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ON COLORING MANIFOLDS

BY

K. S. SARKARIA

1. Introduction

If K is a finite simplicial complex then we define ch (K) to be the smallest
positive integer such that one can assign to each/-simplex of K one of chi (K)
labels in such a way that not all the faces of an + 1 simplex have the same
label. IfX is a compact triangulable space we define chi (X) sup ch, (K) as K

runs over all triangulations of X. Note that ch (X) is a positive integer or . If
the topological space X is homogenously of dimension m we will denote
ohm_ 2 (X) by ch (X) and it will be called the chromatic number of X.

FINITENESS THEOREM. For any closed triangulable manifold X of dimension
m > 2 one has

m(m + 1) (X" Z2)]ch (X)< [1 -I- bin_
m-1

where b ,(X; Z2)is the dimension ofthe homolooy 9roup n._ ,(x; z2)and {x}
denotes the "smallest integer containin9 x".

This result in fact holds even for all pseudomanifolds and will be proved in
Section 3 below. One has in particular for the m-sphere

ch (Sm) <(

For m 2 this is a classical result of Heawood and was recently improved to
the equality ch (S2) 4 by Appel and Haken [1]. With this one knows how to
calculate the chromatic number of any 2-dimensional manifold. See Ringel [2].

I am grateful to the referee and to Dr. Ranjan Roy for invaluable assistance
given towards the preparation of this paper.

2. Some inequalities

It will be assumed throughout that m is an integer such that m > 2. All
simplicial sets and complexes will be assumedfinite. Given a simplicial set K we
will denote by K" the subset of all simplices of dimensions < n. If a is a simplex
of K, StK a will denote the subset of K consisting of all simplices ofK contain-
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ing a. We will denote the number of i-simplices in K by i(K). For each pair
K
_
L of simplicial complexes we will denote by Hi(L, K) the ith unaugmented

homology group with coefficients Z2; this is in fact a vector space over the field

Z2 and its dimensions will be denoted by hi(L, K). If K is empty we will use
instead Hi(L) and b i(L) respectively. For a topological space X the notations
Hi(X), hi(X)would have an analogous sense.
We recall that a topological space X is called a m-dimensional pseudomanifold

if X can be triangulated by a simplicial complex L such that:

(i) L is homogenously of dimension m, i.e. each simplex is contained in an
m-simplex.

(ii) Any (m- 1)-simplex of L is incident to precisely two m-simplicies.
(iii) Any two m-simplices r/, of L can bejoined through m I simplices, i.e.

there exists a finite sequence of m-simplices

r/ o’, 0"2, O"

such that a and o+ are incident to the same m- 1 simplex.

It is known that then every triangulation of X has these three properties.
It is known that all (closed, connected)triangulable topological manifolds

are pseudomanifolds in the above sense; the converse is true for dim 1 but the
sphere with 2 points identified and the four dimensional space obtained by
suspending Poincar6’s dodecahedral manifold are pseudomanifolds which are
not manifolds. In the following essential use is made only of (ii) and (iii).

LEMMA. Let K be a subcomplex of a triangulation L of an m-dimensional
pseudomanifold. Then at least one of the following holds:

2
bm(L,K)<--m_,(K), (1)

-m+l

bin(L, K)= 1. (2)

Proof. We will assume bin(L, K)>_ 1 since otherwise (1) holds.

Since L is m-dimensional Hm(L, K) is formed from all Z2 chains c of L K
whose boundary c is contained in K. From (ii) it follows that if c contains an
m-simplex a then it contains the chain c. of all m-simplices ofL K which can
be joined to a through (m- 1)-simplices of L- K. We note that for each
m-simplex a of L K this m-chain c. is non-zero and that c. is contained in
K; further two such chains c.1 and c.2 are either disjoint or equal. Thus the set

{cl a an m-simplex of L K}
is a basis of Hm(L K).

If cc. 0 for some a then it follows from (iii) that c. contains all m-simplices
of L K; there is thus only one chain of type c. and bm(L K) 1. So assume
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0C 4:0 for all or. Let be an (m 1)-simplex contained in 0c; if the number of
(m 1)-simplices contained in c3c was less than m + 1 then one of the m faces
of would be incident to no other (m- 1)-simplex of c. This contradicts
c3c3c 0; so each tgc must contain at least rn / 1 simplices. On the other hand
each (m- 1)-simplex of K is incident to at most two m-simplices of L and so
can occur in at most two chains of type 0%. This gives (1).

THEOREM 1. Let K be a subcomplex ofa triangulation L ofan m-dimensional
pseudomanifold X such that L 3 K

_
L"- and K has at least one m- 1

simplex. Then

m 10m-I(K) bin-l(X) 1
_<1 / (A)

m / 1 (x 2(K) o 2(K)

Proof. The long exact homology sequence of (L, K) is

" H,(K) H,(L) H,(L, K) H,_ ,(K)’" (3)
Its exactness implies that the alternating sum of the dimensions of its terms is
zero, SO

bm(L, K)= {bm(L bm_ ,(L) +" .}- {bm(K)- b,,_,(K) + "}
+ {b._ ,(L. K)- b_ 2(L, K)+" "}. (4)

Next we note that

{b(K)- bin_,(K)+’" "} {e(K)- 0m_ I(K) +’" "}
(both terms being (-1)m;((K))

am-x(K) + a,._ 2(K)
+...}

(since L 3

_
K
_
Lm-l) (5)

-.._  IK) + ..-
{bin- 3(t 3) bm_4(t 3) +...}

(using exp for (- 1) 3z(L’- 3))
-am_,(K) + am_ 2(K) bin- a(L’- 3)
+ {b,._,(L)- b,,_ 5(L)+’" "}

because Hi(L 3) H(L) is an isomorphism for < m 4. Since L 3

_
K the

map Hi(K)- H(L) is surjective for i< rn- 3 and an isomorphism for
_< rn 4; so the exactness of (3) implies that

b(L,K)=O fori<m-3. (6)
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Substituting (5)and (6)into (4)we get

bm(L, K)= bm(L)- bm-l(L) + bin-2(L)- bm-a(L) + am_(K)

am- 2(K) + bm- 3(L 3) + bin- (L, K) bin- 2(L, K). (7)
Suppose that (1) holds; then on substituting (7)into (1)we get

m-1
tn + 1

am_(K) <_ -bin(L)+ bin-I(L)- bm-E(L)+ bm_a(L)

+ am- 2(K) bin- 3(L 3) bm- x(L, K) + b,_ 2(L K). (8)
We note that Hm-3(L 3)_ Hm-3(K) is onto; so

-bin- 3(L 3) < -bin- 3(K). (9)
Using (6)we see that (3) has the following exact subsequence:

f

Hm- (L) - H 2(L, K)--- nm- 3(K) -- Hm- 3(L) 0. (10)
This implies that

bm-3(L)- bm-3(K)+ bm-2(L, K)= dim (Imf)_< b,,,_:(L). (11)
Substituting (9)and (11)into (8)we get

m-1
am-,(K) _< am-2(K)+ bin-I(X)- 1. (12)

m+l

Here we have used the fact that -bm-,(L, K)<_ 0 while bm-x(L)= bm_,(X)
and bm(L)- bin(X)= 1.
When (2) holds we substitute (7)into (2)and again use (9)and (11)to get

am-(K) _< am- 2(K) + bm_l (X). (13)
But K contains at least one (m- 1)-simplex; so

am- 2(K) _> m. (14)
But (13) and (14) again imply (12) which is the desired inequality.

3. Coloring theorems

The finiteness theorem follows as an easy corollary:

THEOREM 2. The chromatic number ofan m-dimensional pseudomanifold X is
less than or equal to

m(mm_l+ 1)[1 + bin-(X’, Z2)]}.
Proof. Let us denote the above integer by n(X). For any triangulation L of

X we have to show that ch,._ / (L) _< n(X). But ch,._ / (L)- ch,._ / (L"-) and
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thus it will be sufficient if we can show ch 2 (K) __< n(X) for all subcomplexes
K of L such that L 3 K

_
L 1. We do this by induction on m- 2(K). When

m- 2(K) 0, Lm-3 K and chin-2 (K) 1 < n(X). So assume m- 2(K) > 0. If
K contains no (m- 1)-simplex it is clear that chin-2 (K)= 1 n(X). Other-
wise Theorem 1 applies. From the inequality (A) we see that

m 1 m- < 1 4- bin-I(X) (15)
m / 1 o 2(K)

m._(K)and so < n(X). (16)m-2(K)
But in (16) the left hand side denotes the average number of

(m- 1)-simplices incident to an (m- 2)-simplex. So there exists a a 2 K
incident to less than n(X) simplices of dimension m-1. Put K’= K-
St/ a; now Lm-3 K’_ Lm-1 and the subcomplex K’ obeys m-2(K’)<
m-2(K). Using the inductive hypothesis we can color K’ with n(X) labels and
then, since a is incident to less than n(X) simplices of dimension m 1, extend
it to a coloring of K using the same n(X) labels.

Remarks. (a) Some improvements on the above bounds can be easily made.
Consider first the case m 2. Then the inequality (8) becomes

-al(K) < -b2(L) + bl(L)- bo(L) + ao(K) b,(L, K)+ bo(L, K)
Now here bo(L)= b(L)= 1 while bo(L, K)= 0 because K is a non-empty
subcomplex of the connected subcomplex L. So instead of (12) we get the better
inequality

1/2a,(K) < do(K)+ hi(X)- 2. (12’)
Similarly instead of (13) one gets the better inequality

al(K) < do(K)+ bl(X)- 1. (13’)
However now (14), i.e. do(K)>_ 2, does not ensure that (13’)implies (12’). We
have to replace it with the stronger condition 0o(K)>_ 3. We have thus
reproved the following theorem of[2] (see pp. 55 and 59): For any 1-dimensional
subcomplex K of a triangulation of a closed 2-dimensional X one has

1 al(K) hi(X)- 2
<1+ (A’)30o(K) %(K)

provided ao(K)>_ 3. Using this inequality (A’) and a slight refinement of the
argument of Theorem 2 one gets, for 2-manifolds X with b I(X)_> 1 the well
known formula of Heawood:

+ x//1 + 24bl(X; Z2)
ch (X)<

2
(17)
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See p. 64 of [2]. We remark that the elementary theorems on pages 10-12 of[2]
have obvious generalizations; so such a refinement can be made in the proof of
Theorem 2 in general and one sees thatfor any m-dimensional pseudomanifold X
with bin_ I(X; Z2) 1,

ch (X)<_
b+ x//b22- 4c(X) (18)

where

m(m + 1) m(m + 1) (X" Z2)). (19)b= 1+ and c(X)= (1-bm_
m-1 m-1

(b) For any m-dimensional pseudomanifold X one has ch (X) _< 3. This
can be proved analogously to Theorem 2 using the fact that in any subcomplex
of a triangulation of X a m- 1 simplex is incident to less than three m-
simplices. On the other hand one can see thatfor any piecewise linear manifold
Y of dimension m _> 3, cho (Y)= . To see this we will use the fact that the
chromatic number of an orientable closed 2-manifold X is given by

Ch (x)= 17 + ,/i + 2abe(K)
2

Therefore given any n > 0 one can choose an orientable surface X, with
ch (X,) _> n. Next we note the fact there exists a piecewise linear imbedding of
X, in R3 and hence in any piecewise linear manifold Y of dimension _> 3.
Hence cho (Y)> cho (X,)> n and since n is arbitrary we get cho (Y)=
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