic to T
and we have the following.

(1) e must be a unit of Zn. This follows from the fact that Zn must act freely
on the universal cover of T and, therefore, that of . But the definition of
implies that this only happens when e is relatively prime to n.

(2) The identity map of L extends to a homeomorphism T .
Note that is precisely the tubular neighborhood of L in E under the

canonical inclusion, where E is the suspension of L by the Z-action on the
complex unit circle defined by multiplication by exp (2hie/n)--see [29, Section
14A]. Since the complement of in E is a homotopy circle, it follows, by
obstruction theory, that the identity map of L extends to a homotopy equiv-
alence L2 E, where we regard L as being imbedded in L 2 via the mapf (see
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the beginning of this proof). We claim that the complement of in E is, infact,
S x D2k--this is an immediate consequence of the n- n theorem, the s-
cobordism theorem, and the fact that G/PL, G/TOP and G/O are
simply-connected.
We have proved most of the statements made in example 1.9; all that re-

mains to be proved is that d, e, and g have their stated values. The proof of
Lemma 14E.1 in [29] shows that d(E) d(L), d, where d" e 1 (mod n) (see
Lemma 14E.1 in [29]) and since the d-invariant determines the homotopy type
of a homotopy lens space (in a given dimension) it follows that d(L2) d(L)
a(mod n). Proposition 14E.8 in [29] shows that A(E) A(L)(za 1) and, since
we use the homotopy equivalence L2 E for the map h in 0, it follows that the
Whitehead torsion of h is as stated.

We will conclude this section with a description of a special type of Poincar6
imbedding that will play an important part in Sections 3 and 4"

DEFINITION 1.10. Let O(E, , h) be a Poincar6 imbedding ofM’ into lm+ 2,
where M and V are compact manifolds. Then 0 will be called cyclic if the kernel
of the homomorphism of fundamental groups nt(E) n(E w T()), induced
by inclusion, is a cyclic group.

Remarks. (1) This definition is due to Cappell and Shaneson in [6].
(2) The results in Section 4 characterizing some of the modules that can

occur as homology modules of realizations of Poincar6 imbeddings will only
apply to realizations of cyclic Poincar6 imbeddings.

(3) The theorem in the appendix of [8] shows that, given any Poincar6
imbedding whose underlying map induces a surjection of fundamental groups,
one can attach 2- and 3-cells to form a cyclic Poincar6 imbedding (also see
Proposition 1.6 in [26]). This implies that every codimension-two imbedding of
compact manifolds that induces a surjection of fundamental groups is a realiza-
tion (in fact, even a normal realization) of a cyclic Poincar6 imbedding.
Note that all of the examples of Poincar6 imbeddings given in this section are

cyclic.

2. The z-invariant
In this section we will define an algebraic K-theoretic invariant of chain

complexes that incorporates aspects of both the finiteness obstruction of Wall
(see [29]) and Whitehead torsion (see [22] and [11]). This invariant will meas-
ure the obstruction to prescribing the homology modules of the complement of
a realization of a Poincar6 imbedding.
Throughout this section the following conventions will be in effect:f: G H

is a homomorphism of groups with kernel K, A ZG and A’= ZH, and
F: A A’ is the homomorphism of group-rings induced by f. In addition we
will assume, unless otherwise stated, that all chain complexes are boundedfrom
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below, finite dimensional, and consist of finitely generated projective modules,
with the ring acting on the right.

DEFINITION 2.1. A A-chain complex will be called relatively acyclic if its
tensor product with A’ (with A-module structure defined by multiplication by
the image under the map F) is acyclic.

Recall that the map F induces an exact sequence in algebraic K-theory"
K(A)- K:(A’)- K’o(F)- Ko(A)- Ko(A’), where K’o(F) is defined (see [4,
p. 447]) as the Grothendiek K-group of the semigroup generated by triples of
the form (P :, i, P 2) with P: and P 2 projective modules over A and where is a
A’-module isomorphism i: P (R) h A’ - P2 (R) h A’, and these triples are subject to
the following relations"

(1) (P,, ij, P3)= (P, i, P2)/ (P2, J, Pa),
(2) (P 3 Q, ij, P2 Q2) (P, i, P2) + (Q, J, Q2),
(3) (P, i, P2)= 0 if/is induced by any isomorphism over A.

Remarks. (1) The relations above and the fact that K’o(F) is abelian imply
that (F, i, F) 0, where F is afree module and is a simple isomorphism over A’.

(2) If the homomorphism f is surjective K’o(F)= Ko(F)see [4, p. 375].

DEFINITION 2.2. If C. is a chain complex, Codd will denote the direct sum of
the odd-dimensional chain modules and Cevn will denote the direct sum of the
even-dimensional chain modules.

PROPOSITION 2.3. If (C,, d) is a relatively acyclic chain complex and c is any
chain contraction of C. (A A’ such that C2 0 (given a chain contraction c’,
c c’dc’ has the required property),

(d (R) 1 + c): Codd () A’ - C, () A’
A A

is an isomorphism with inverse

(d l + c): Ceven ( A’ -- Codd ( A’.
A A

This follows by composing the maps and recalling the definition of a chain
contraction.

DEFINITION 2.4. Let (C,, d) be a relatively acyclic chain complex. Then
define ;t(C,) to be the element of K’o(F) defined by the triple (Codd, d (R) c, Ceven),
where c is some chain contraction of C, @A A’ such that c2 0.

Remark. Clearly -x(C.)is the class in K’o(F) of (Cev(C)n d () 1 + c, Codd).

PROPOSITION 2.5. The class of x(C,) in K’o(F), as defined in 2.4., is indepen-
dent of the chain contraction c.
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Proof. Let c and c’ be two chain contractions of C, t)A A’ whose squares
are 0 and let ;tt and ;Z2 be the ;t-invariants of C, computed using c and c’
respectively, as the chain contractions (see 2.4). We will use the notation
e d (R) 1, and show that

Z X2 (Co, (e + c)(e + c’), Coo)
represents the zero element of K(F)---the fact that :- 2 has this form
follows from the remark following 2.4 and the first relation in the definition of
K’o(F). Let P, be the acyclic chain complex with chain modules Po P P
and boundary the identity map, and suppose that P is a projective complement
of Coda. Let 72 be any chain contraction of P, ()AA’ and form C’, C, P,.
Then it follows that, if A is the ;-invariant of P,, calculated with respect to ? (it
is not hard to see that this must actually vanish), relation 2 of the definition of
Kb(F) implies that

z,(C’,)- z2(C’,)= z,(C, @ P,)- ;t2(C, ( P,)
Zt + A- Z2- A

where X is the ;t-invariant calculated by using the chain contraction c on C,
and ;(z is calculated using c’ on C, and in both cases the chain contraction ?: is

A’ (this will equalused on P, If we use e" to denote the boundary of C, t)A
e 1) we get

Zl Z2 (Codd ( P, (e" + c + )(e" + c’ + ), Codd ( P),
where Coda P is a free module. The conclusion of this theorem now follows
from the remark following the definition of K’o(F)and 15.3 of [11], which
implies that the homomorphism

(e"+ c + ?:)(e" + c’ + ?:)
is a simple isomorphism.

Some of the more important properties of the z-invariant are listed in the
following theorem"

THEOREM 2.6.
relatively acyclic"

Let all of the chain complexes in the following statements be

(1) If 0- C’, - C, --, C - 0 is a short exact sequence of complexes, then
z(c,) z(c;)+ z(c;).

(2) If C, is acyclic, then z(C,)= 0.
(3) If C, and C’, are chain-homotopy equivalent, then x(C,)= X(C’,).
(4) The image of z(C,) in Ko(A), under the homomorphism K’o(F) Ko(A)

occurring in the exact sequence in K-theory induced by F (see p. 369 of[4]), is the
Wall finiteness obstruction of the complex C, (see [30]).
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(5) If the Wallfiniteness obstruction ofC, is zero, the inverse image ofx(C,)
in K1(A’)/im K1(A), under the connecting homomorphism cO in the exact sequence
in K-theory induced by F, is the same as the image of the Whitehead torsion (see
[22] and [11]), over A’ of a complex offree modules stably isomorphic to C,.

(6) x(C,) 0/f and only ifC, is chain-homotopy equivalent to a complex of
free modules that is simply-acyclic over A’ with respect to some set ofbases over
A.

(7) If K’o(F) and F is surjective, there exists a chain complex, C,, with
x(c,) .
Remark. Statement 7 provides a geometric interpretation of K’o(F) in many

cass.

Proof (1) Clearly Codd Cld and Ceven C’eve. C:v(C)n as modules and
13.2 in [11] implies that C, AA’ C, @ A C, ) A as chain complexes.
The result follows from statement 2 in the list of relations satisfied by elements
of K’o(F).

(2) This follows from statement 3 in the list of relations satisfied by ele-
ments of K’o(F) and the fact that the isomorphism d (R) 1 + c used in the
definition of the ;t-invariant (see 2.4) may be regarded as being induced by an
isomorphism d + c’ where c’ is a chain contraction ofC, (and d is the boundary
of C.).

(3) Suppose g" C, - C is a chain-homotopy equivalence. Then we have
an exact sequence of chain complexes

0 - C, --, M,(g)- C;(- 1)- 0,

where M,(g) is the algebraic mapping cone of 0 and C’,(-1) is a complex
identical to C except that the dimensions have been shifted down by 1. This
implies that

x(M,(g)) ;t(C,)+ ;t(C(-1)).
It is clear, from the definition, that x(C,( 1)) x(C,) and the result follows
from statement 2 of the present theorem and the fact that M,(g) is acyclic since

is a chain-homotopy equivalence.
(4) This follows from the definition of the Wall finiteness 6bstruction (see

[30]) and the description of the map K’o(F) Ko(A) (see p. 269 of [4]).
(5) This follows from the description of the boundary map K(A K’o(F)

(see p. 365 of [4]) and the definition ofWhitehead torsion given in Section 15 of
[11].

(6) The statement that z(C,) 0 implies, by statement 4 of this theorem
that C, is chain-homotopy equivalent to afree complex, and statement 5 of this
theorem implies that the Whitehead torsion of the tensor product of this free
complex with A’ (with respect to any set of bases over A) lies in the image of
K,(A) under the map K,(A) K,(A’) induced by F. It follows that, after
suitably changing bases over A, the Whitehead torsion can be made to vanish.
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(7) Proposition 5.1 on p. 371 of [4] implies that the element K’o(F) has a
representative of the form (P, i, P2) (rather than just aformal difference of two
such triples). Since P is projective, the composite P P () A A’ -g P 2 () AA’
lifts to a map j: P P2. The chain complex

0 P1 P20
clearly has the required properties. I

DEFINITION 2.7. A finitely generated right A-module A will be said to be
relatively acyclic if Tor (A, A’)= 0 for all i. I

Remarks. Unless a statement is made to the contrary, all relatively acyclic
modules will also be assumed to be offinite homolooical dimension and to have
finitely 9enerated projective resolutions. This last condition is equivalent, by the
corollary to Theorem 1 in [5], to the condition that the functors Tor (A, *)
preserve products for all indexing sets and for all i.

DEFNmON 2.8. Let A be a relatively acyclic module. Then ;t(A) is defined
to be the z-invariant of a finitely generated finite dimensional projective resolu-
tion of A.

Note that this is well defined, by statement 2 of 2.6 and the fact that all
projective resolutions of a module have the same chain-homotopy type (see
[9]).
THEOREM 2.9. Let (C,, d) be a relatively acyclic chain complex and suppose

that its homolooy modules are all relatively acyclic. Then
dim (C,)

z(C,)= Z (-1)’z(H,(C,)).
i=O

Remark. This theorem will be used in developing criteria for when a given
sequence of modules can be the homology modules of a complex offree mod-
ules that is simply acyclic over A’.

Proof. Suppose the first nonvanishing homology module of C, is in dimen-
sion k. Then we can perform an algebraic procedure entirely analogous to the
geometric procedure of attaching cells to a CW-complex to kill its first nonvan-
ishing homology module. Let (P,, p) be a relatively acyclic projective resolu-
tion for Hk(C,) and define the complex (E,, e) by E= C, e= d, i< k,
Ek+ Ck+ P- 1, _> 1, and e+ (d+ , 0) where O is a lift of the surjec-
tion Po Hk(C,)= Zk/Bk to Zk Ck--it is possible to lift the map above
because P1 is projective--and ek+ dk/ P- 1, > 2. We get an exact seq-
uence of chain complexes 0 C, E, P, --, 0 and the long exact sequence
induced in homology by this exact sequence shows that Hk(E,)=O,
Hk+,(E,) Hk+,(C,), > 1, and z(E,) ;t(C,) + (- 1)k+ 7.(Hk(C,)). We
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continue this process, killing off homology modules of successively higher
dimensions, we will eventually obtain an acyclic complex V, and

dim (C,)

;t(V,) z(C,) + Z (- 1)+ ’;((Hi(C,)).
=0

The result follows from the fact that the z-invariant of an acyclic complex
vanishes.

The following theorem gives a criterion for when Theorem 2.9 is applicable"

THEOREM 2.10. Suppose the homomorphismf G - H is surjective (recall the
assumptions made at the beginning of this section), kerf= K is a finitely #en-
erated nilpotent group, and H is a finite extension ofa polycyclic group. Then a
finitely generated chain complex is relatively acyclic if and only if all of its
homology modules are relatively acyclic.

Proof Statement 1 is a direct consequence of Theorem 1 in [27] which
states that under the assumptions above, a chain complex is admissible if and
only if its homology modules are torsion modules in a suitable sense. Clearly
such a condition can be satisfied for the homology modules of a chain complex
if and only if it is satisfied for projective resolutions of its homolooy modules, m

We will conclude this section with an explicit description of the ;t-invariant
in a special case"

Example 2.11. Suppose G Z, H Z. where n is a positive integer. Then
the exact sequence in algebraic K-theory is

K,(Z[Z]) K(Z[Z.]) Ko(F) Ko(Z[Z]) Ko(Z[Z.]).
Since the homomorphism s is injective, it follows that Ko(F)= coker r
Wh (Z.). Proposition 7.3 on p. 623 of [4] implies that SK (Z[Z.]) 0 so that
K(Z[Zn]) U(Z[Z.]), the group of units, and the isomorphism is given by
taking the determinant of a matrix representing an element of K (Z[Z.]). This
implies that the inclusion Z[Z.] Q[Z,] induces an injection.of K (since a
unit of Z[Z.] dearly remains a unit in Q[Z.]) so that, before we compute the
z-invariant of a Z[Z]-module A we may rationalize, i.e., we may ignore the
Z-torsion component of A. Since Q[Z] is a P. I. D. it follows that A @z Q has
a short free resolution

B

O-F--,FA(QO,

where B is a matrix whose image in the matrix ring, M(Q[Z.]), is invertible. Let
Z[Z] Z[t, t- ] so that the entries ofB will be Laurent polynomials in t. Then
z(A) may be identified with im (F(det (B)))in U(Q[Z.])/{ +_ t}, where det (B)
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maps to a unit of Z[Z.]. The exact sequence in [23], p. 32 shows that, if
r: Q[Z.] Q[z] (see the discussion preceding 1.9), where z is a primitive nth
root of unity, is the homomorphism mapping a generator of Z. to z, r induces
an injection of U(Z[Z.]) into U(R.) (recall that R. is the ring of algebraic
integers in Q[z]). Thus we can identify z(A)with r(F(det (B))) modulo multi-
plication by nth roots of unity. If we regard det (B) as a Laurent polynomial
q(t) (recall that Z[Z] Z[t, t-])rF(det (B))is just q(z). Furthermore, if t(A)is
the Z-torsion submodule and f(A)= A/t(A), the Hilbert Syzygy theorem
shows that f(A) has a short free resolution over Z[Z]:

B’

OFFf(A)O,
where im B’ in M(Q[Z.] is B. Consequently, we define PA)(t) to be det (B’) and
we identify z(A) with PA)(Z), modulo multiplication by arbitrary nth roots of
unity. Under these circumstances, 2.6 (statement 5), 2.9 and 2.10 combine to
give"

LEMMA 2.12. Let C, be a finitely 9eneratedfinite dimensional chain complex
over Z[Z] Z[t, t-1] such that C, t)ztz] Z[Z.] is acyclic. If A, H,(C,), the
Whitehead torsion of C, ()ztzj Z[Z.] with respect to any equivalence class of
bases over Z[Z] is #iven by

dim (C,)

,(C.) H Pf(A,)(’C)(- 1,,

i=0

where z is a primitive nth root ofunity and the equality is taken modulo arbitrary
nth roots of unity--see the description of Wh(Z,) precedin9 1.9.

Remark. At this point we are in a position to say something about comple-
ments of knotted lens spaces. Call a codimension-two imbedding ofhomotopy
lens spaces unknotted if the universal covering space of its complement is
contractible--for instance, the standard imbedding of a lens space in a suspen-
sion (see Section 14A of [29]) is always unknotted. Now suppose that in
Example 1.9 the Whitehead torsion, 9, is nonzero--the criteria for the existence
of locally-flat imbeddings of homotopy lens spaces in [6] and Theorem 14E.7 of
[29] show that this is often the case. Then, although there exists a locally-flat
imbedding of the homotopy lens spaces, the preceding lemma shows that there
doesn’t exist an unknotted imbedding--the extent to which an imbedding must
be knotted in this case is precisely measured by the z-invariant. A concrete
example of this is the classical lens space L3(5; 1, 1, 1)(see [22])and the
homotopy lens space h-cobordant to LS(5; 1, 1, 1, 1, 1) via an h-cobordism with
Whitehead torsion z2 z + 1, where z is a primitive 5th root of unity.

3. Properties of complementary homology

In this section we will apply the results of Sections 1 and 2 to derive neces-
sary conditions for modules to be complementary homology modules of a
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realization of a Poincar6 imbedding. The following conventions will be in effect
throughout the remainder of this paper"

3.1. (1) 0 (E, , h) is a #-Poincar6 imbedding of M into Vm+ 2, m > 3,
where an M and V are compact manifolds,

It will also be assumed to be regular and cyclic---see the fourth remark after
1.1, 1.5, and 1.10.

(2) Iff0" M V is the underlying map of 0, we will .assume thatf0 induces
an isomorphism of fundamental groups and a surjection of second homotopy
groups.

(3) 0 possesses a locally-fiat realization.
(4) If f: M V is a locally-fiat realization of 0 with complementary map

c" E’ ---} E then either

(a) c induces an isomorphism of fundamental groups, or
(b) H2(E, S(); Zn(E))= 0. a

Remarks. (1) Note that these conditions are satisfied by all of the examples
of Poincar imbeddings given in Section 1 and their realizations.

(2) Since all of the Poincar6 imbeddings we will study will be regular,
Proposition 1.5 implies that the complementary map of any realization will
induce split surjections in homology. If f: M V is a realization of 0 with
complement Ey, then

H,(Ey; Zn,(E))= H,(E; Zn,(E)) K,,
and we will actually study the modules K that occur as the homology modules
of the algebraic mapping cone of the complementary map (see 1.2 and 1.3);

(3) Assumption 2 makes it possible to use the results of [26] to characterize
the complementary fundamental groups of realizations of 0.

We begin with the following lemma, whose proof is almost identical to that
of Lemma 4.3 of [6]"

LEMMA 3.2. Let f: M V be a locally-fiat realization of O. Then f is cobor-
dant to a realization f’" M- V whose complementary map is

[(m+ 1)/2J-connected.

An immediate consequence of this is that rt I(E) is isomorphic to the fun-
damental group of the complement of some codimension-two imbedding. We
will use this fact and the results of [26] to determine the group n I(E) and to
establish some important properties of the groups that occur as fundamental
groups of complements of realizations of 0.

DEFINITION 3.3. Let w" n x(M) Z2 {+ 1} be the homomorphism
induced by the first Stiefel-Whitney class of , i.e., w wt" f*wv where wt and
Wv are the orientation characters of M and V, and let Zw be the
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Znl(M)-module of integers twisted by w. Define Co= Z’/(jt0c H2(M;
Znt(M)), where ;to is the (twisted) Euler class of . If x is the image of ;(0 under
the change of coefficient homomorphism H2(M; Z’) H2(M; Co), then x is in
the image of the injection n2(n I(M); Co) H2(M; Co) induced by the charac-
teristic map of M. Define Go to be the group extension of Co by n I(M) defined
by the inverse image of x in H2(/i:1 (M); Co), I

Remark. This is essentially Proposition 1 in [26].

LEMMA 3.4. Under the hypotheses in effect in this section, the inclusion of
S()the total space of the unit circle bundle associated to in E induces an
isomorphism of fundamental groups tl(S())= tl(E)= Go. Furthermore, if
f: M V is a realization of 0 with complement E, the complementary map off
induces a surjection offundamental groups that is split by the map offundamental
groups induced by the inclusion of S() in Ey.

Proof.
in [26].

This is an immediate consequence of 3.1 and of Lemmas 1.1 and 1.5

Remarks. (1) In the future, we will identify nl(E) and n1(S())with Go.
(2) Note that the realization f: M --, V of 0 defines a canonical inclusion

iy: Go-}nl(E’) and surjection jz: n(E’)--,Go such that jyo iy= 1: Go--}
G0--this will prove to be a crucial algebraic property of these fundamental
groups.

Proposition 1.5 of [26] shows that ker Js - [K, K], where K is the meridian
subgroup of n (E’).
We will begin by considering the modules that can occur in the first and

second dimensions of the complement of a realization of O. We treat these
dimensions separately because there is considerable interaction between these
homology modules and the fundamental group. We begin with KI"

PROPOSITION 3.5. K1 HI([K, K]; Z), where ZGoactson HI([K, K]; Z)by
conjuation of n(E’) by lifts of elements of Go over j, (see Remark 2 following
3.4).

Proofi This follows upon considering the universal covering space of E or
S(), the corresponding covering of E’, and the effect of the covering
transformations.

Now we will turn to the considerably more difficult problem of characteriz-
ing K2. First recall the notion of a presentation of a pair of groups (G, F),
where F is a subgroup of G--see [16], p. 197. In our case, G is n I(E’) and F is
i.(Go)----see 3.4 and Remark 2 following it.



HOMOLOGY BELOW THE MIDDLE DIMENSION 485

DEFINITION 3.6. Consider the hypotheses of this section,

(1))(iy) denotes a relative Jacobian of some presentation of (nl(E’),
i.(Go))--see [16, Section 2] for a definition.

(2) Let (il) jI()(i.)), i.e., the relative Jacobian at ZG0---see [16, Section
3].

(3) (iy) denotes the kernel of )(iy) after regarding this matrix as a
homomorphism of free right Zrrl(E’)-modules (i.e., the matrix left multiplies
coordinates).

(4) 9(iy)denotes the corresponding kernel of (iy). U

The following result is probably well known though I have not seen it stated
explicitly before (see [28]).

PROPOSITION 3.7. Let C,, D, be cellular chain complexes, over Zn(E’), of
S() and E’, respectively, with C, a subcomplex ofD,mactually C, is the cellular
chain complex of the inverse image ofS() under the universal covering projection
of E’. If 2 is the boundary map 2:D2/C2-Ol/C1 of the relative chain
complex, then 2 is equivalent to )(if)--see [17]for the definition ofequivalence
used here.

Proof. After collapsing a maximal tree in E’ we may assume that the 2-
skeleton of S()is a cellular model of a presentation, p (x; r) for n (S())
G0msee [14, Section 2]. We may regard the 2-skeleton of E’ as being formed
from that of S() by adjoining additional 1-spheres corresponding to additional
relations. Let the presentation of n(E’)obtained from that of r 1(S())by this
procedure be P2 (x, y; r, s. IfD, is the cellular chain complex, over Zn (E’),
of E’, then t32" D2 D is a Jacobian of p2msee the discussion preceding pro-
position 4 in [14J--and this is a matrix of the form

Ox c3y

(see [16] for a definition of these "free derivatives"), where the terms (c3ri/cOy)
are 0 since the relations {r} do not contain any of the generators (y}. It is not
hard to see that C2 c D2 is the submodule generated by the relations {ri} and
that

so that 2:D2/C2 D/C is given by the matrix (cOs/cOy). The relative Jacobian
of the presentation p 2, regarded as a presentation of the pair (n I(E’), n (S())) is
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the matrix

Os

which is clearly equivalent to by the definition of equivalence given in
[17].

DEFINITION 3.8. Two homomorphisms " A-" B, i= 1, 2, of right
modules will be said to be s-equivalent if there exist free modules F and F and
an isomorphism h such that the following diagram commutes:

B
Note that the homomorphisms have been extended to the F by ero maps.

DFINITION 3.9. Under the hypotheses of this section

#(iy): t(iy)-" H2([K, K]); Z)
is defined to be the composite

(if)--, R2(D,/C,; ZGo)--, n2(l(E’); ZGo)--- R2([K, K]; Z)
where C, and D, are as in 3.7,

l(i) Z2(D,/C,; ZGo) ker 2 (R) 1: (D2/C2) (R) ZGo --, (D/C) (R) ZGo,
ZnI(E’) ZTt (E’)

and the map H2(D,/C,)-" n2(Ttl(E’); ZGo) is induced by the characteristic
map of E’. m

Remarks. (1) The equality of H2(nl(E’); ZGo)= H2([K, K]; Z)is a con-
sequence of Shapiro’s lemma. The ZG0-module structure on H2([K, K]; Z) is
defined exactly like that on K1 in 3.5--Go acts by conjugation of n t(E’) by
inverse images of elements of Go under

(2) It is not hard to see that #(is) is uniquely determined, up to s-equiv-
alence, by is: Go-, 7t(E’)--this is a direct consequence of the definition of
equivalence of relative Jacobians and the fact that the equivalence class of
Jacobian is determined by the isomorphism class of the pair (Tt (E’), /(Go))--see
Section 2 of [17].
Our final result on K2 is:

LEMMA 3.10. Recall that K2 is the kernel of the homomorphism in homology
with ZGo-coefficients induced by the complementary map off. Then there exists a
right ZGo-module d/t* and a homomorphism -" K2 such that the composite with
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the homomorphism induced by the characteristic map of E’, g: K 2 --H2([K, K]; Z)is s-equivalent to/z(if).

Proof Recall assumption 3.1 at the beginning of this section. In case (a) of
this assumption, the statements of this lemma become vacuous since/(is)
becomes the zero map from afree module. We will, therefore, assume that case
(b) is in effect--i.e.,

H2(E, S(); ZGo) O.

Since c JS() is a homeomorphism,

K2 ker c,: H2(E’, S(); ZGo) H2(E, S(); ZGo)= 0

--see Lemma 2.2 of [27], and the conclusion follows upon setting

s(); z 0)
and by the argument in Remark 2 following 3.9.

For the remaining results of this paper, we will make the additional assump-
tion that r(V) is a finite extension of a polycyclic lroup--thus (V) may be
any finitely generated abelian group or finite group. Note that, by 3.3, Go will
also be of this type and, by the Lemma on p. 136 of [25], ZGo will be a
noetherian ring.
The following result shows that the condition on K 2 can, in many cases, be

simplified considerably:

LEMMA 3.11. Suppose that dimzGo(Hl([K, K]; Z)) < 2 and dimzG0 (Z) < 3.
Then the followinff two statements about a finitely ffenerated rifht ZGo-module,
K2, are equivalent:

(A) There exists a surjective homomorphism 6:K2 H2([K, K]; Z);
(B) K2 satisfies the conditions in Lemma 3.10.

Proof First of all, note that (B)implies (A). We will, therefore, assume
statement (A)and that dimz0 (HI([K, K]; Z))< 2.

Claim. (is) (see 3.9)is a finitely #enerated module.
Since Go is a finite extension of a polycyclic group and ZGo is, therefore, a

noetherian ring, it follows that (is) is finitely generated.
Recall that ’(is) is the 2-dimensional cycle module of the relative chain

complex (C,, d)of the 2-dimensional CW-pair realizing (G, is(Go)). The projec-
tivity of (is) now follows from a repeated application of Proposition 6.8 on
p. 39 of [4].

Let P be a finitely generated projective module stably isomorphic to
such that there exists a surjective homomorphism P K2. The statement of
the lemma now follows from the form of Schanuel’s lemma on p. 193 of
[10].
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The problem of characterizing the higher-dimensional homology modules is
much simpler--most of the work has been done in [27].

DEFINITION 3.12. Under the hypothesis that rr t(V) is a finite extension of a
polycyclic group, define A ZGo[S-1] as in Section 2 of [27], where S is the
multiplicatively closed set ofelements of ZG0ofthe form 1 + i, I and I is the
kernel of the homomorphism ZG0 Zrrl(V) induced by the projection
Go Go/Co rq (V) (see 3.3). m

Remark. The existence of A is proved in [27].

LEMMA 3.13. Under the hypothesis on n l(V) above, the {K}, 1 < < m + 2
(see 3.1 and the discussion followin9 it) must be finitely oenerated A-torsion
modules, i.e., K (R)z0 A 0.

Remark. The condition on Ki is equivalent to the condition that there exist
e I such that K.(1 + t)= 0.

Proof The fact that the K are finitely generated follows from the fact that
the algebraic mapping cone of the complementary map is a finitely generated
projective complex and the fact that ZGo is noetherian,
The remaining statements follow from the fact that the complementary map

is a Znl(V)-homology equivalence (see the remark following 1.2)and from
Theorem 1 in [27]. m

4. Homology realizations of a Poincar imbedding

Before we can state and prove the main results of this section, we will need
Theorem 2 of [26]:

THEOREM 4.1. Under the assumptions of 3.1, a group G can be thefundamen-
tal group of the complement ofa realization of0 ifand only if thefollowing hold.

(1)
(2)

that:

(b)

G is finitely presented;
there exists a homomorphism j" G Go, split by a homomorphism Js such

if K j-1(Co), then K is the normal closure within itself ofjs(Co), and
H2(K; Z) 0.

Remark. Throughout the remainder of this section G and K will denote any
groups satisfying the conditions above.

DEFINITION 4.2. Two realizations fo, fl: M --, V, will be said to be concor-
dant if there exists an imbedding F M x I - V + I with F(M x I), V x OI
and F(M x I) intersecting V x 0I transversally and with F[M x {i} =f,
i=0, 1.
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Remark. The proof of Theorem 2 in [26] shows that a realization of 0 with
complementary fundamental group any G satisfying the conditions 4.1 can be
found in any concordance class.

Recall the involution Znl(V) Zrrl(V) defined by

E E
where w: rr(V) Z {_ 1} is the orientation character of V--by abuse of
notation we will denote the induced conjugation operation on the Whitehead
group (see [22, p. 373 and p. 378]) by -: Wh(n,(V))- Wh(n,(V)). With this
in mind, we are in a position to state the main theorem of this section"

THEOREM 4.3. Let 0 (E, , h) be a Poincarb imbedding induced by an imbed-
din# ofcompact manifoldsf: M V’+2 with m > 3, satisfying the conditions of
3.1 and, in addition:

(A) n(V) is a finite extension of a polycyclic group;
(B) there exists a map r: K(nI(E), 1) E that induces an isomorphism of

fundamental groups.

If G is a group satisfying the conditions of 4.1 and {Aj}, 1 <i< 1 (where
/ [(m + 1)/2] 1) is a sequence of ZGo-modules, then there exists an imbed-
ding f’: M V realizing 0 and concordant to f with complementary map
c: E’--, E such that c,: t(E’)--,t(E) is j: GGo and H,(E’; ZG0)= A,,
1 < < l if A, K, q) H, (E; ZGo) where the {K,} satisfy:

(1) K H([K, K]; Z)(see 3.1 and 3.5);
(2) K2 K’2 q) L where L is a submodule and there exists:
(a) a surjective homomorphism /: L --, H2([K, K]; Z)
(b) a finitely generated right ZGo-module and a short exact sequence

where F is a free ZGo-module and the composite is s-equivalent to
p(j): (j) H2([K, K]; Z) (see 3.1, 3.6, 3.8, 3.9);

(3) the {K,} arefinitely generated ZGo-modules such that K, (zo A 0 (see
3.13 for a definition of A).

(4) the {Ki} are all geometrically realizable (i.e. they are the single non-
vanishing homology module of a connected space equipped with a free
Go action).

Remarks. (1) Note that the condition on the map ’ in statement 2 above
actually imposes conditions on the module as well--it must be stably iso-
morphic to (j).

(2) Note that conditions 1 and 3 are necessary as well as sufficient. Condi-
tion 4 and part of condition 2 could be eliminated if the question of the
existence of equivariant Moore spaces (the Steenrod problem)could be
resolved in the affirmative.
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(3) The results of [1], [2], and [31] imply that condition 4 will be satisfied
when each of the K satisfy any one of the following conditions:

(1) K is of homolo#ical dimension < 2;
(2) K,/pK, Ofor all primes p < 1 + (dimzGo (K,))/2;
(3) Go is a cyclic #roup.

Note that these conditions are satisfied in all of the classical cases as well as
the case in which Go is a finite group.

(4) Condition B will be satisfied whenever the corresponding condition for
M is satisfied since E contains S()---an St-bundle over M. This happens, for
instance, whenever M is simply-connected or whenever the fundamental group
of M comes from factors that are aspherical (e.g. sufficiently large irreducible
3-manifolds).

Proof Let (j) be a relative Jacobian of a presentation of the pair
(G,j(Go)) such that the associated homomorphism (j):(j)
H2([K,K]; Z) (see 3.6, 3.8, and 3.9)is s-equivalent to ’ o:,vf

H2([K, K]; Z). It follows that there exists free modules F1 and F2 such that
f @ F is isomorphic to (j) q F. Without loss of generality, we can assume
that F2 0 since, if not, we can modify the presentation of (G, j(Go)) by adjoin-
ing trivial relations to it to add a zero matrix to ,’(j,) of suitable size. Thus we
have a commutative diagram

W@F, -" (j)

H2([K, K]; Z).
By hypothesis, we have an exact sequence 0 F Yf L 0 so that it fol-
lows that F F F maps to 0 under g o 0. Let ff be the image of
F F: under the isomorphism . Then it is clear that the diagram

z/
commutes where the upper row is exact and ’ is the composite of with an
automorphism of L. Now we are in a position to realize K and L eo-
trically. Let x, y; r, s) be a presentation of the pair (6, j(6o))whose relative
Jacobian is the matrix CU) in the dimension above. Here x; r) is a presenta-
tion of G0 and y and s represent the additional generators and relations, respec-
tively, required to present G. We assume that E has a cell-decomposition whose
2-skeleton is a cellular realization of the presentation (x; r) of G0see [14]. We
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will construct a complex E’ by attaching cells to E representing {y} and {s}. Let
U be the union ofE (offOE) with a wedge of circles that are in a 1-1 correspon-
dence with the elements of {y}. Let u: U --* E be an extension of the identity
map of E to the attached 1-spheres that induces the composite homomorphism
on fundamental groups:

Go * F --* G --* G,

where fy is the free group on the elements of {y}, and q is the projection
Go * Fr G defined by the presentation of G. Define E2 to be the result of
attaching 2-cells to U corresponding to the relations {s} and let p2:E2 --’ E be
the (unique up to homotopy)extension of u to E2. The universal coefficient
spectral sequence for E2 gives rise to the exact sequence

(A)(R) zo (A), ,,, n,([r, r]; z) o
Za (A)

and since the Hurewicz homomorphism

(,)-.()H(; Zo)zo (R) Z H,(,_; Z)
is surjective, it follows that we can attach 3-cells to E2 representing basis
elements of (strictly speaking, we are attaching cells representing basis ele-
ments of P (R)zo ZG).
Call the resulting complex Ea. It will clearly have the following properties:

(1) (Ea)= G;
(2) H(; Z0)= n,(; Z0);
(3) H,(E3; ZGo)= H,(E; ZGo), i> 2.

We have thus geometrically realized the module L.
In order to realize the higher dimensional homology modules, wc use the

results of [31 (specifically case 1 of Theorem 3). Wc get a CW-complex X with
the properties:

() (x)= 0;
() no(X)= z;
(3) H,(X; ZGo)= r,, i> 2, H2(X; ZGo)= r’2;
(4) X contains an imbedded K(Go, 1).
Remark. We may assume, without loss of generality, that X has a finite

number of cells in each dimension. This follows from the results of [30] and the
fact that the K and Kz are finitely generated and the ring ZGo is noetherian.

Let/ be the result of forming the union of X with the mapping cylinder of
the composite

K(Go, 1) E Ea
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along imbedded K(Go, 1)’s (recall that the map r" K(Go, 1) E induces an
isomorphism of fundamental groups and that its existence is guaranteed by
condition C in the hypothesis). The complex/ has the following properties.

(1)

(a)
(b)
(c)
(d)

E contains a subcomplex E such that"
the inclusion of E in E induces j" Go- G on fundamental aroups;
Hj(,, E; ZGo)= Kjfor all 1 <_ j <_ 1;

n(, E; ZGo)= O for all < j <_ [(m + 1)/2];
Hi(E, E; Znx(V))= Ofor all j > O.

Claim. We may assume, without loss of #enerality, that (/, E) is actually
simply acyclic with local coefficients in Zt(V).

Suppose the Whitehead torsion of the inclusion of E in E is represented by an
invertible n x n matrix with entries in Zn(l/). This lifts to a matrix A with
entries in ZGo. Let U be the one point union of a K(Go, 1) with n/-spheres
where l= 2[(m + 1)/2] + 1. Then t(U)= F, where F is a free ZG0-module of
rank n and with canonical basis elements represented by the/-spheres above.
Now attach n (l / 1)-cells via maps representing the images of the canonical
basis elements under A. Call the result U’. The union of U’ with / along
suitably imbedded K(Go, 1)’s will clearly have the required properties.
We are now ready to construct the imbedding f’" M-} V. An argument

exactly like that used in the proof of Lemma 4.3 shows that the simple
Zn(V)-homology equivalence i" E -}/ (i.e. the inclusion)is Zn (V)-homology
s-cobordant rel S() to a simple homology equivalence that is/-connected. Let
the cobordism be F" (W; E, E’)-}/. It follows, by the s-cobordism theorem,
that there exists a homeomorphism

H’(W;E,E’) J T()I--}VxI
s(o

that is essentially the identity map on E Jsto {0} T() x {0}. Define the imbed-
dingf" M V to be the composite

HIE’UT(O

M--,T()--,E’ T()x{1} Vx{1}
s(o {1)

The complementary map of this realization is defined to be the composite

H(E’) , E’ P e
where fl is the composite

Ur t

E, (..)X E, (,.)K(Go, 1)=E,E
K(Go, 1) K(Ga,

where Er is the mapping cylinder of r: K(Go, 1) E, is essentially the charac-
teristic map of X to K(Go, 1) (if necessary r in the middle portion of the
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diagram above is replaced by its composite with an auto-homotopy equiv-
alence of K(Go, 1)), and 6 is just the standard deformation retraction of E, onto
E. m

COROLLARY 4.4. The conclusions of Theorem 4.3/f we replace the condition
that the Poincar’e imbeddino 0 be induced by an actual imbeddino of compact
manifolds by the condition that there exists a map K(n x(M), 1)- M inducino an
isomorphism offundamental oroups and that 0 possess a realization.

Proof Lemma 3.2 implies that the imbeddingf that is a realization of 0 is
concordant to a realization f’M V whose complementary map is
[(rn + 1)/2]-connected. If 0., is the Poinear6 imbedding induced by f’ then
0, satisfies all of the hypothesis of Theorem 4.3 and any realization of 0,
is also a realization of 0.

We will try to sharpen these results somewhat using the ;t-invariant
described in Section 2. Note that, so far, we have been able to construct
prescribed homology modules only up to two dimensions below the middle
dimension. Furthermore, the homology module one dimension below the
middle dimension was generally not mapped isomorphically by the com-
plementary map--there was a kernel that could not be prescribed or made to
vanish. This kernel measured the error that resulted from approximating a
possibly infinite dimensional chain complex by one bounded by the middle
dimension of the Poincar6 imbedding.
We will use the following notation: If A is a right ZG0-module ei(A) will

denote Ext’,.G0 (A, ZG0)--this is similar to the notation of Levine in [20] except
that we take the conjugate of the Ext.
With this in mind, our main result is the following.

THEOREM 4.5. Let 0 (E, , h) be a Poincarb imbeddin9 induced by an imbed-
din9 ofcompact manifolds f: M -o Vm+ 2 with m >_ 3, satisfyin9 the conditions in
3.1 and, additionally:

(A) x(V) is a finite extension of a polycyclic 9roup;

(B) there exists a map r: K(Go, 1) -, E inducin9 an isomorphism offundamen-
tal 9roups--see Remark 3 followin9 4.3.

Suppose G is a 9roup satisfyin9 the conditions of4.1 (also see 3.3 and 3.4)and
{Ki}, 1 <i < [(rn + 1)/2], is a sequence of rioht ZGo-rnodules such that:

(1) Kx H([K, K]; Z)(see 3.1 and 3.5);
(2) There exists a surjective homomorphism /: K2---* H2([K, K]; Z), a

finitely generated right ZGo-module , and a homomorphism : K 2, such
that the map /o is s-equivalent (see 3.1. and 3.8)to ,(j): (j)
H2([K, K]; Z) (see 3.6 and 3.9);
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(3) The {K} are finitely aenerated ZGo, modules such that Ki(R)zA 0
(see 3.11 for a definition of A);

</[(m+1)/2]-i+l /f i>2;
(4) dimz (r,) -/[(m+1)/2]-i /f i<2"

(5) (-1)ix(K,)= q (see Section 2 for a definition of z(K,)), where
is in the kernel of the boundary homomorphism K’o(ZGoo ZnI(V)) Ko(ZGo)
(see [1, p. 447]);

(6) The {Ki} are oeometrically realizable--see the remarks following 4.3.

Then there exists a realizationf’" M V, where V’ is a manifold h-cobordant
to V, of 0 with complementary map c" E’ - E such that"

(i)
(ii)
(iii)

nl(E’)=G;
H,(E’; ZGo)= H,(E; ZGo)@ r,,for < [(m + 1)/’2];
HtE’; ZGo)= H(E; ZGo) rk (-2 e’(rk-,+ t)),

where k [(m + 1)/2], and the Whitehead torsion of the homotopy equivalence
V’ --, V is p + (- 1)"+ 1, where p is any element ofK(Zn(V)) that maps to
under the connecting homomorphism K(Zz(V)) K’o(ZGo Zrr(V))(see [4,
p. 447]).

Furthermore, if k is zero, an imbeddino f’ with the properties described above
can be constructed that is a normal realization of 0 that is concordant to f

Remark. As in 4.3, the map induced in homology by the complementary
map is projection of the right-hand sides of the expressions in (i) and (ii) onto
the first factor.

Proof. Since the proof is very similar to that of 4.3, we will only indicate the
differences--our notation will be the same as that of the proof of 4.3.
The restrictions on the homological dimensions of the {Ki} imply that the

complex . will be homotopy-equivalent to a complex that has no cells of dimen-
sion larger than [(m + 1)/2].

Theorem 2.9 shows that ;t(/, E) ’ is an element of K’o(ZG Zn (V)) that
maps to in K’o(ZGo Znx(V)) under the change of rings ZG ZGo.
The exact sequence of a triple in algebraic K-theory (see p. 448 of [4]) and

statement 7 of 2.6 imply that there exists a finitely generated projective right
ZG-chain complex P, with non-vanishing chain-module in dimensions 2 and 3
only such that ’+ ;(P,)= is contained in ker K (ZG Zn(V))
Ko(ZG) and P, (R)zG ZGo is acyclic.
We may clearly attach 2- and 3-cells to/ forming/’ such that the cellular

chain complex of (/’,/) is P, (if necessary, perform the Eilenberg trick to
replace P, by an infinitely generated free chain complex).
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The theory of the Wall finiteness obstruction now implies that the pair
(/’, E) is homotopy equivalent to afinite relative CW-complex which, by abuse
of notation, we will denote by (/, E).

In the last stage of the proof we use an argument similar to that in the proof
of Theorem 1.2 of [29] rather than that of Lemma 4.3 in [6] (which was done in
the proof of Theorem 4.3 of the present paper). In other words we consider the
surgery problem x p" E x I/ where is the inclusion E--,/ and p is the
projection p" I--, {0}, and we attach handles to E x {1} corresponding to
the cells that were attached to E to form/ (since is an integral homology
equivalence it can clearly beframed). The resulting cobordism will clearly be a
Zr(V)-homology h-cobordism rel S() and its upper end will clearly map to/
via a homology equivalence. The statement about the Whitehead torsion of the
homotopy equivalence V’ --, V follows from statement 5 of 2.6, and statement
(iii) about Hk(E’; ZGo) is a direct consequence of a description of the operation
of attaching handles on the chain level.
We will conclude this paper with an application of the preceding theorem to

knotted lens spaces. Throughout this discussion L2k- and L22k/ will denote
homotopy lens spaces of index n (i.e., quotients of spheres by free Z.-actions),
where n is an odd integer and such that there exists a locally-fiat imbedding of
L in L2--Theorem 9.5 in [6] gives necessary and sufficient conditions for this
to happen. First recall Corollary 4 in [26] which characterizes complementary
fundamental groups of knotted lens spaces"

PROPOSITION 4.6. A group G can be thefundamental group ofthe complement
of a locally-flat imbedding ofL in L2 if and only if:

(1) G is finitely presented;
(2) G is the normal closure of an element x such that G/(x")= Z, where

(x) is the normal closure of x";
(3) HI((x")G; Z)= Z and H2((xn)t}; Z)= 0. I

Our result on the higher dimensional homology is as follows.

THEOREM 4.7. Suppose, in addition to the assumption that there exists an
imbedding ofL in L 2, that L 2 is h-cobordant to a suspension ofL 1. IfG is a group
satisfying the conditions in Proposition 4.6 and (A i}, 1 < < k, are a sequence of
Z[Z]-modules satisfying the conditions:

(1) KI Hi(Ix"), (x")]; Z);
(2) There exists a surjective homomorphismfrom the Z-torsionfree summand

of K2 to n2([x"), (x")]; z);
(3) The K, are finitely oenerated and K, (R)ztz A =O--see 3.12 and 3.13;
(4) K is Z-torsion free;
(5) I-Ik=l {Pytr,)(z)Pstr,)(z-1)}(- ,,, A(L,)A(L2)-(za 1), up to multiples

by nth roots of unity, where z is a primitive nth root of unity, Pytr} is defined in
2.11, and A and d are defined in the discussion preceding 1.9.
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Then there exists a locally-fiat imbedding ofL in L 2 with complement E such
that"

(i)
(ii)
(iii)

45

rt(E)= G;
Hi(E; Z[Z])= Ki, for 1 <_ < k;
Hk(E; Z[Z]) Kk e(Kk) e2(Kk )--see the discussion preceding

Remark. (1) If we identify Z[Z] with Z[t, -] the condition that
Ks (R)ztzl A 0 is equivalent to the condition that K be annihilated by a Laur-
ent polynomial, p(t), such that p(1)= _+ 1--see Corollary 3 in [27].

(2) The requirement that L2 be h-cobordant to a suspension of L results
from our working below the middle dimension. All of the imbeddings we
construct realizing homology modules are cobordant to a standard imbedding.
In general, however, not only will no unknotted imbeddings of L in L 2 exist
(see the discussion following 2.12)--there may not even exist any imbeddings
cobordant to a standard imbedding.
A later paper in this series will prove a more general result that takes the

cobordism theory into account (as well as its interaction with the middle-
dimensional homology) and the requirement that L 2 be h-cobordant to a
suspension of L1 will be eliminated, m

Proof. This theorem is an immediate conseqt ,ce of Theorem 4.3, Lemma
3.11, 2.12, and the fact that Z[Z] has global homological dimension 2--here, 0
is the Poincar6 imbedding defined by the standard inclusion of L into its
suspension with invariant d--see 1.9.
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