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Introduction

Suppose G is a finitely generated Fuchsian group of the first kind and A(G) is
the (graded) ring of automorphic forms relative to G (el., 1.0). Then we shall see
(4.4) that A(G) is a finitely generated algebra over C. For example, if G is the
modular group, then A(G) is a polynomial ring generated by a form of weight 2
and a form of weight 3, g 2 and 03. That is A(G) , C[g2, g3]. Any form of weight
k is a linear combination of monomials of weight k in 9 2 and g 3. For example,
any form of weight 6 is a linear combination of 9z and 9. Of course for most
groups A(G) requires many generators. In fact we showed in [21] that there are
only three groups for which A(G) is generated by two elements and classified all
groups for which A(G) is generated by three elements. Knopp [8] obtained the
same results independently using analytic methods. Those groups G for which
A(G) is generated by three elements and H+/G is compact were previously
classified by Doglacev [4] and Scherbak [18]. Milnor [12] studied the structure
of certain rings of automorphic forms with fractional weights.

In this paper we determine a minimal set of generators for A(G), for any
group G as above (3.3). We then apply this to classify all groups for which A(G)
is generated by four elements (6.1). We also determine the number and degrees
of the generators of the ideal of relations when A(G) has four generators. We
note that the ideal of relations always has either two or three generators in this
case.
The paper is organized as follows. In Section 1 we recall some "classical"

theorems of Castelnuovo and Mumford. In Section 2 we treat the case of a
covering group G. The main theorem is stated and proved in Section 3 while
the proof of several lemmas is left for Section 4. The relation between the
algebra of automorphic forms and singularities of complex surfaces with
C*-action is given in Section 5. Finally, we classify all groups with A(G) gen-
erated by four elements in Section 6, and study the structure of A(G) in that
case.
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1. Two "classical" theorems

1.0. Suppose G is a finitely generated Fuchsian group of the first kind. Let
A(k) be the vector space of entire automorphic forms of weight k and define

A(G)- [ A(k)
k=0

the graded ring of automorphic forms. Note that A(0)--C.
Now G acts on the upper half plane H+ and the orbit space Xo H +/G is a

Riemann surface with a finite number of punctures. We let X denote the
compact Riemann surface obtained by filling in the punctures. Then X Xo is
a finite number of points which we denote by q, q. We shall call these
points parabolic points. The orbit map rt:H+ X0 is branched over a finite
number of points P l, Pr X0 which we shall call elliptic points. For each
we let ei > 2 be the ramification degree of n at Pi.
The signature of G is the set of invariants (9; s; el, er) where 9 is genus X

and, by convention, el _< e2

_
_< er. The signature contains all the topologi-

cal information about G. A signature is said to be admissible if it is the signature
of some G as above. A necessary and sufficient condition for admissibility [9] is
that

If D is a divisor on X we use IDI to denote the linear system of effective
divisors D’ such that D’ D. We use L(D) to denote the set of functionfso that
(f) >_ -D.
We begin by stating two classical theorems. These will be used later to show

that certain specified elements generate A(G).

Recall that by the Riemann-Roch theorem, if degree D >_ 29 1, then

dim L(D) degree D + 1 g.

THEOREM 1.1 (Castelnuovo’s lemma). Suppose Dll has no base points and
either

(a)
(b)

Then

is onto

degree D2 degree DI + 29- 1 or
degree (D2 D1)= 20- 2 and D2 D1 4: K or

D2 D1 K and degree D1 > sup (29 + 1, 2).

L(D1)( L(D) L(D1 + D), f(R) 9---f9,

Proof Saint-Donat [16, 2.11] proves that the conclusion of the theorem
holds if ID11 has no base points and Hl((9(D2 D1)) {0}. This is guaranteed
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by the hypotheses (a) and (b). Now to prove (c) we note that there is a commu-
tative diagram

p) (R)

(R)

L(Dx+D2-p)=L(2D,+K-p)

L(Dx + D2) L(2D, + K)
for any point p X. For simplicity choose p so that it is not in the support of
any of the divisors above. Now by (a) the top horizontal map is onto since
degree D P > 29 and therefore D p has no base points. There exist

f, L(D,)- L(Dx p) and f L(D, + K)- L(D, + K- p)
since D and D1 + K have degree >_ 29. Then f=dp(f(R)f2) lies in
L(2D + K) L(2D + K p). But

L(2D, + K) L(2Dx + K- p)
and

dim L(2D, + K)= dim L(2D, + K p)+ 1.

Hence we get the desired equality. |

THEOREM 1.2 (Mumford [13]). If degree D >_ 29 + 1 and r, s >_ 1 then the
product map L(rD) (R) L(sD)- L((r + s)D) is onto.

Proof By [13] the map S*L(D)- .>_o L(nD)where S* denotes the sym-
metric algebra functor, is onto. Now we have a commutative diagram

(R) s

L(rD) (R) L(sO) L((r + s)O)
with the top map and the vertical maps being onto. Hence the bottom map is
onto. |

The reason that assertions about L(D) are relevant to studying A(G) is that
we can show that A(k) is isomorphic to L(D) for a suitable divisor O.

DEFINITION 1.3. If we are as above, and k is an integer, define a divisor on
Xby

Dtk)= kK + k(q, +’"+ q)+ [k(1 1/ei)]Pi
i=1

where [x] denotes the greatest integer < x. Define

L(k) L(Dtk’) and L(G)= L(k).
k=0
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Then L(G) has a natural structure of a graded algebra sincef L(k), L(k’)
implies f# L(k + k’).

PROPOSITION
ok,: A(k)- L(k)
A(G) L(G).

1.4. There are natural isomorphisms of vector spaces
which induce an isomorphism of 9faded algebras

Proof The idea for this appears in Gunning [7]. Let h be a meromorphic
1-form for G and let k(X) denote the field of meromorphic functions on X.
Then we can define ,: A, k(X) by b,(f)= f/h*. By Gunning [7, II,
Section 8] , maps A, isomorphically onto L(k). One easily checks that the
induced map 4) is an algebra homomorphism. |

Pinkham has generalized the above result [15, Section 5].

2. Covering groups

We shall first consider the case when G is the covering group of X, i.e.,
signature G (g), g > 2. In this case A(G) is isomorphic to the canonical ring
of X.

PROPOSITION 2.1. Suppose G is the covering group of X. If X is non-
hyperelliptic, then A(G) is generated by A(1). IfX is hyperelliptic and 9 > 3, then
A(G) is 9enerated by gforms in A(1)and g-2forms in A(2). lf9 2 then A(G)is
9enerated by two forms in A(1)and one form in A(3).

Proof For X non-hyperelliptic the result is due to Max Noether. For a
proof, see [16, 2.10]. Now suppose X is hyperelliptic of genus g > 3. First recall
that A(k)= L(kK)and by Theorem 1.1,

L(K) (R) L((n 1)K) L(nK)
is onto for n > 4. Thus A(G) is generated by forms of degree l, 2 and 3. We can
write X in the form y2 (Z el)"’" (2 1320 + 1)where the ei are distinct, non-
zero complex numbers. Now A(1) is just the space of holomorphic 1-forms on
X. A basis for the space of 1-forms is given by

dz z dz zo- dz

Y Y Y

(cf. [19, Section 10.10, p. 293]). A basis for the 2-forms is

dz2 Z2O 2 dz2

y2 y2

dz2 zo- 3 dz2

,..., ,g>3,
Y Y
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and a basis for the 3-forms is

z d23
2 dz3

y3 y2

where 0 < _< 39 3, 0 < j < 2g 4. One can easily see that in this case

A(1)(R)A(2)A(3)

is onto. Moreover, a 2-form is in the image of A(1)(R) A(1)if and only if it is a
linear combination of the (z dz2)/y2.

Finally, the case g 2 was treated in [21, Theorem 4.6].

3. Statement of the main theorem

We now turn to the general case. Let A A(G). Then A is a graded algebra
over the field of complex numbers C. Let m ) 2= A(i). Then m is a maximal
ideal of A. A set of elements xl, x e m form a set of algebra generators if
and only if the residue classes 21, 2 e m/m2 form a basis of m/m2 as a
C-vector space.

DEFINITION 3.1. The embedding dimension of A, e.d. (A), is the dimension
of m/m2 as a C-vector space.

This is equal to the number of elements in any minimal set of algebra
generators for A.
Now m is a homogeneous ideal, hence m/m2 is a graded vector space, i.e.,

m/m2-- (=1 (m/m2)i as a vector space, where (m/m2)i is the subspace of
m/m2 generated by forms of degree i.

DEFINITION 3.2. The Poincarb generating polynomial of A is defined to be
9A(t) ,=1 ai where a dim (m/m2)i.

Thus the coefficient of in gA is just the number of generators of A in degree
i. Now we can state our main theorem.

THEOREM 3.3. Suppose G is a group with signature

(g; s; el, e,).

Let e el +"" + er. Then

9a(t)=f(t)+ (t2+’’’+te’)
i=1

where f(t) is given in the table below. Note that e.d. (A)= e- r +f(1).

(3.1)
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s>_3org
s=2, g>_
s=2, g_>
s=l,g_>
s=l,g_>
s= 1, g=
s=O,g>_
s--O, g_>
s-- O, g--
s=O,g=
s=0, g=
s=O,g=
s=O,g=

signature

--0 and s-- 2
2 and l(ql + q2)= 1
1 and l(ql + q2)= 2
3, X non-hyperelliptic
1, X hyperelliptic and g + r v 1
0, r>_2
3, X non-hyperelliptic
2, g + r >_ 3 and X hyperelliptic
1 and e r >_ 3
O,r>_ 4, e>_ 11
O, r= 3, ei > 3 for all i, e >_12
0, r 3, el 2, e2, e3

_
4, e _> 13

0, r 3, ex 2, e2 3, e3

_
9

f(t)
(g + s- 1)t
(g + 1)t + 2

(g + 1)t + gt2

gt + 2t2 + 3

gt + gt2 + t3

--t2 + (r 2)t3
gt
gt + (g- 2)t2
t-- 2

3t2 + (r 5)t3
3t2 2t3 t4

_3t2_2t3- 4_

_3t2_2t3_ 4_ 5_t7

The finite number ofsignatures which do not appear above all have A generated
by 2 or 3 elements. The generators and relationsfor these rings are listed in [21].

Proof. Recall that Dtk)= k(K + q +"" + q) + [k(1 1/e,)]p, and, by
(1.4), A(k) is isomorphic to L(D’k)). The subspace of A(k) generated by forms of
degree less than k is

k-1

B(k) dp(L(Dq)) @ L(Dtk-i)))
i=1

where 4 denotes the product map 4(f(R) )=fv and denotes the sum (not
necessarily direct) of sub-vector spaces of L(Dt)). Of course B(k)is just (m2).
To find generators for A we just construct, for each k, elements of A(k) whose
residues form a basis for A(k)/B(k). Thus the coefficient of t’ in O(t)is the
dimension of A(k)/B(k).

Let g(t)- =o a and f(t) =o b?. Recall that the e are in non-
decreasing order. For any k define

1
ek the smallest n such that e, > k

r+l

Then the conclusion of the theorem is equivalent to

ak bk-- Ok + r + 1

ifr=O,
if k _< e,,
if k > e,.

(3.2)

(3.3)
for all k.

Step I. We first verify the assertion for k=l, 2, 3. If k=l then
dim A(1)/B(1) dim A(1)- 9 + s- 1 if s > 0, and equals 9 if s 0. This
shows that the coefficient of t is correct in the statement of the theorem. We
calculate a2 and a3 on a case by case basis.



AUTOMORPHIC FORMS AND SINGULARITIES 365

Suppose s > 3 or.g 0 and s 2. Then, by Theorem 1.2, A(1)(R) A(1) maps
onto L(2(K + qa +..’+ q)), since

degree K + q +... + q > 29 + 1.

By Riemann-Roch, a2 dim A(2)/B(2)= r, which is the desired result. Now

B(3) L(3(K + q, +’"+ qs)+ P +"’+ P,).

By Riemann-Roch, dim A(3)/B(3)- r e3 + 1, the desired result.

Suppose s 2, 9 -> 1.

LEMMA 3.4. If S 2 and 9 > 1 then

dim A(2)/B(2)= tl /f dim L(ql + qz)= 1,

19 if dim L(ql + q2)-- 2.

Note that dim L(qx + q2)= 2 implies X is hyperelliptic.
This is proven in Section 4 and gives the desired result. Now by Theorem 1.1,

B(3) L(3(K + ql + q2)+ Pa + ""+

and by Riemann-Roch, dim A(3)/B(3)= r- 3 + 1.
Suppose s 1 and 9 > 0. Then A(1)= L(K + ql)= L(K) and thus B(2)=

d(L (K) (R) L(K)). By Proposition 2.1,

dim L(2K)/d(L(K) (R) L(K))

Now

X non-hyperelliptic or 9 1,
X hyperelliptic, 9 > 2.

dim A(2)/L(2K)= dim L(2K + 2q, + p, + + p,)- dim L(2K),
which isr+2ifo>l, andr+lifg=l. Hence

dim A(Z)/B(2)= tr + 2, X non-hyperelliptic

t9 + r, X hyperelliptic.

Now

B(3) (L(K + qx)(R) L(2K + 2q + p + ""+ p,.))

L(3K + 2q + pl + ...+ p,.).

(3.4)

Suppose s 1, 9 0. Then one can easily see that A(1) {0} and hence that
B(2)=B(3)={0}. The result follows from dim A(2)=r-1 and
dim A(3)= 2r- ea 2.

by Theorem 1.1 and the fact that L(K + q l)= L(K). By Riemann-Roch,
dim A(3)/B(3)= r (3 + 2, the desired result.
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Suppose s 0, g >_ 2. Then A(1)= L(K) and by (3.4) and Riemann-Roch,

dim A(2)/B(2)= tr X non-hyperelliptic,

tr + g- 2, X hyperelliptic

If r>0 then by Theorem (1.1), B(3)=L(aK+VI+...+pr) and, by
Riemann-Roch, dim A(3)/B(3) r 3 + 1.

Suppose s- 0, g- 1. Here A(1)= L(0) which consists of constants, and
A(2) L(pl + ""+ pr). Thus dim A(2)/B(2)= r 1. Now B(3)= A(2), hence
dim A(3)/B(3) =r o3 + 1.

Suppose now that s-g 0. Let Po be a point of X. Then K -2po and
A(1) L(-2po)= {0}. Hence B(2)= B(3)= {0}. Thus a2 dim A(2) and
a3- dim A(3). Using Riemann-Roch we calculate that dim A(i)= r- 2i-
i + 1, for > 2. This gives the desired result.

Step II. We now verify the theorem for k >_ 4 and 2(g + s) + r _> 5.

DEFINITION. If D s nisps are divisors on X then

sup ({Oi})= Z sup {Hij}Pj.

Note that

B(k) E L(Dt + Dtk-O) L sup (Dti + Dtk-O}
i=1 i=1 k-1

L(D- p p) for all k >_ 2.

We shall use two lemmas here whose proof is postponed to Section 4.

(3.5)

LEMMA 3.5.
Di > 0 for > 1, then

L( o + + sup sup +
i=1

where E denotes the sum of subspaces of L(Do + sup {Di}).

LEMMA 3.6. If k >_ 4 then

sup {D(i) + Dtk-O} Dk_ p p.
k= 2 k- 2

COROLLARY TO LEMMA 3.6. If k >_ 7 then

sup {D(i) -4- D(k- 1)} Dk p p,.
i=3 k-3

Continuing with the proof of the theorem we recall that by (3.5),
B(k) L(D(k p p).

If Do, D1, Dk are divisors on X, degree Do >_ 2g- 1 and

(3.6)
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On the other hand, B(k)= Ekes_22 b(L(Dt")(R) L(Dtk- i)) and Theorem 1.2 im-
plies that

dp(t(O(i))( L(Dtk-i)))= L(Dti) + Dtk-i)) (3.7)
since degree D) >_ i(29 2) + is + r 29 + 1 whenever 2 and 2(0 + s) +
r > 5. Then

k-2

n(k) = E + D
i=2

L( sup {O’i’+ o’k-i’}} (by Lemma 3.5)
i=2 k- 2

L(Dtk)- p, p,) (by Lemma 3.6).
Hence we have equality in (3.6).

DegreeDtk) p* p, 89 8 + 4s + r 2 29 1

(using the fact (see 1.0) that 2a-2++ET=(1-/e,)>0) hence by
Riemann-Roch,

dim A(k)/B(k)= dim L(Dtk)) dim L(Dk- p,

=r--ak+l.
This is the desired result in this case.

Step III. We now must consider the cases where k > 4 and
2(0 + s) + r < 4.
The signatures {2; 0} and {1; 1} are not included in the statement of the

theorem. In these cases A is generated by 3 elements and is discussed in [21].
The signature {0; 2} is not admissible.

Suppose 9 1, s 0, r 2. Then degree D(2) 2 and degree D>_ 3 for
> 3. By Theorems 1.1 and 1.2 we have equality (3.7) for k > 5 and as above we

get dim A(k)/B(k)= r ak + 1 for k > 5. If k 4 we do not have equality in
(3.7). However it is sufficient to show that B(4) L(Zpa + 2p 2). In what follows
we let (fa, f) denote the vector space generated by the fi and (f)o the
divisor of poles off. Now

A(1) L(0)= (1), A(2)= L(pl + P2)-- (1,/),

A(3) = L(p, + 2p2)= (1, f, 9)

(since e2 > 3)where (f)oo Px + P2 and (9)o 2p2. Then

B(4) (1, f 9, f2) L(2px + 2p2).

The other inclusion always holds, so we get the desired equality.
Suppose 9 1, s 0, r 1. If >_ 3 then degree Dt) > 29 + 1 3. Thus by
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Theorem 1.2 we have equality in (3.7) for k > 6. Now
k-3

B(k)
i=3

k-3

Z L(D(’)+ D(k-’)) (by (3.7))
i=3

L( sup {D") + D’k-’)}} (by Lemma 3.5)
i=3 I

L(D- p, p,), k 2 7 (by the corollary to Lemma 3.6)
Thus dim A(k)/B(k)= r- + 1, k 2 7 as above. Now, calculating these
groups explicitly for k 6, we let L(2pa) so that () 2p and
(’) 3px (the Weierstrass -function). Then A(1)= L(0)= (1), A(2)=
L(p) (1), A(3) L(2pa) (1, ), A(4) L(3p a) (1, , ’), since
e 2 4. Then it follows that B(4)= L(2p), B(5)= L(3pa)and B(6)= L(ap ). It
follows that dim A(k)/B(k)=r + 1 for k 4, 5, 6.

Remark. The restriction e- r 3 when 9 1, s 0 is necessary. For
example if r 1, e 3 then we get

A(1) (1), A(2)= L(p)= (1), A(3)= L(2p,)= (1, ), A(4)= L(2p)
(1, >, A(5)= L(3p)= (1, ,

Thus

(L(p L(2p )) L(3p
and hence A(5) B(5). In this case one can easily see that ga(t)= + 3 + .

In all the remaining cases 9 0. One can do a case by case analysis similar to
the above to prove the result in these cases. Instead we shall use the geometric
technique described more fully in Section 5. To apply these techniques we must
first know that A(G) is finitely generated as an algebra over C. The following
lemma will be proven in Section 4.

LEMMA 3.8. A(G) is finitely 9enerated as a C-aloebra.
PROPOSITION 3.9. Suppose g O.

(1) If s 2 Z then e.d. (a)= s + l + e r.
(2) if 1 he. e.d. (A)= e 3.

In the remainin9 cases s O.

(3) If r 4 then e.d. (A)= max (3, e- 8).
(4) If r 3 and e, 3, for alt i, then e.d. (A)= max (3, e 9).
(5) if r 3, e 2, e2, e3 4 then e.d. (A)= max (3, e- 10).
(6) If r 3, ea 2, e2 3, e3 7 then e.d. (A)= max (3, e- 11).
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This proposition will be proved in Section 5.6.

DEFINITION 3.10. Suppose h(t) and k(t) are polynomials with non-negative
coefficients. If the coefficient of in h(t) is greater than or equal to the
coefficient of in k(t) for all we write h >- k. Note that if h )>- k and h(1) k(1)
then h k.

We shall now apply this to h 9A and k =fa(t)+ =1 (t2 +"’+ te’)
Consider the case s 0, r _> 4. Let Po be a point on X. Then the canonical

divisor K 2po. Now A(I) {0}.

A(2) L -4po + 2p , - po + [( 1/ei)]pi
i= i=1

Thus

dim A(2)/B(2)= dim A(2)=r 3

and dim A(3)/B(3)= dim A(3)= r + a3 5.

Let h(t)=f(t)+ .= (t2 + + ) as in (3.1). Then the coefficients of 9a(t)
and h(t) are the same in degrees 1, 2 and 3. If > 3 the coefficient of in ta(t) is
dimA(i)/B(i)>r-0i+l. Thus Oa>’h. But if e>ll then 9A(1)=e--
8 h(1) by proposition (3.9). Thus by the remark above 9 h. Similar con-
siderations prove the other cases. |

Remark 3.11. The proof of the theorems actually tells us what the genera-
tors of A are. In particular if 9 + s > 0 and k > 4 one can construct generators
as follows"
For each >_ (k letf, k be a function in L(Dtk))with a pole of order k 1 at p

and a pole of order _< k 2 at pgfor tk j r,j i. Then the residue classes of
theft, k, k,’’ r form a basis for L(DtR))/L(Dtk)

Pk Pr), and hence
the f, k are a subset of a set of generators for A.

4. Proof of the lemmas

Proof of Lemma 3.5. It is sufficient to prove the assertion for k 2. In
addition we may assume the supports of D1 and D2 are disjoint. If one of the
D 0 then the assertion is trivial. Now proceed by induction on d degree
D1 + degree D2. The case d 1 is done. Assume the assertion true for d- 1.
We must show that

L(Do + D,)+ L(Do + D)= L(Do + D, +
in L(D0 + D, + D2)(since supp ID, and supp ID21 are disjoint). Now sup-
pose p supp (D). Then

 (Do + D,) +  (Do + p)= t(Do + D, + p)
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by the inductive hypotheses. Let rn be the multiplicity ofp in D0 + D z. Now by
Riemann-Roch,

dim L(Do + D2 p)= degree (Do + Dz)- 9

and dim L(Do + D)is one larger. Hence there is anf L(Do + D2) which has
a pole of order precisely m at p. But now

L(Do + Ox + Dz) L(Oo + Dx) + L(Oo + Oz)= L(Oo + D, + D2- p)

andf L(Do + D + Dz p). The dimensions if the spaces on either end differ
by one, hence the space in the middle, by virtue of containingf is equal to the
space on the left. |

Proof of Lemma 3.6. It is sufficient to show that the coefficient of pj is the
same on both sides of the equation, for all j. Let e ej and let

a, [i’(1 l/e)].
If e _> k then a + a_ ak- 1, for all 2, k 2. If e < k then
a + ak_ ak. This gives the desired result. |

Proofof the corollary to Lemma 3.6. It is sufficient to show that if k > 7 and
e < k, then there is an so that k- 3 _> _> 3 and

i" + (k- i)" e:_-: k
e e

Suppose first that 3 _< e _< k 3. Then e will work. If e k 2 then 3
will work. If e k 1 then 3 works (using the fact that e @ 2). If e 2 then

4 works.

Proof of Lemma 3.4. First let us assume X is not hyperelliptic. We may
assume K _> 0 and qx, q2 supp (K). Choose a basis fx, f0 for L(K) so that
f=l. Recall that L(K+qi)=L(K) and l(K+ql+q2)=9+l. Let
fo+l L(K + ql + q2) be so thatfo/ q L(K). Thusfo+ has poles of order 1 at
ql and q2. Consider the cummutative diagram

L(K + ql + q2) (R) L(K + ql + q2)

L(K)(R)L(K)

L(2K + 2ql / 2q2)

L(2K).
Then b’ is onto because X is non-hyperelliptic (by Proposition 2.1). Now

/(2K) 3- 3 and l(2K + 2q1 + 2q2)= 39 + 1.

Then B(2) L(ZK) + L(K)fo+ + (f2o+ 1) 4: L(ZK + 2ql + 2q2)since there is
nof B(2) with a pole of order 1 at ql and order 2 at q2. On the other hand
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and f02+, e B(2)are linearly independent mod L(2K). Thus

3g- 1 _< dim B(2)< 3g.

Now dim B(2) 3{/if and only if there exists a functionfe B(2) with a pole of
order 1 at ql and a pole of order 0 at q2. If we can find h L(K q 2) so that
h(ql) 4:0 thenf= hfo+ has the desired properties. But if no such h existed then
q would be a base point of K ql. So then

l(K q, q2)= l(K q2)_> {/ 1,

but, by Riemann-Roch,

l(K qa q2)- l(ql + q2)= g 3

which implies l(q + q2) -> 2. This is impossible since X is non-hyperelliptic.
Now suppose X is hyperelliptic. We write a defining equation for X in the

usual way"
20+

1-I
i=1

Then L(K + q + q2) (1, x, x- ,f) wherefis as above. Now image b is
spanned by 1, x, x2- 2, f, x0-f, f2. Let V be the subspace spanned by
the functions above with f2 deleted. Then dim V _< 3g- 1 and f2 q V. We
claim that dim V 3g 1 if l(ql + q2)-- 1 and dim V 2g if l(q + q2)-- 2.
Suppose first that l(q + q2)= 2. Then we may choosefe L(q + q2). Now

l(q + q2 + o)_< 3 and hence 1, x, f, xf are linearly dependent. Thus V is
spanned by 1, x, x2-2, f which is the desired result. Now suppose
l(q + q2) 1. If dim V < 3{/- 1 then 1, x,..., x2- 2, f, xg- fare linearly
dependent and hence f can be written in the form h(x)/k(x). We may assume
degree h < degree k and that h, k are relatively prime. Each is a product of
linear factors. But the only finite poles offare poles of order 1 at q and q 2. This
can only happen if q and q2 have the same x coordinate, a andf= 1/(x a).
But then fe L(q + q2)contradicting l(ql + q2)= 1.
The lemma follows immediately from the claim since

l(2K+2q+2q2)=3g+ 1 and dim (imageqb)=dimV+ 1.

Proof of Lemma 3.8. We know by 1.0 that for an admissible signature,

2{/-2+s+ (1-1/e)>0.
j=l

Thus limk_, oo degree Dtk oo. Let ko be such that degree Dtk >_ 2{/+ 1, for all
k _> ko. We may assume ko _> ej, for all j. Now

dp(L(O) (R) L(D-)) B(k) (4.1)
for all k >_ ko. Thus if we can show that for all k >_ 3ko there exists an so that
the left hand side of (4.1) is equal to A(k), we have proven that A is generated by
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elements of degree < 3k0. Now by Theorem 1.2,

(L(D(i)) @ L(D(k-i)))-- L(D(i) + D(k-i)), ko < <_ k- ko,

since degree D( and degree D(k- i) are greater than or equal to 2g + 1. We get
the desired result if we can show that there exists an i, ko < _< k ko so that
D( + D(k-i) O(k). For this one can easily see that it is sufficient to show that
for each j, there exists an i, ko _< _< k- k0 such that

[i(1 1/ej)] q- [(k i)(1 1/ej)] [k(1 1/ej)].
The equation above is satisfied if is a multiple of ej. Since k _> 3ko _> 3ej there
must be a multiple of ej in the interval [ko, k- ko].

5. Singularities of complex surfaces

We were led to many of the statements in Section 3 via the theory of singular-
ities. Although the main theorem, 3.3 can be proven without using singularities
we believe that others will benefit, as we have, from the use of singularity
theory. Moreover, deeper results about the structure of A require these
methods.

Recall that we have shown that A(G) is a finitely generated C-algebra.

DEFINIXION 5.1. If A is an arbitrary finitely generated graded algebra we
define the Poincar6 power series of A by

pa(t) E a,
i=0

where ai dim A(i).

Now it is well known that pa(t) is a rational function and the dimension of A
equals the order of the pole of pa(t)at 1 (see [2, Chapter 11] for one). When
A A(G) we can easily calculate ag from the signature of G and then show that
pa(t) has a pole of order 2 at 1. This was done explicitly in [21]. Thus A is an
algebra of dimension 2.

5.2. The variety associated to A. The fact that A is a finitely generated
algebra over C is equivalent to saying that there is a surjective algebra
homomorphism

c[x,, x,] A

for some n. Let 1 be the kernel of 4) and let

V= {(Xl, x,) C" ]/(Xl, x,)= O, for all/ I},
the algebraic variety associated to A. Endow V with the topology induced by
the metric topology on C". The analytic structure on C" induces an analytic
structure on V and we denote the sheaf of analytic functions by (gv. It is a
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standard result that (V, (gv) is independent of the choice of q. We can choose
generators xx,..., x, for A so that xi is homogeneous of some degree qi. We
make C[X, X,] a graded ring by decreeing that degree X q. Then the b
defined by dp(Xi)= xi is a homomorphism of graded algebras.
A function f C[Xx,..., X,] is homogeneous of degree d if

f(tqlX, tq,X,)= tdf(X, Xn) for all t C.

The fact that b is a graded homomorphism implies that I is a homogeneous
ideal, i.e., I is generated by homogeneous polynomials.

5.3. The C*-action on V. If we are as above, define an action of the multipli-
cative group of complex numbers C*, on C" by

t" (21, 2n)-- (/’/lZl, ttl"zn).
The fact that I is generated by homogeneous polynomials implies that if z V
then z V. Thus C* acts on V. It is not hard to prove that conversely, if V is
an affine algebraic variety with (algebraic) C*-action, then the ring of polyno-
mial functions on V is graded, i.e., A 03

_
A(i) where A(i) {flf(t. z)

tf(z)}, the homogeneous functions of degree i.

5.4. Resolution ofthe singularity of V. A C*-action on an affine variety V is
said to be a 9ood C*-action [14], if there is a point v e V so that v is in the
closure of every orbit. This is the case if all the q above are >-0.

It was shown in [14] that an affine surface V with an isolated singularity v
and a good C*-action has a canonical equivariant resolution rt" 17 V i.e.,
there exists V, a non-singular surface with C*-action, rt a proper map, so that
zr(t. v)= t" rt(v)for all t C* and so that

(1) rr" V rt- X(v) V {v} is an isomorphism,
(2) zt-(v)=)= Xi, X, non-singular Riemann surfaces meeting

transversely.

Given a resolution as above one can construct a labeled graph 1-" as follows"

(a) One vertex el, for each Xi.
(b) One edge joins ei to e for each point in Xi X.
(c) Each vertex ei is labeled

where -n is the self-intersection number of X and 9 is the genus of X.
THOgM 5.4.1. Suppose X is a Riemann surface, Do is a divisor on X, p ,

p, X, 0 < i < i, 1,..., r, and we define
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Let A O)k>_O A(k) and suppose A is finitely generated. Let V be the algebraic
variety associated to A, as above. Then V is a complex surface (i.e., V has complex
dimension 2).

The graph of the resolution of the (isolated) singularity of V is of the form
indicated in the following diagram:

where nij >_ 2,
ai 1

tlis

and b degree Do + r.

Proof This follows easily from Pinkham Theorem 5.1.

COROLLARY 5.4.2. If G is a Fuchsian 9roup with signature

(9; s; e, e,)

then the 9raph of the resolution of V Spec (A(G)) is

where b 2- 2 + s + r.

Proof degree Do degree (K + ql +’"+ q).

5.5. There are two classes of singularities which are rather well understood,
the rational and minimal elliptic ones. In particular, the embedding dimension
can be calculated from the graph using results of Artin and Laufer [1], [10]. To
define these classes and state the results we must introduce the fundamental
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cycle. Let n: 7 V be a resolution as in 5.4. A divisor Z I--1 niXi is called
a fundamental cycle if the following hold"

(i)
(ii)
(iii)

Z>0.
Z X, < O for all 1, l.
If Z’ satisfies (i)and (ii), then Z < Z’.

A fundamental cycle exists and is unique. Let K be the divisor of a meromor-
phic 2 form on 17". Then the arithmetic genus of a divisor D is defined to be

pa(D)--- 1/2(D O -+- D K)-k- 1.

A singularity is rational if pa(Z)= 0, where Z is the fundamental cycle. A
singularity is minimal elliptic if pa(Z) 1 and any connected proper subvariety
of the exceptional set is the exceptional set of a rational singularity.

PROPOSITION 5.5.1. V as in Corollary 5.4.2 has a rational singularity if and
only if 9 0 and s > O. If 9 s 0 then V has a minimal elliptic singularity.

Proof
and

By Pinkham [15, 5.8], the singularity is rational if and only if 9 0

k(s 2)+ [k(1 l/e,)] > -2 for all k > 0. (5.1)
i=1

We claim this holds if and only if s > 0. Clearly if s 0, then the inequality fails
for k 1. If s _> 2, the inequality obviously holds. Now when s 1, recall that
the signature is realizable if and only if (- 1) + =1 (1 1/ei) > 0. Thus r > 2
and if r 2 then ex e2 2 does not occur. Now equation (5.1) becomes

k
-k + [k(1 1/e,)] > -k + r - > O, k even,

i=1

k-1
>-k+r. >-1, kodd.

2

If s 0 then Dolgacev has shown [6, 4.4.14] that the singularity is elliptic.
The proposition can also be proven directly by calculating p,(Z) using the
calculation of Z below. |

Artin [1] has shown that if v V is an isolated rational singularity then the
embedding dimension of v is -(Z.Z)+ 1, and Laufer has shown that the
embedding dimension is max (3, -Z2) for minimal elliptic singularities. We
are now in a position for"

Proofof Proposition 3.9. Let X0 be the exceptional curve corresponding to
the center vertex ofF (as in Corollary 5.4.2). Let X, Xr be the other curves.
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Then

X2o 2- r- s, X2i -ei, >_ 1,

Xi.Xj= t0’ i>j>0,
tl, i>j=0.

If s > 2 then one can easily see that the fundamental cycle is

Z=X0+XI+’"+Xr,

Then the embedding dimension is

1-Z2=l-2+r+s-2r+e=s-l+e-r.
If s 1 then Z 2Xo + X1 +"" + Xr (note that r > 2 by (1.1)) and hence

1 Z2 1 4(1 r)- 4r + e e 3.

Now assume s 0. In this case the singularity is minimal elliptic. The result
follows easily from Laufer’s theorem once we compute Z. The computation
follows:

Z 2Xo + X --- -- XZ 3Xo + X1 + X2 + X3

Z 4Xo + 2X1 + X2 -- X3

Z 6Xo + 3Xa + 2X2 + X3

This completes the proof of the proposition.

if r_> 4,

if r 3, e >_ 3 for all i,

if r 3, ea 2, e2, e3 > 4,

if r 3, e 2, e2 3, e3 > 7.

!

THEOREM 6.1.
4 elements.

6. Groups for which n _< 4

Thefollowing is a list ofall groupsfor which A(G) is generated by

Degrees of Degrees of Degrees of
Signature generators relations syzygies

(4), X non-hyperelliptic 1 1 1 1 2 3 5
(3), X hyperelliptic 1 1 1 2 2 4 6

(3; 0; 2), X non-hyperelliptic 1 1 1 2 3 3 6
(2;0;2,2) 1 1 2 2 3 4 7
(2;0;3) 1 1 2 3 4 4 8

(2; 2) q(1)+ q(2)not linearly
equivalent toK. 1 1 1 2 3 3 4 5 5
(2; 3) 1 1 1 1 2 3 3 4 4

(1;0;2,2,2,2) 1 2 2 2 4 4 8
(1;0;2,2,3) 1 2 2 3 4 5 9
(1;0;2,4) 1 2 3 4 5 6 11
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Degrees of Degrees of Degrees of
Signature generators relations syzygies

(1;0;3,3) 1 2 3 3 4 6 10
(1;0;5) 1 3 4 5 6 8 14
(1;1;2) 1 2 2 3 4 5 6 7 8
(1;2;2) 1 1 2 2 3 4 4 5 6
(1;3;2) 1 1 1 2 3 3 3 4 5
(1;4) 1 1 1 1 22 4

(0;0;2,2,2,2,2,2) 2 2 2 3 4 6 10
(0;0;2,2,2,2,4) 2 2 3 4 6 6 12
(0;0;2,2,2,3,3) 2 2 3 3 5 6 11
(0;0;2,2,2,6) 2 4 5 6 8 10 18
(0;0;2,2,3,5) 2 3 4 5 7 8 15
(0;0;2,2,4,4) 2 3 4 4 6 8 14
(0;0;2,3,3,4) 2 3 3 4 6 7 13
(0;0;3,3,3,3) 2 3 3 3 6 6 12
(0; 0; 2, 3, 10) 6 8 9 10 16 18 34
(0; 0; 2, 4, 8) 4 6 7 8 12 14 26
(0;0;2,5,7) 4 5 6 7 11 12 23
(0; 0; 2, 6, 6) 4 5 6 6 10 12 22
(0; 0; 3, 3, 7) 3 5 6 7 10 12 22
(0;0;3,4,6) 3 4 5 6 9 10 19
(0;0;3,5,5) 3 4 5 5 8 10 18
(0;0;4,4,5) 3 4 4 5 8 9 17
(0; 1;2,2,3) 2 2 3 3 5 6 6 8 9
(0; 1;2,5) 2 3 4 5 6 7 8 10 11
(0; 1;3,4) 2 3 3 4 6 6 7 9 10
(0;2;2,2,2) 1 2 2 2 4 4 4 6 6
(0;2;2,3) 1 2 2 3 4 4 5 6 7
(0;2;4) 1 2 3 4 4 5 6 7 8

(0;3;2,2) 1 1 2 2 3 3 4 5 5
(0;3;3) 1 1 2 3 3 4 4 5 6
(0;4;2) 1 1 1 2 2 3 3 4 4
(0;5) 1 1 1 1 2 2 2 3 3

Proof The groups for which n 3 and s 0 were found by Dolgacev [4].
Later, all groups with n < 3 were classified in [21]. The list of groups with n 4
and the generators of A(G) can be found easily using Theorem 3.3. All that
remains is to verify the assertions about the degrees of the generators of the
ideal of relations.

Suppose A(G)is generated by 4 elements fl, f4 so that fi A(qi),
R C[XI, X2, X3, X4] and let dp: R A(G) be defined by b(X)=f. If we
grade R by letting degree X q then b is a graded morphism of degree 0. Let
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I kernel . Then I is the (homogeneous) ideal of relations (relative to the
chosen generators).

LEMMA 6.2. If S 0 then I is generated by two elements. Ifg 0 and s > 0
then I is generated by 3 elements.

Proof. Ifs 0 then by [6, Theorem 3.3.12] A(G) has a Gorenstein singularity
(5.5) and the result follows from [23, Proposition 5]. If g 0 and s > 0, we have
seen (Proposition 5.5.1) that the singularity is rational. Since the embedding
dimension is 4, by [22], I is generated by 3 elements.

There are six signatures not covered by the lemma; i.e., with g > 0 and s > 0.
We shall deal with these later (6.8). Now we wish to determine the degrees of
the generator of I in the cases above. We shall do this using the Poincar6 power
series of A (defined in 5.1).
We shall see that in the above cases the degrees of the generators of I can be

determined from pA(t). This is useful since in [21] we calculated pA(t)explicitly.

PROPOSITION 6.3 [21, 2.4].
then

IfG has signature (g; s; e 1, e,) and A A(G)

pa(t) 20- 2 + s 3 30- s

(l-t)2 + (l-t) +i=,P’(t)+’t+g
where is the Kronecker delta and

Pe(t) Z[E- (k 1)tk (e 1)(y’,[- o tk)te
1 + (1 t)2

PROPOSITION 6.4. Suppose A A(G).

(1) If I is generated by two elements of degrees rl, rE then

1 "1 "2 + t"+r2
PA(t) (1 t’)(1 t:)(1 tq3)(1 q’)

(recall that the qi’s are the degrees of the generators of A).
(2) If I is generated by three elements ofdegrees r, rE, r 3 respectively, then

there exist s, s_ so that

1 rl 2_ tr3 .+. ts + ts2
p(t)--(1 t’)(1 tq:)(1 tq3)(1 tq4)

Proofi Let Rt] denote R with its grading shifted by d, i.e., Ri R(d- i),
for all i. If I is generated by two elements g and g2 of degrees r and r2
respectively we have an exact sequence

0 -- R[r: +r2]
__.} R,I] @ R[r2] __} R A - 0
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where (f,f2)=fxgx +f292 and (h)= h’(-92, 91). Note that all mor-
phisms are graded of degree 0. Using the basic properties of Poincar6 power
series we can now compute pa(t). From [2],

1
(a) PR(t)= (1 t’)(1 tq)(1 tq2)(1 tq3)

(b) PRt,,(t)= PR(t);
(C) if 0 M"’M, 0 is an exact sequence of graded R-modules

(with degree 0 maps)then Z=a p(t)= O.

Part (1) follows immediately. Now the ring A is integrally closed, hence
Cohen-Macaulay [6]. Hence there is a resolution by free graded R-modules:

OF2F RAO.

If I is generated by 3-elements of degrees r, r2, r3 we can choose

F Rt" @R @ R’.
Then the kernel of is free of rank 2. Let F=kernel . Then
F2 R @ R, for some s, s. As above, the properties of Poinear power
series allows us to calculate pa(t).

Example 6.5. We give an example to show how we calculate the degrees of
the generators of I. Suppose G has signature (0; 3; 2, 2). Then by Proposition
6.3,

1 1 (1 + t)t2PA(t) (1 t)2 - (1 t) - (1 t2)2"

Now we write this as a rational function with denominator

1

(1 t)2(1 t2)2

(since ql q2 1, qa q, 2) and we get

1 2t3 4 + 2t
Pa(t)= (l t)2(1-- t2)2

Thus rl r2 3, r3 4 by Lemma 6.2 and Proposition 6.4.

Example 6.6 We give a second method for calculating the r. Assume we
again have signature (0; 3; 2, 2). The dimensions of R(i), a(i), and I(i), for

1, 4 are given in the following table.

dim R(i) 2 5 8 14
dim A(i) 2 5 6 9
dimt(i) 0 0 2 5



380 PHILIP WAGREICH

Thus there are two generators for I, say 91, 02 in I(3). Now if J is the ideal
generated by 91 and 92, J(4) is generated by fl 91,f201,flgz, fzo2 and hence,
dim J(4) < 4. Therefore there is a third generator of I which is homogeneous of
degree 4.

In either of the above ways one can determine the degrees of the generators
of I in all cases.

All that remains is to find the number of generators of I when 9 > 0 and
s > 0. If the signature is (1; 4) then the graph of the resolution is

[-1]"
This is a minimal elliptic singularity and hence I is generated by two elements.

If the signature is (2; 3) then A(i)= L(iD)where
degree D degree (K + ql + q2 + q3) 5 29 + 1.

By a theorem of Saint-Donat [16, 2], I is generated by its elements of degree 2
and 3. Now one can verify directly that there is one generator of degree 2 and
two generators of degree 3.
Now suppose the signature is (1; 1; 2), Let (fl, ...,fr) denote the subspace

generated by fl, fr and (f)oo denote the divisor of poles off Then

A(1) L(ql) (1)

A(2) L(2ql + Pl) (1, ,f)

A(3) L(3ql + Pl) (1, , ’, f)

A(4) L(4ql + 2pl)= (1, , ’, 2, f
A(5) L(5ql + 2pl)= (1, , ’, 2, ,,ff2)

where is the Weierstrass p-function with ()(R) 2q 1, (’) 3ql and fis a
function so that (f) ql + Pl. Note that the functions spanning the sub-
spaces above are linearly independent. Suppose I has a minimal set of hom-
ogeneous generators F1, F,. Define bl" R") R by dpl(ei)= F where
ei (0, 1, 0), the standard basis element of the free R module R"). The
grading ofR") is defined by degree e degree F. Now A is a Cohen-Macaulay
ring, therefore kernel b is a projective module [11, p. 113]. A graded projective
module of finite type is free, hence kernel 41 is isomorphic to R"- 1).
We claim that n 3. By a thorem of Hilbert [3, Theorem 5] the ideal I is

generated by the (n- 1) (n- 1) minors of an (n- 1)x n matrix whose
entries are homogeneous polynomials of degree > 0. Now dim R(4) 7 and
dim A(4) 6, hence I(4) (F), F :/: 0, homogeneous of degree 4. Hence there
is an (n 1) x (n 1)matrix M whose entries are homogeneous polynomials
of degree > 0 so that det M F. Clearly n < 5. Suppose n 5. The entries of
M must be homogeneous polynomials of degree 1. But then F is a polynomial
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in X only. This is impossible. Suppose n 4. Then the entries ofM must have
degree less than or equal to 2, hence F F(X1, X2, X3). Now the monomials
in X1, X2, X3 of degree 4 are X, X, X2, X2X3, X22 X2 X3, X] and these are
mapped to 1, , f, 2, f, f2 respectively. By considering the divisor of poles
of these functions one can easily see they are linearly independent. Thus
tkl (F) - 0, contradicting det M I.
Now that we know that I is generated by 3 or fewer elements, we can

calculate the degrees of those generators the same way we did in Examples 6.5
and 6.6.
The line of reasoning used for signature ( 1; 1; 2) suffices to find the number

and degrees of generators of I for all the remaining signatures. It would be
useful to have a general argument to show that I is generated by 2 or 3 elements
whenever A is generated by 4 elements.
Now we must find the degrees of the syzygies for A. In all the above cases we

have a resolution

0 Rt"-l) Rt,) R A 0

where n 2 or 3. The "degrees of the syzygies" mentioned in the statement of
the theorem are defined to be the degrees, si, of the free generators ofRt"- 1). As
in Proposition 6.4 we can read these off the Poincar6 power series of A. If one
wishes to avoid calculating the Poincar6 power series, the following proposi-
tion can be used to determine the si in each of the cases above.

PROPOSITION 6.7. If n 2 then s r + r2. Ifn 3 then with the notation of
Proposition 6.4(2),

(i) s + s2 r + rE -+- r3,

(ii) rl(r 1)+ r2(r2 1)+ r3(r3 1)- sl(sl- l)- $2(s2 1)
qlq2qaq4

Proof. The first assertion is in Theorem 6.1. Assertion (i) follows from
Prop. 6.4(2) and the fact that p(t) has a pole of order 2 at 1. To prove
assertion (ii) we recall that p(t) has a pole of order 2 at 1 and by (6.3) the
coefficient of 1/(1 t)2 in its Laurent series at 1 is

2g-2+s+ (1-1/ei).
i=1

Calculating this same coefficient using the expression for p(t) given in Prop.
6.4(2) we get 1/2 times the left hand side of equation (ii). |

This completes the proof of Theorem 6.1.
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