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ON THE JACOBIAN CONJECTURE

BY

DAVID WRIGHT

0. Introduction

Let k be an algebraically closed field, and letf: k" -+ k" be a polynomial map.
Then fis given by coordinate functions fl, f,, where each fi is a polynomial
in n variables X1, X,. Iffhas a polynomial inverse g (g 1, ,), then the
determinant of the Jacobian matrix f/OXj is a non-zero constant. This follows
from the chain rule: Since f 0 is the identity, we have X 0i, f,), so

Xt=l

This says that the product

tXs
is the identity matrix. Thus, the Jacobian determinant off is a non-vanishing
polynomial, hence a constant.
The Jacobian conjecture states, conversely, that if the characteristic of k is

zero, and iff= (f,..., f,) is a polynomial map such that the Jacobian deter-
minant is a non-zero constant, then f has a polynomial inverse. The problem
first appeared in the literature (to my knowledge) in 1939 in [11] for k C.
Many erroneous proofs have emerged, several of which have been published,
all for k C, n 2.
The conjecture is trivially true for n 1. For n > 1, the question is open.

There has been a vigorous attempt by S. Abhyankar and T.-T. Moh to solve
the problem for n 2. In this case it is known that the Jacobian conjecture
is equivalent to the assertion that whenever f (f, f2) satisfies the Jacobian
hypothesis, the total degree off divides that off2, or vice versa. Abhyankar
and Moh have obtained a number of partial results by looking at the inter-
section of the curves fl and f2 at infinite in p2. Moh has proved, in fact, that
the conjecture is true provided the degrees ofA andA do not exceed 1 [15].
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Another advance on the problem, for n 2, appears in my own work [21].
I studied the group GLz(k[X1, X2]) and proved the conjecture is true provided
(cf/Ox) is a product of elementary matrices in GL2(k[X, X2]).
There is another approach to the problem which is essentially algebro-

geometric, but does not appeal to anything peculiar to the case n 2. This
treatment appeals to the "simple connectivity" of k" as an algebraic variety
and contains quite a bit of "well-known" folklore, most of which is difficult or
impossible to find in the literature. I have undertaken here to clarify these
matters by including a fairly complete exposition of these methods and results,
providing proofs which perhaps are novel in some cases, and always purely
algebraic. I have avoided making reference to machinery much too general
for the purpose at hand. I have appealed once to Zariski’s Main Theorem
[9, 4.4.9], and once to the Hurwitz-Zeuthen formula 10, Ch. IV, Corollary 2.4].

In Section 1, I have taken the liberty of writing a short expos6 on the basic
facts about separability and unramification; the reader to whom this is familiar
will skip over it. Section 2 is on derivations, and culminates with a proof of
the simple connectivity (no 6tale coverings) of affine n-space, with no appeal
to transcendental methods. Section 3 contains proofs of the various partial
results which I will briefly discuss in the following paragraphs.
One interesting theorem, due to S. Wang, is that the conjecture holds if

each of the polynomials fl, f, has total degree < 2. I have included a very
simple proof of this which is due to S. Oda. This fact becomes especially
interesting in the light of certain reductions which have been made using
"stability", i.e., allowing n to increase. For example, I have proved (but not in
this paper)2 that the conjecture reduces, at the cost of increasing n, to the case
where each f/has degree < 3.
The main idea in this treatment is to study the containment A B where

A k[f,..., jr,] and B k[X,..., X,]. The conjecture is then equivalent to
the condition A B. Letting A denote the integral closure of A in B, we
establish that the conjecture holds if A (i.e., B is birationally contained
in A) or if 3 B (i.e., B is integral over A). These are two well-known facts.

There is another definitive result, due to L. A. Campbell [5]. For k C, he
proves thatf (fa,...,f,) has an inverse iffsatisfies the Jacobian conditions,
and if the field extension C(f, f,)c C(X1, X,) is a Galois extension
The proof given by Campbell involves the theory of complex variables and
complex manifolds. In this paper I give a purely algebraic proof of Campbell’s
theorem, which is valid for any field k of characteristic zero. The proof pin-
points the main obstacle to the solution of the problem, which lies in showing
A is a separable A-algebra, and shows how the obstacle disappears with the
assumption that k(f,..., f,) k(X,..., X,)is a Galois extension. It should
be noted that Abhyankar has also given an algebraic proof for n 2 [1].

All fields, rings, and algebras are assumed to be commutative with identity.
If R is a ring, we let R* denote its group of units. Let Q denote the rational
numbers, and C the complex numbers. If S is an R-algebra, with structure
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homomorphism f" R S, given an ideal I of S, we write I R for f- 1(1), even
though f may not be injective.

1. Separable algebras and unramified morphisms

In order to spare the reader who is unfamiliar with these notions a greal deal
of rummaging through the references, I will state the definitions and briefly
prove some elementary facts, most of which are contained in at least one of
these sources: [7], [3, Ch. VI], and [12].
Throughout this section, R will denote a ring and S and R-algebra. Given an

S-bimodule M, we always assume ax xa for all x M, a R; and we let

MS= {x M lbx xb for all b S}.

DEFINITION. We say S is a separable R-algebra if the three following equiva-
lent conditions hold.

(a) S is projective as an S @R S-module.
(b) The epimorphism p: S (R)R S S defined by p(a(R) b)= ab splits (i.e.,

admits a section) as a map of S @R S-modules.
(c) The functor M Ms from the category of S-bimodules to the category

of R-modules is exact.

The equivalence of these conditions is clear, since Ms - Homs (R)Rs (S, M).

In a slightly different context, we say the ring homomorphism R S is
separable if it makes S a separable R-algebra.

PROPOSITION 1.1 [12, Prop. 3.3]. If S is a separable R-algebra, and a projec-
tive R-module, then S is a finitely 9enerated R-module.

Proof. S is a direct summand of a free R-module, so we must have S P is
free with basis {x}i i. Let s be the projection of x in S. Then any a S can be
written a .i f(a)s, where f e HOmR (S, R), and f(a) 0 for almost all

I. Then for x e S (R) R S, we have

x E [(ls (R)f)(x)](1 (R) s,).
i6l

Now let e S @ n S be the idempotent such that p(e)= 1 (e exists because p
splits). Then for a 6 S, we have

a p[(1 @ a)e]

=p( {t (ls @)[(1 @a)e] )(1
E
iel
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Since e annihilates the kernel of p, then (a (R) 1 1 (R) a)e--0, so (1 (R) a)e
(a (R) 1)e. Hence

(ls (R)f)[(a (R) a)e] (ls (R)f)[(a (R) 1)e] (a (R) a)(ls (R)f)(e).
Therefore, if (ls (R)f)(e)= 0, then (ls (R)f)[(1 (R)a)e] 0 (independent of a),
and clearly this is the case for all I outside of a finite subset J I. Write
e 7= x, (R) y,. Then for any a S, we have

a p[(1 (R) a)e]

Z (ls (R)fj)[(1 (R) a)elsi
jeJ

jeJ t=l

E f(ay,)xtsj.
jeJ t=l

This shows S is generated as an R-module by the finite set {xtsj}a<_t<_,,jj.

PREPOSITION 1.2. Suppose U and V are multiplicative sets in R and S, respec-
tively, such that the homomorphism R S induces a homomorphism
U-aR V-aS ofthe localizations, lfS is a separable R-aloebra, then V-aS is a
separable U- R_algebra.

Proof The map V-aS QU-1R V-1S V-as arises by localizing the epi-
morphism S @R S--, S at the multiplicative set {(u (R) v)lu, v V}. Hence, if
S(R)SS splits, so does V-aS @V-IR V-aS V-aS.

Clearly the condition that S is a separable R-algebra is equivalent to the
condition that the kernel J of p: S (R) S ---, S is generated by an idempotent. This
implies J j2, and if J is a finitely generated ideal it is equivalent: for if J j2
and J is finitely generated, then by Nakayama’s Lemma there exists e e J such
that (1 e)J 0, so e e2 and e generates J. Now J/J2 is canonically isomor-
phic as an S-module to the module fS/R of K/ihler differentials [14, Chap. 10,
Section 26]. Let (KFG) denote the following condition:

(KFG) The kernel J of p" S (R) S --, S is a finitely generated ideal.

The discussion above is then summarized by the following.

PROPOSITION 1.3. Iffis a separable R-algebra, then fs/D O. The converse is
true provided S satisfies (KFG).

Remark. The condition (KFG) is satisfied if S is a finitely generated R-
algebra. For if S is generated by xa, x,, then J is easily seen to be generated
as an ideal by xi (R) 1 1 (R) xi, 1, n. Also, if S satisfies (KFG), and if U
and V are multiplicative sets in R and S, respectively, such that V-aS becomes
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a U- 1R_algebra, then V- 1S satisfies (KFG) as a U- R-algebra, since the map
V- S (R)

_
g V- S V- S is a localization of S (R) g S S.

PROPOSITION 1.4. If S satisfies (KFG), then S being a separable R-algebra is
equivalent to each of the following conditions:

(1) For each prime ideal ) of S, with / R, Se is a separable
R/-algebra.

(1’) For each maximal ideal /// of S, with # R, Sa is a separable
R,-algebra.

(2) For each prime ideal fi of R, S/ is a separable R/-algebra.
(2’) For each maximal ideal of R, S, is a separable R,-algebra.

Proof. All these conditions hold if S is separable, by Proposition 1.2.
Clearly (1) (1’) and (2) (2’). The implication (2’) (1’) follows easily from
Proposition 1.2. Assume (1’). Since S satisfies (KFG)it suffices to show
fs/n 0, by Proposition 1.3. But (1’) implies that fs/R 0 for all maximal
ideals . Since fs./R is canonically isomorphic to (fs/R)a, we see that S/R is
a locally trivial S-module, hence is zero.

PROPOSITION 1.5. Suppose R is a field. Then S is a separable R-algebra ifand
only if S is a finite product offields I-IT= Fi with each Fi being afinite separably
algebraic extension of R.

Proof. Assuming S is a separable R-algebra, it follows from Proposition 1.1
that S is a finite dimensional R-vector space. Therefore S is Artinian, and hence
a finite product of Artinian local rings 1-[7- Fi. To see that each F is a field, we
will show that S is a semi-simple R-algebra, i.e., that all S-modules are projec-
tive. Given an S-module M, then for any S-module N, HOmR (M, N) becomes
an S-bimodule by letting (afb)(x)- af(bx) for all a, b S, f HomR (M, N),
x M. Now Horns (M, N) Hom (M, N)s. Since R is a field, HOmR (M, -)
is an exact functor, and since S is a separable R-algebra, _s is exact (see the
definition of separability). Hence Horns (M, -), i.e., M is projective.

So each F is a finite field extension of R. Also the Fi’s are localizations of S at
its maximal ideals, so by Propositions 1.4, we may assume S is a finite field
extension of R, and we must show that S is a separably algebraic extension. If S
is not separably algebraic, then there is a subfield L between R and S with
S L(t), f’ L (where p char R), and L. Then S L[T]/(Tp- tP)L[T].
The derivation t?/t?T on L[T] carries the ideal (Tp tP)L[T] into itself, there-
fore it induces a derivation D: S--, S, with D(t)= 1 and D(R)= 0. By the
universal property of fs/R, there is a map h: fS/R S such that the diagram

D
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commutes. Then h(dt)- D(t)-- 1, so dt--/: O. Therefore QS/R O, which is a
contradiction, according to Proposition 1.3.

Conversely, assume S YI’- F, with each F a finite, separably algebraic
extension of R. By Proposition 1.4, we can reduce to the case where S itself is a
finite, separably algebraic field extension, and by Proposition 1.3 it suffices to
show s/s 0, since condition (KFG) is obviously satisfied. Let a 6 S, and let
f(X) be its minimal polynomial over R. Then fS/R, 0 d[f(a)] =f’(a)da.
Since f’(a) O, da 0. So fs/R 0 as desired.

PROPOSITION 1.6. Suppose I is an ideal of S, and J I c R. Let S S/I and
R R/J. If S is a separable R-algebra, S is a separable R-algebra.

Proof The epimorphism p: S (R) S --, S, arises from p" S (R) R S "-} S by
applying (R)s S and then S (R)s So if p splits, so does

PROPOSITION 1.7. Suppose R and S are local, with maximal ideals m and
respectively, and residue fields R and S. Assume R S is a local homomorphism.
If S is a separable R-algebra, then /{ mS and S is a finite separable field
extension of. The converse holds if S satisfies (KFG).

Proof It follows from Propositions 1.4 and 1.5 that S/mS is a finite separ-
able field extension of/, whence the first statement. Now let us assume (KFG)
holds for S, and that //-- mS, and S is a finite separable field extension of R.
Consider the fundamental exact sequence of S-modules

fS/R @s S ---} t)S/n --} 0 [14, Theorem 58, p. 187].
Our hypothesis implies fs/e 0. Furthermore, //#2 is generated as an S--
module by elements which come from m, since /= mS. But if a m, 6(a)
da (R) 1 0. So the image of gi is zero. Therefore, fS/R @S S 0. Since S
satisfies (KFG), fS/R is a finitely generated S-module, and therefore fS/R O,
by Nakayama’s Lemma. Hence S is a separable R-algebra, by Proposition 1.3.
Given a prime ideal p R, write k(p)= R//pR.

PROPOSITION 1.8. Consider the followin9 conditions"

(a) S is a separable R-algebra.
(b) Fo all prime ideals/ = R, S (R)n k(/) is a separable k(p)-algebra.
(b’) For all maximal ideals m R, S @ R k(m) is a separable k(m)-algebra.

The following implications hold" (a)= (b)= (b’). If condition (KFG) holdsfor
S, then (b)= (a). If, in addition, all maximal ideals ors restrict to maximal ideals
of R, then (b’) (a).

Proof (a) (b) follows from Propositions 1.4 and 1.6. Clearly (b)= (b’).
Assume (b) holds and condition (KFG) holds for S. To show S is separable, we
appeal to the criterion given in (1) of Proposition 1.4. Le . be a prime ideal of
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S, and let fi c R. We must show the S, is a separable R;algebra. Since S.9
also satisfies (KFG), (as an R;algebra), it suffices, by Proposition 1.7, to show
thatS S (i.e., that S,//S is a field), and that S//S is a localization
of S (R) R k(fi) at a prime ideal, so these conclusions follow from Proposition
1.5. The same argument can be used to prove (b’) (a), under the additional
hypothesis. For then we assume is maximal, so is also, and we can make
use of the hypothesis (b’), appealing to (1’) of Proposition 1.4.
Now I will restate the notion of separability in the language of algebraic

geometry.

DEFINITION. Let X and Y be Noetherian schemes and f: X Y a mor-
phism of finite type. Say f is unramified at x 6 X if the local homomorphism
(glt,) - (9,, is separable, i.e., (Proposition 1.7) x itx)(gx and k(x) is a finite,
separably algebraic field extension of k[f(x)].

From Proposition 1.4 it is clear that such a morphism fwill be separable if
and only if it is given locally by separable ring homomorphisms. Note that (b’)
of Proposition 8 shows that if X and Y are k-schemes of finite type (e.g.
varieties), where k is some field, it suffices to check unramification at closed
points of X.

Suppose S is a finitely generated R-algebra, i.e., S R[X 1,..., X,,]/I. Then
there is the exact sequence

1/12 -- RX X,I/R () R S -- S/R -- O.

NOW RX X./R is free on the generators dX 1, dX,. Assume in addition
that S is finitely presented, so that I is generated by a finite collectionfl,... ,f,,.
Then I/I is generated by the images fl,..., f,,, and

= OX dXj.

(The overbar denotes the image after tensoring with S.). Thus the exact seq-
uence shows that fls/g 0, i.e., 6 is an epimorphism, if and only if 6(/]), 1,

m, generate

’R[X1 Xn]/g Q R S S dX ’"@ S dX

This holds if and only if the m x n matrix (c3f/c3X) (with entries in S) has a left
inverse. The condition (KFG) holds for S, so the next proposition follows.

PROPOSITION 1.9 [20]. Let S- R[X, X,]/(f fm)R[X , X,].
Then S is a separable R-algebra ifand only if (c3f/c3X has a left inverse (Of/c3X
denotes the image of c3fi/c3Xi in S.)

Now let k be a field, and let S k[X 1,..., X,]. Suppose fl,...,f, S satisfy
the Jacobian condition det (t3fi/c3Xj) 6 k*. It follows easily from this condition
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that fl, f, are algebraically independent. (Just consider the linear homogen-
eous terms.) Let R k[fl, f,]. We have a map of R-algebras ck:R[Y1,

Y,] S sending Y to X,. Clearly the polynomials 9,(X, Y) fi(X) fi(Y)
lie in the kernel of ft. (I simply write X for Xa, X, and Y for Y,..., Y..)
Viewing

R[Y] k[fx (X), f,(X), Y1, Y,]
as a polynomial ring in 2n variables over k, it is clear that 9(X, Y), 1,..., n,
are part of a system of variables for it. Specifically,

R[Y] k[gl(X, Y),..., g,(X, Y), Y1,..., Y,].

Therefore, g[r]/[gl(X, Y), g,(X, Y)]R[Y] is a polynomial ring in n var-
iables over k. It follows that gl(X, Y), g,(X, Y) generate the kernel of 4).
Also,

det
O
9i(X,y)=_ifi(y)

Therefore, by Proposition 1.9, S is a separable R-algebra. This proves the
following.

PROPOSITION 1.10. Let k be a field, S k[X1, X,], fl, f, e S with
det (Of/OX)) k*. Then, letting R kill,..., f,], S is a separable R-algebra.

Note. In fact, the above is true where k is any ring.

PROPOSITION 1.11 [19, proof of Theorem 2.2]. Suppose R k[t], where k is
an algebraically closed field, and is algebraically independent over k. Suppose S
is the integral closure of R in a finite field extension L of F k(t). If S is a
separable R-algebra, then S R.

Proof The containment F L corresponds to a morphism f: C P
where C is the non-singular curve whose function field is L. Since S is a
separable R-algebra, it follows from Propositions 1.4 and 1.7 that L is a
separably algebraic field extension of F, and that no ramification occurs above
any of the points of spec R in Pk. According to the Hurwitz-Zeuthen formula
[10, Chap. IV. Cor. 2.4], we have

2G- 2- n(29- 2)= [e(x)- 11
xC

where G is the genus of L, 9 is the genus of F, n [L: F], and e(x) is the
ramification index off: C -+ P at x. Since S is a separable R-algebra, e(x) > 1
can occur only for points of C lying above the point y at infinity in Pak. We also
know n xc, fx)=r e(p), from local field theory [18, Chap. I, Proposition
10]. Since 9 0, we have 2(G + n 1) < n, which can only happen if n 1, i.e.,
L F. Since R k[t] is integrally closed, this implies S R.
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2. Derivations on Q-algebras and the simple connectivity of An(k)
Let R be a ring containing Q, and D: R - R a derivation. The kernel ofD is a

subring of R and is called the ring of constants with respect to D. If T is a
multiplicative subset of R, D extends uniquely to a derivation on T-1R by
letting

If I is an ideal of R such that D(I) c I, then D induces a derivation on R/I. We
say D is locally nilpotent on R if for any a R, there exists an integer n > 0
such that Dn(a) 0. Suppose S is an R-algebra and D is a derivation on S which
is R-linear (i.e., the image of R in S consists of constants). Then given an
R-algebra R’, D induces an R’ linear derivation on S’= S @ g R’.

If D is a derivation on R, then the map : R - R[[T]] defined by

dp(a)- Z Dn(a) Tn
n=O n!

is a ring homomorphism, and

d
dpOD=dT dp.

If D is locally finite, b is a homomorphism into R[T].

PROPOSITION 2.1. Let S be a ring containing Q, and D a locally nilpotent
derivation on S. Suppose S with D(t) 1. Then S R[t], where g is the ring
of constants and is algebraically independent over R. Furthermore, D d/dt.

Proof Let SITS, and let p" S S-[T] be the composite of the homomor-
phism c" S S[T] described above followed by the projection SIT] S-[T]. I
claim p is an isomorphism. If so, then since

d
po D

dT

we have R p-1(S-); also T p(t), so the proposition will follow from this
claim. To prove that p is surjective, it suffices to show its image contains S.
Given a S, let denote its image in S-. We wish to see that a S-[T] is in the
image of p. Now

1
Dn(a Tnp(a) gt + D(a) T +"" +

and

DR(a)=O fork>n.
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Therefore, if n > 0, we can replace a by

1
a -i D"(a)t".

This lowers n and preserves , so we can conclude that p is surjective. Further-
more, if a S is in the kernel of p, then D"(a) tS for n > 0. In particular
a aa t, and since p(t) T, then p(aa) 0, and so aa a2 t, so a a2 t2. We
can continue this to prove that t"la for all n > 0. I will show this is impossible
unless a 0. Consider the homomorphism d?: S S[T]. d(t)= t+ T, so if
t"la, then (t + T)" divides q(a), therefore the degree of th(a)is no less than n, if
4)(a) 4 0. Since (t + T)" divides 4(a) for all n > 0, 4(a) 0. Therefore, a 0.
This concludes the proof.

PROPOSITION 2.2. Let S be a rin9 containin9 q, and let Dx,..., D, be afamily
of commuting, locally nilpotent derivations on S. Suppose there exists t,...,
t, S such that Di(t)= (ij. Then S R[ta, t,], where R is the rin9 of ele-
ments which are constants with respect to each of D , D,; t, t, are
algebraically independent over R; and Di

Proof By Proposition 2.1, S R[t], where R is the ring of constants
with respect to D, tx is algebraically independent over R a, and D d/dt . It
follows easily from the fact that Da commutes with D i, i= 2, n, that
Di(R R a. By induction, we have t1 R[t2, t,], and the proposition
follows.

PROPOSITION 2.3 (Seidenberg [17]). Let R be an integral domain containin9
Q, and let S be its complete inteoral closure. Suppose D is a derivation on K, the
field offractions of R. If D(R) R, then D(S) S.

Proof By hypothesis, the homomorphism 4: K K[[t]] induced by D car-
ries R into R[[t]]. Suppose a e S. Then a is "almost integral" over R, i.e., there
exists b e R such that ba" e R for n > 1. Applying q, we have 4(b) (a)" e R[[t]],
and hence bd)(b)[(a)- a]" e R[[t]]. Since

D2(2a) 2cD(a)- a D(a)t + +’..,

it follows that bZD(a)" tl for n 0, 1, 2, i.e., D(a) S.
The following proposition is an easy special case of some more general facts

proved in [19], (see Propositions 1.2, 1.3 and 1.5).
PROPOSITION 2.4. Let R be a discrete valuation rin9 containin9 q, D a deriva-

tion on R, and x R such that D(x) R*. Then x is a uniformizin9 parameterfor
R.

Proof Let be a parameter, so that x=ut" with ueR*, n>0. Then
D(x)=nut"-+ D(u)t". So "-a divides D(x). Therefore, n= 1, since
D(x) e R*.
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The following proposition is one of the main results of [19]. I will essentially
reproduce Vasconcelos’ proof.

PROPOSITION 2.5 (Vasconcelos [19, Theorem 2.2]). Suppose R is an integral
domain containin9 Q, and suppose S is a domain containin9 R and integral over R.
Suppose D is a derivation on S which restricts to a derivation on R which is locally
nilpotent on R. Then D is locally nilpotent on S.

Proof One easily verifies that if D IR 0, then D 0. So we may assume
D IR 4 0. Let T denote the set of non-zero elements of R which are constants
with respect to D. There exists a e R such that D(a) T, since D [R is locally
nilpotent. The hypotheses of the proposition are preserved if we replace R and S
by T- R and T- S, and D by T- D. Letting a/D(a), we have D(t) 1, and
so R K[t], and D d/dt, by Proposition 2.1. Furthermore, K is a field. The
algebraic closure of K in S consists of constants, so by enlarging R, we may
assume K is algebraically closed in S. Then replacing R and S by R @ K and
S (R)//, where/ is the algebraic closure of K, and D by D (R) ide, the situation
is preserved, so we may assume K is algebraically closed. Having made these
reductions, I will show S R.

aLet aS, 4:0, and let a"+b,_, +’"+bo=0 be an expression of
integral dependence of a over R of minimal degree. Applying D, and solving for
D(a), we get

D(b._ )a" +’" + D(boD(a)
nan-’ + (n 1)bn-zan-z +"’+ b,

(the denominator being non-zero because of the minimality of n). Thus we see
that D(a) lies in the field K(t, a). It follows that D carries K(t, a) c S into itself,
so for our purposes, we may replace S by its integral closure (Proposition 2.3),
and thereby assume S is the integral closure of K[t] in K[t, a]. It follows from
Proposition 2.4 applied after localization that the map spec S ---, spec R is an
unramified morphism of curves, and therefore, by Propositions 1.4 and 1.7, S is
a separable R-algebra. Therefore S R, by Proposition 1.11.

PROPOSITION 2.6. Let A be a Noetherian regular local rin9 with maximal
ideal m, and let F A/m. Suppose A contains a field k and suppose s ,,..., Sr A
such that the residues rs,, rs, F form a separatin9 transcendence basis of F
over k. Let ,, t, be a regular system ofparametersfor A. Then fa/k is.free and
drx,..., dt,, ds2, ds form a basis.

Proof The differentials dg,, dg, for a basis for t)F/k [14, Theorem 59,
p. 191]. Considering the exact sequence

m/m2 -* A/k QA F - F/k -- 0we see that the images of dt,, dt,, ds,, ds, generate flAIR () F, and
therefore, by Nakayama’s Lemma, these differentials generate )A/R. We must
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show they are linearly independent. Let A be the completion of A. Then A c A,
and A Flit1,..., td]] [14, Cor. 2, p. 206]. Let D, c3/t?ti, 1,..., n, which we
will consider as a derivation from A to F[[tl,..., t,]]. Since F is a separably
algebraic field extension of k(g,..., g,), the derivation O/Ogj extends (uniquely)
to F [22, Cor. 2’, p. 125], and so it induces a derivation Ej on Flit1,..., t,]], such
that E(ti) 0 for j 1, r and 1,..., n. Again, we view Eas a derivation
from A to El[t1,..., t,]]. Now suppose there is a relation

adt+ bsdss=O
i=1 j=l

in ’A/k" The derivations Eq, 1 < q _< r, induce a homomorphism

fa/k--* F[[t,, t,]]

sending dx to Eq(x)for any x A. Since Eq(h)= 0, we have

Note that the order of Es) is zero if j q, and positive if j @ q. (Here the
order of an element of A is the largest power of the maximal ideal which
contains it.) If not all the b]s are zero, then we choose q so that the order ofbqis
minimal, and the equation = bj Eq(s) 0 becomes an impossibility. Hence,
b b, 0, and so 7= a dt 0 in "A/k" The derivations Dp, 1 < p _< n,
also induce homomorphisms

A/k Flit,,..., t,]],
and since Dp(ti) 6p, we must have ax a, O. Therefore, dta, dt,,
ds,..., ds, for a basis.

PROPOSITION 2.7. Let k be a field of characteristic zero, and let R and S be
integral domains which are finitely generated k-algebras, with R S and S inte-
gral over R. Assume one of the following conditions.

(a) R is regular and S is a separable R-algebra.
(b) R and S are normal, and for all height one prime ideal c S, S/ is

separable over R, where fi c R.

Then any k-derivation on R extends uniquely to a k-derivation on S. If (a) holds,
then S is also regular, and a flat R-module.

Proof. In case R (and hence S) is a field, any derivation extends uniquely, by
the well known facts of separable field extensions [22, Cor. 2’, p. 125]. For the
general case, let D be a k-derivation on R. Let K and L be the fields of fractions
of R and S, respectively. Then D extends to a unique derivation on K, and
hence to L (by the above); we will denote this derivation by D. We must show
D(S) c S. To do so, we will show D(S.e) Se for all prime ideals S. Under
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condition (b) S is normal, so it suffices to prove D(Se) Se for height one
primes ,, since S is the intersection of its localizations at height one primes. So
under either assumption, we have R is regular, where fi c R. Set A R,
B Se. Let tl, t, be a regular system of parameters for A. Then by Proposi-
tion 1.7, tl, t, also generate the maximal ideal of B. Since dim B dim A, B
is regular and the t’s form a regular system of parameters for B also. This
proves, under the assumption (a), that S is regular. Let s, sr A be ele-
ments whose residues form a transcendence basis of the residue field of A over
k. Then s, sr do the same for B. By Proposition 2.6, the differentials dt ,...,
dt,, dsa,..., ds, form a basis for ’A’/k, and also for ’B/k" Therefore the map

"A/k QA B B/k
is an isomorphism, so for every B-module M,

Homa (fa/k, M)= Homa (fa/k, M).

Taking M B we see that every k-derivation A B extends uniquely to a
k-derivation on B. In particular, D [a has an extension D’ to B, which also
extends to L. But then D’= D, so D(B)c B.
With regard to the flatness of S, in case (a), we note that S is a finitely

generated module over A R and A is a regular local ring. Hence

proj dimA S + depthA S dim A [14, Chap. 6].

But a regular system of parameters for A is also a regular sequence for Se.
Therefore deptha S dim A, so proj dima S 0.

PROPOSITION 2.8. Let k. R, and S be as in Proposition 2.7, with k ofcharacter-
istic zero. Assume that either (a) or (b) (of2.7) holds. Assume that R is a polynomial
rin9 A[tl,..., t,]. Then there exists a subrin9 B of S containin9 A such that
S B[tx,..., t,] and the containment A B is finite and satisfies which ever of
the conditions (a) and (b) that R

_
S satisfies.

Proof It clearly suffices to treat the case n 1. The derivation d/dt on R
extends to a derivation D on S by Proposition 2.7. According to Proposition
2.5, D is locally nilpotent on S. It follows from Proposition 2.1 that S Bit]
with B = A. From this it is easy to prove that A and B satisfy the right
conditions.
Note that it A k in Proposition 2.8, then B is a finite field extension of k.

Thus we have proved the following"

THEOREM 2.9. Let k be an algebraically closedfield of characteristic zero. If
f: V -o Ak is an unramified, finite morphism of varieties, thenf is an isomorphism.
If V is normal, it suffices to check non-ramification at points ofV corresponding to
height one primes. (V is necessarily affine in this case because f, being finite, is an

affine morphism.)
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Recall that a scheme W is called simply connected if every 6tale covering of
W is trivial. An 6tale covering is a finite, flat, unramified morphismf: V --, W; it
is called trivial if V is the disjoint union of finitely many copies of W, and f
restricted to each copy is the identity. In the case where W is a nonsingular
variety, such a morphism is automatically flat if it is finite and unramified
(Proposition 2.7). Whence the above theorem can be restated as follows.

REFORMULATION OF THEOREM 2.9. If k is an algebraically closed field of
characteristic zero, then A"k is simply connected.

3. Special cases

The followin9 notation will be fixed throughout this section. Let

x.]
where k is a field of characteristic zero, and let fl,..., f, e B be such that
det (Ofi/OXj) k*. Let A k[fl,...,f,], and let X denote the integral closure of
A in B. Let T--spec A, V spec A, and W spec B.

B W

We know from Theorem 1.10 that B is a separable A-algebra, i.e., the morphism
W T is unramified.

PROPOSITION 3.1. The map W V is an open immersion, and if V W, the
complement V- W has pure codimension one.

Proof Since B is a separable A-algebra, it is an easy consequence (Proposi-
tions 1.4 and 1.7) that B is separable over any subring containing A; in particu-
lar, B is separable over A. Therefore, each fiber of the birational morphism
W- V is finite (Proposition 1.5). Since V is normal, we may apply Zariski’s
Main Theorem [9, 4.4.9], which says that W V is an open immersion. It is a
well-known fact that the complement of an affine open subvariety in a normal
variety, if non-empty, has pure codimension one. For the benefit of the reader, I
will prove this for the case at hand. Since V is normal, if codim (V- W) > 1
then every section over W extends to a section over V, i.e., A B, i.e., V W.
Hence if V 4: W, then codim (V W) 1. To see that the codimension is pure,
choose 9 e F(V) , such that 9 vanishes along those irreducible components
of V W which are of codimension one, but does not vanish along the other
components. Let Vo spec (0), W0 spec (Bo). Then W0is an open subvariety
of V

0 and the same argument as above shows that if Wo 4: Vo, then
codim (V0 W0)= 1. But codim (V0 Wo)> 1 by the choice of 9, so Vo Wo.
But V

0 intersects the components of V W which are of higher codimension
and Wo c W. Hence there are no such components.
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THEOREM 3.2. If the containment A c B is birational, then A B.

Proof. In this case ft. A. By Proposition 3.1 W T is an open immersion,
and if A :/: B, then T I4’ has codimension one. Since A is factorial, there exists
an irreducible g A such that V(g) W . Therefore, g-1 B, a contra-
diction, since k* A* B*.

THEOREM 3.3. If B A, then A B.

Proof It follows from Propositions 1.4 and 1.5 that K c L is a finite field
extension, i.e., thatfl,... ,f, are algebraically independent over k (a fact which is
easy to prove directly from the Jacobian condition). In the case B it
follows from Proposition 2.8 that B k’[f,..., f,], where k’ is a finite field
extension of k. But since k is algebraically closed in B we have k’= k, hence
A-B.

THEOREM 3.4. If k is algebraically closed and the morphism W T is injec-
tire on closed points, then it is an isomorphism, i.e. A B.

Proof Since f, f, are algebraically independent, B is algebraic over A
and for some non-constant g A, B[1/g] is integral over A[1/g]. Choose a
closed point x e T in the image of W which does not vanish at g. Then x
corresponds to a maximal ideal of A, and B. is separable and integral over
A,. The injectivity implies, moreover, that B, is a local ring. Since k is alge-
braically closed, the residue fields of both local rings are equal to k. Let /
be the maximal ideal of B,,. Then //= B, (Proposition 1.7), and B,
k ) /= k 0) B, A,, + B,. Since B, is a finite A,,-module, Nakayama’s
Lemma implies A, B,. Thus the containment A c B is birational, and, by
Theorem 3.2, we are done.

LEMMA 3.5 (S. Oda). Assume k is algebraically closed and eachfi is oftheform
X -F h where hi is a homogeneous polynomial, all of the same degree. Then the
morphism W --, T is injective alon9 any straight line throu9h the origin in W (with
respect to the coordinate functions Xx,... X,).

Remark. It has been shown that one can reduce the conjecture to the case
f Xi + hi with hi homogeneous of degree d, where d < 3. This will appear in
the paper by Bass, Connell, and Wright mentioned in the footnote in Section 0’.

Proof If d deg hi is 0 or 1, the conclusion is easily obtained. Assume the
lemma is false, so that d > 1. Let (, t, , t) parameterize a line over which
injectivity fails. Let

Fi(t) =f/(l t, ,t)= it + hi(o t, ,t)

--Oit d- fli d where fli k.
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Our assumption says there exist a, b k, a 4: b, such that F,(a)= F,(b), for
i= 1, n. Then a,a + fliaa= a,b + B,ba, i.e., a,(a b)= fl,(ba- aa). It fol-
lows that each fi(t) is a scalar multiple of a polynomial F(t)= a + at. Since
d > 1 and k is algebraically closed, there is a root c of F’(t) dta- + a, and
hence F’i(c)= 0 for i= 1,..., n. But

F’i(t)=
cgfi

( t, .t)
j=l j

by the chain rule and so

o= c,
j= -j

This contradicts the fact that

det
[OXj

(

THEOREM 3.6 (S. Wang [20]).
f,i 1,..., n, is _< 2, then A B.

If the total degree in Xx, X, of each

Proof Tensoring with the algebraic closure of k, we may assume k is alge-
braically closed. It suffices, by Theorem 3.4, to show that W T is injective on
closed points. Suppose not. Then we can make a linear change of variables to
arrange that the origin and one other point go to the same point, which may be
assumed to be the origin in T. We now have fi gi + hi where gg and h are
homogeneous of degrees one and two, respectively, and we can now make a
homogeneous linear change of variables to arrange that 9i X. This is a
contradiction with Lemma 3.5, and so the theorem is proved.

THEOREM 3.7 (Campbell [5] for k C). Let K and L be thefields offractions
of A and B, respectively. If L is a Galois extension of K, then A B.

(Note. This theorem includes Theorem 3.2.)

Proof. It will be shown that for all height one prime ideals = ,4, A is a
separable A-algebra, where A. Once this is established then it fol-
lows from Proposition 2.8 (criterion (b)) that/i k’]f, f,] where k’ is a
finite field extension of k. But since k is algebraically closed in B, k’-k, so
A A. Therefore, the containment A B is birational, so A B by Proposi-
tion 3.2.

So let A be a height one prime ideal, and let A. Since A is
factorial, cA, for some irreducible c A. Since B* A*, c B*, so there is
a height one prime ideal c of B containing c. Since B is a separable A-algebra,
Be/B is a finite field extension ofA/tA, where 9 A (Propositions
1.4 and 1.7), so both fields have the same transcendence degree over k. There-
fore, the height of t is also one, and since ,, we must have =/. Let
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’= c A. Then ’c A fi and since, by Proposition 3.1, spec B
spec A is an open immersion, A,= Bo. Therefore, A, is separable over A.
Since K c L is a Galois extension, there exists an element a Gal (L/K) such
that a() ’ [13, Chap. IX, Prop. 11]. Then a(/i) =/,. Therefore, is a
separable A-algebra. This proves the theorem.
The following theorem summarizes the results of this section.

THEOREM. Let k be a field of characteristic zero, and let

f, f k[X,, X]
be such that det (3f//cX) is a non-zero constant. Then

f= (f,..., f,)" k
_

k

has a polynomial inverse provided any one of the following conditions holds.

(1) k[X ,, X,] is integral over k[f, f,].
(2) k(X,, X,) is a Galois field extension of k(f,,..., f,) (e.g. k(X,,...,

X,) k(f,, f,)).
(3) The polynomial map k- k given byf, where is the algebraic closure of

k, is injective.
(4) The total degree of each polynomial fl, fn is < 2.
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