LOCAL FIXED POINT INDEX THEORY FOR NON SIMPLY CONNECTED MANIFOLDS ${ }^{1}$

BY
Edward Fadell and Sufian Husseini

1. Introduction

This paper is a sequel to [1]. There we associated to a globally defined map $f: M \rightarrow M$ on a compact manifold an obstruction class $o(f) \in H^{m}(M ; \mathscr{B}(f))$, $m=\operatorname{dim} M$, where $\mathscr{B}(f)$ is an appropriate bundle of groups on M, with local group isomorphic to $\mathbf{Z}[\pi], \pi=\pi_{1}(M)$. We also identified $o(f)$ with an element $\mathscr{L}_{\pi}(f) \in \mathrm{Z} R[\pi, \varphi]$, where $R[\pi, \varphi]$ is the set of Reidemeister classes of π induced by the homomorphism $\varphi=f_{\#}: \pi \rightarrow \pi . \mathscr{L}_{\pi}(f)$ had the form

$$
\mathscr{L}_{\pi}(f)= \pm \sum_{\rho \in R} I(\rho) \rho
$$

where $R=R[\pi, \varphi]$ and $I(\rho)$ is the index of the Nielsen class of f corresponding to ρ. This gave us a specific relationship between the obstruction $o(f)$ and the Nielsen number $n(f)$ of f, or, more precisely, between $o(f)$ and a generalized Lefschetz number $\mathscr{L}_{\pi}(f)$ which played the role of a global index and which, in turn, was expressible in terms the Nielsen classes of f. As a consequence, for example, $\mathscr{L}_{\pi}(f)=0$ forces $o(f)=0$ and one obtains the appropriate converse of the Lefschetz Fixed Point Theorem for non-simply connected manifolds.

Our objective here is to carry out this program locally and thereby give a generalized local index theory.

Section 2 is devoted to the local obstruction index. Starting with a smooth or $P L$ manifold M, $\operatorname{dim} M \geq 3$, the inclusion map $M \times M-\Delta \hookrightarrow M \times M$ is replaced by a fiber map $p: E \rightarrow M \times M$ and the bundle \mathscr{B} of coefficients is the local system $\pi_{m-1}(F)$ on $M \times M$, where F is the fiber of p. The group $\pi_{m-1}(F)$ is identified in [1] as $\mathbf{Z}[\pi]$, where $\pi=\pi_{1}(M)$ and the action of $\pi \times \pi$ on $\mathbf{Z}[\pi]$ is given by the right action

$$
\alpha \circ(\sigma, \tau)=(\operatorname{sgn} \sigma) \sigma^{-1} \alpha \tau
$$

Now, we suppose that we are given a map $f: U \rightarrow M$, which is compactly fixed on U (i.e. Fix f is compact), U an open set in M. Let $\mathscr{B}(f)$ denote the bundle of groups on U induced from \mathscr{B} by $i \times f: U \rightarrow M \times M$. The local obstruction index

$$
o(f)=o(f, U) \in H_{c}^{m}(U ; \mathscr{B}(f))
$$

[^0]is defined by first taking a compact m-manifold K with boundary ∂K such that $K \subset U$ and Fix $f \subset$ int K. Then, if $E(f)$ is the induced fiber space $(i \times f)^{*}(E)$, there is a natural partial section $s_{o}(f): \partial K \rightarrow E(f)$ and, consequently, a primary obstruction
$$
o(f, K) \in H^{m}(K, \partial K ; \mathscr{B}(f, K))
$$
with the property that f is deformable (rel ∂K) to a fixed point free map (into M) if, and only if, $o(f, K)=0$. By letting C denote a slightly smaller copy of K, $o(f, K)$ determines an element of $H^{m}(U, U-C)$ and consequently the element
$$
o(f) \in H_{c}^{m}(U ; \mathscr{B}(f))
$$
called the local obstruction index of f on U. Among others, it has the property that f can be deformed by a compactly fixed homotopy to a fixed point free map g if, and only if, $o(f)=0$.

In Section 3 we study local Nielsen numbers in a more general situation. Here $f: U \rightarrow X$ is a compactly fixed map and X is a Euclidean neighborhood retract (ENR [2]). Given two points x_{1} and x_{2} in Fix f we say that x_{1} and x_{2} are Nielsen equivalent if there is a path C in U from x_{1} to x_{2} such that C and $C f$ are homotopic in X, modulo endpoints. The resulting classes (finite in number) are called Nielsen classes of f in U. Such a Nielsen class $N(f, U)$ is essential if the local (numerical) index [2] is not zero on $N(f, U)$. The local Nielsen number $n(f, U)$ on U is just the number of such essential classes. We also express the local Nielsen classes in terms of the universal covers $\eta_{U}: \widetilde{U} \rightarrow U$, $\eta: \tilde{X} \rightarrow X$. One takes lifts $\tilde{i}: \tilde{U} \rightarrow \tilde{X}, \tilde{f}: \widehat{U} \rightarrow \tilde{X}$ of the inclusion i and the map f and identifies π and $\pi(U)$ with the covering groups of η and η_{U}, respectively. Then, a typical Nielsen class has the form

$$
\eta_{U}(\operatorname{Coin}[f \nsim \alpha, \tilde{i}]), \quad \alpha \in \pi .
$$

where Coin $[\cdot, \cdot]$ is the coincidence set of two maps. Next, we employ the notion of Reidemeister classes in the situation of two homomorphisms,

$$
\psi: \pi^{\prime} \rightarrow \pi, \quad \varphi: \pi^{\prime} \rightarrow \pi
$$

which induces the right π^{\prime}-action on π by $\alpha^{*} \sigma=\varphi\left(\sigma^{-1}\right) \alpha \psi(\sigma)$. The resulting set of orbits (Reidemeister classes) is denoted by $R[\psi, \varphi]$. The relationship between local Nielsen classes and Reidemeister classes is as follows: Let

$$
i_{U}: \pi(U) \rightarrow \pi, \quad \varphi_{U}: \pi(U) \rightarrow \pi
$$

denote the homomorphisms induced by the inclusion and the map f. The correspondence $\Gamma:[\alpha] \mapsto \eta_{U}(\operatorname{Coin}[f \alpha, \tilde{i}])$ takes $R\left[i_{U}, \varphi_{U}\right]$ bijectively to the set of Nielsen classes of f on U, if we ignore those Reidemeister classes for which $\eta_{U}($ Coin $[f \hat{f}, \tilde{i}])=\phi$. Using the correspondence Γ the index $I(\rho)$ of a Reidemeister class $\rho \in R\left[i_{U}, \varphi_{U}\right]$ is defined to be the index of the corresponding Nielsen class $\Gamma(\rho)$.

In order to calculate the local obstruction index $o(f)$ when U is connected, (Sections 4 and 5) we make use of a bilinear pairing of local systems

$$
P: \mathscr{B}(f) \otimes \mathscr{T}(U) \rightarrow \mathscr{R}(f)
$$

where $\mathscr{T}(U)$ is the orientation sheaf on U and $\mathscr{R}(f)$ is the local system on U with local group $\mathbf{Z}[\pi]$ and action

$$
\alpha^{*} \sigma=\varphi_{U}\left(\sigma^{-1}\right) \alpha i_{U}(\sigma)
$$

Then, if $\mu(U) \in H_{m}^{c}(U ; \mathscr{T}(U))$ is the twisted fundamental class on U we have a cap product based on the above pairing and a Kronecker product

$$
\langle\cdot, \mu(U)\rangle: H_{c}^{m}(U ; \mathscr{B}(f)) \rightarrow H_{o}(U ; \mathscr{R}(f)) \equiv \mathbf{Z} R\left[i_{U}, \varphi_{U}\right] .
$$

We are now in a position to state the main theorem which expresses the local obstruction index $o(f)$ in terms of Reidemeister (Nielsen) class of f on U.

Theorem. Let $R=R\left[i_{U}, \varphi_{U}\right]$. Then

$$
\langle o(f), \underline{\mu}(U)\rangle=(-1)^{m} \sum_{\rho \in R} I(\rho) \rho \in \mathbf{Z} R\left[i_{U}, \varphi_{U}\right] .
$$

Corollary. $f: U \rightarrow M$ is deformable via a compactly fixed homotopy to a fixed point free map $g: U \rightarrow M$ if, and only if, the local Nielsen number $n(f, U)=0$.

2. The local obstruction

Let M denote a connected (not necessarily compact) manifold of dimension $m \geq 3$, and $\Delta_{M}=\Delta \subset M \times M$ the diagonal. Then, if we replace the inclusion map $i: M \times M-\Delta \subset M \times M$ by a fiber map $p: E \rightarrow M \times M$, we recall [1] that

$$
E=\left\{(\alpha, \beta) \in M^{I} \times M^{I}: \alpha(0) \neq \beta(0)\right\}
$$

where I is the interval $[0,1]$ and $p(\alpha, \beta)=(\alpha(1), \beta(1))$. Furthermore, if $b=(x, y) \in M \times M$, the fiber

$$
F_{b}=p^{-1}(b)=\{(\alpha, \beta) \in E: \alpha(1)=x, \beta(1)=y\}
$$

is 1-connected, so that F_{b} is k-simple for every k and $\pi_{m-1}\left(F_{b}\right)$ is a bundle (local system) of groups on $M \times M$. We denote this bundle by $\mathscr{B}=\mathscr{B}(M \times M)$. In [1], we obtained a description of the structure of \mathscr{B} as follows: We fix a base point $b=(x, y) \in M \times M-\Delta$ and let \bar{b} denote the constant path at b. Then we identify π with $\pi_{1}(M, x)$ and $\pi \times \pi$ with $\pi_{1}(M, x) \times \pi_{1}(M, y)$, with x near, but distinct from, y. Then, there is an isomorphism of local systems (on $M \times M-\Delta)$

$$
\psi: \pi_{m}(M \times M, M \times M-\Delta, b) \rightarrow \pi_{m-1}\left(F_{b}, \bar{b}\right)
$$

given by the exponential map and ψ was employed to establish the following theorem.

Theorem 2.1. There is an equivariant isomorphism

$$
\xi: \mathbf{Z}[\pi] \rightarrow \pi_{m-1}\left(F_{b}, \bar{b}\right)
$$

where the action of $\pi \times \pi$ on $\pi_{m-1}\left(F_{b}, \bar{b}\right)$ is given by \mathscr{B} and the action of $\pi \times \pi$ on $\mathbf{Z}[\pi]$ is given by the right action

$$
\alpha \circ(\sigma, \tau)=(\operatorname{sgn} \sigma) \sigma^{-1} \alpha \tau .
$$

σ and τ belong to π and $\operatorname{sgn} \sigma$ is ± 1 according as σ preserves or reverses a local orientation at $x \in M$.

Remark 2.2. If π is identified with covering transformations of $\eta: \tilde{M} \rightarrow M$, the universal cover of M, then $\sigma^{-1} \alpha \tau$ is to be read as composition of functions from left to right. In fact, we will, in general, write compositions of functions from left to right. However, we will still write $\alpha(x)$ for the value of the function α at x and thus we will also write, for example,

$$
(\alpha \beta \gamma)(x)=\gamma(\beta(\alpha(x))) .
$$

In general group actions will be from the right and if π acts on $X, x \alpha$ may be used for the action of $\alpha \in \pi$ on $x \in X$ as well as $\alpha(x)$. In [1], we used the corresponding left action

$$
(\sigma, \tau) \circ \alpha=(\operatorname{sgn} \sigma) \tau \alpha \sigma^{-1}
$$

reading composition of functions from right to left.
We review briefly this isomorphism ξ in Theorem 2.1. ξ is obtained by establishing an isomorphism

$$
v: \mathbf{Z}[\pi] \rightarrow \pi_{m}(M \times M, M \times M-\Delta, b)
$$

and setting $\xi=\nu \psi$. The structure of v is a bit involved and takes the following form.

Again, let $\eta: \tilde{M} \rightarrow M$ denote the universal cover of M. Choose a base point $\tilde{x}_{1} \in \tilde{M}$ over x. We identify π with the covering group of η and if we set $\tilde{x}_{\alpha}=\tilde{x}_{1} \alpha, \alpha \in \pi$, then $\eta^{-1}(x)=\left\{\tilde{x}_{\alpha}, \alpha \in \pi\right\}$. The diagram

where $\zeta=\eta \times \eta$ and the horizontal maps of (1) are fibered pair projections on the first coordinate, gives rise to isomorphisms for each σ, τ.

$$
\begin{array}{cc}
\pi_{m}\left(\tilde{M}, \tilde{M}-y^{-1}(x), \tilde{y}_{\tau}\right) \xrightarrow{\approx} & \pi_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta),\left(\tilde{x}_{\sigma}, \tilde{y}_{\tau}\right)\right) \tag{2}\\
& \left.\approx{ }^{\sim}\right) \\
\pi_{m}(M, \tilde{M}-x, y) \longrightarrow & \approx \pi_{m}(M \times M, M \times M-\Delta,(x, y))
\end{array}
$$

where $(M, M-x)$ and $\left.\tilde{M}, \tilde{M}-\eta^{-1}(x)\right)$ are the fiber pairs of the horizontal maps in (1). In (2), $\tilde{y}_{\tau}=\tau \tilde{y}_{1}$, where \tilde{y}_{1} lies over y and \tilde{y}_{1} is chosen near \tilde{x}_{1}. Also, the top horizontal isomorphism in (2) is induced by the fiber inclusion

$$
\theta_{\sigma}:\left(\tilde{M}, \tilde{M}-\eta^{-1}(x)\right) \subset\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right)
$$

given by $\theta_{\sigma}(u)=\left(\tilde{x}_{\sigma}, u\right)$. Applying the Hurewicz Isomorphism Theorem, we have

Now, choose a cell neighborhood V of x and corresponding neighborhoods \tilde{V}_{α} of \tilde{x}_{α}, evenly covering V so that $\tilde{V}_{1} \alpha=\tilde{V}_{\alpha}$. Choose a local orientation at x, thereby determining a generator

$$
\gamma_{1} \in H_{m}\left(\tilde{V}_{1}, \tilde{V}_{1}-\tilde{x}_{1}\right)
$$

and since

$$
H_{m}\left(\tilde{M}, \tilde{M}-\eta^{-1}(x)\right) \approx \sum_{\alpha \in \pi} H_{m}\left(\tilde{V}_{\alpha}, \tilde{V}_{\alpha}-x_{\alpha}\right)
$$

the correspondences $\alpha \mapsto \gamma_{1} \alpha \mapsto \theta_{1 *}\left(\gamma_{1} \alpha\right)$ give rise to the isomorphism v as the following composition

$$
\begin{aligned}
& \mathbf{Z}[\pi] \stackrel{\approx}{\longrightarrow} \sum_{\alpha \in \pi} H_{m}\left(\tilde{V}_{\alpha}, \tilde{V}_{\alpha}-\tilde{x}_{\alpha}\right) \xrightarrow{\approx} H_{m}\left(\tilde{M}, \tilde{M}-\eta^{-1}(x)\right) \\
&\left.\approx\right|_{\theta_{1 *}} \\
& \pi_{m}(M \times M, M \times M-\Delta, b) \stackrel{\approx}{\longleftrightarrow} H_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right.
\end{aligned}
$$

This completes the sketch of the structure of ξ. While ξ does not depend on the choice for \tilde{x}_{1} over x_{1}, ξ does depend on the orientation chosen at x and the choice of the base point $b=(x, y)$.

There is also an alternative description of ξ. Define a correspondence

$$
\mu: \mathbf{Z}[\pi \times \pi] \rightarrow H_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right)
$$

by setting

$$
\mu(\alpha, \beta)=\theta_{1 *} \gamma_{1}(\alpha \times \beta)
$$

We factor out the subgroup D of $\mathbf{Z}[\pi \times \pi]$ generated by elements of the form

$$
\operatorname{sgn} \sigma(\alpha \sigma, \beta \sigma)-(\alpha, \beta), \sigma, \alpha, \beta \in \pi
$$

Since [1], for every $\sigma \in \pi$,

$$
\theta_{1 *} \gamma_{1}(\sigma \times \sigma)=(\operatorname{sgn} \sigma) \theta_{1 *} \gamma_{1}
$$

μ induces

$$
\bar{\mu}: \mathbf{Z}[\pi \times \pi] / D \rightarrow H_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right)
$$

Now, let $\omega: \mathbf{Z}[\pi \times \pi] \rightarrow \mathbf{Z}[\pi]$ be defined by

$$
\omega(\alpha, \beta)=(\operatorname{sgn} \alpha) \alpha^{-1} \beta
$$

Then, $\omega(D)=0$, and we have an induced isomorphism

$$
\bar{\omega}: \mathbf{Z}[\pi \times \pi] / D \rightarrow \mathbf{Z}[\pi] .
$$

Thus, ξ is also given by the following composition

and $\bar{\omega}$ and $\bar{\mu}$ are equivalent with respect to the right actions of $\pi \times \pi$ given respectively, when $(\sigma, \tau) \in \pi \times \pi$, by

$$
\begin{gathered}
\alpha(\sigma, \tau)=\operatorname{sgn} \sigma \sigma^{-1} \alpha \tau, \quad \alpha \in \pi, \\
{[(\alpha, \beta)](\sigma, \tau)=[(\alpha \sigma, \beta \tau)], \quad(\alpha, \beta) \in \pi \times \pi,} \\
u(\sigma, \tau)=(\sigma \times \tau)_{*}(u), \quad u \in H_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right) .
\end{gathered}
$$

We now consider the following data.
2.3. The data (M, f, U).
(i) $\quad M$ is ą smooth or $P L$ manifold of dimension $m \geq 3$.
(ii) U is an open subset of M.
(iii) $f: U \rightarrow M$ is a map with compact fixed point set $\operatorname{Fix} f \subset U$; i.e. f is compactly fixed.

This data is accompanied by the following ingredients with notation as follows:
(iv) $i: U \hookrightarrow M$, inclusion map,
(v) $\mathscr{B}(f)$ the bundle of coefficients (local system) on U induced by $i \times f: U \rightarrow M \times M$ from $\mathscr{B}=\mathscr{B}(M \times M)$, i.e. $\mathscr{B}(f)=(i \times f)^{*}(\mathscr{B}(M \times M)$),
(vi) $p_{U}: E(f) \rightarrow U$, the fiber space over U induced from $p: E \rightarrow M \times M$ by $i \times f$, i.e., $E(f)=(i \times f)^{*}(E)$.

Our objective is to define a local obstruction index $o(f) \in H_{c}^{m}(U, \mathscr{B}(f))$. To this end let K denote a triangulable compact m-manifold in U with boundary ∂K such that (Fix $f) \cap \partial K=\phi$. Define a partial section $s_{o}(f): \partial K \rightarrow E(f)$ by

$$
s_{o}(f)(x)=(\bar{x}, \overline{f(x)})
$$

where \bar{u} denotes the constant path at u. Furthermore, let $\mathscr{B}(f, K)$ denote the restriction of $\mathscr{B}(f)$ to K.

Lemma 2.4. Let K be as above. Then, $f \mid K$ is deformable, relative to ∂K, to a map $g: K \rightarrow M$ which is fixed point free on K, iff, $s_{o}(f)$ admits an extension to a section over K.

Proof. The "only if" part is obvious. The "if" part requires a simple covering homotopy argument to adjust the section to have a constant path in the first coordinate [1].

Definition 2.5. Let $o(f, K) \in H^{m}(K, \partial K ; \mathscr{B}(f, K))$ denote the primary obstruction to extending $s_{o}(f)$ to a section $s(f)$ over $K . o(f, K)$ will be called the local obstruction index of f on $K \subset U$.

General obstruction theory ([3]) implies the following proposition.
Proposition 2.6. $f \mid K$ is deformable to be fixed point free, relative to ∂K, iff the local obstruction index of f on $K, o(f, K)$, is 0 .

Now let $\Gamma(U)$ denote the compact subsets C of U directed by inclusion and consider

$$
H_{c}^{m}(U ; \mathscr{B}(f))=\underset{\longrightarrow}{\lim } H^{m}(U, U-C ; \mathscr{B}(f))
$$

where the direct limit is over $\Gamma(U)$. Also suppose that Fix $f \subset$ int K. The "excision" isomorphism,

$$
H^{m}\left(U, U-K_{o}, \mathscr{B}(f)\right) \approx H^{m}(K, \partial K ; \mathscr{B}(f, K))
$$

where K_{o} is K minus a "collar" of ∂K, tells us that $o(f, K)$ determines an element $o(f) \in H_{c}^{m}(U ; \mathscr{B}(f))$.

Definition-Proposition 2.7. $o(f)$ is independent of K and is called the local obstruction index of f.

Proof (of independence on K). Given K and K^{\prime}, choose $K^{\prime \prime}$ such that $K \cup K^{\prime} \subset K^{\prime \prime}$. The diagram

where $L=K^{\prime \prime}-K$, and the corresponding diagram where K^{\prime} replaces K, tells that $o(f, K)$ and $o\left(f, K^{\prime}\right)$ coalesce in $H^{m}\left(U, U-K_{o}^{\prime \prime} ; \mathscr{B}(f)\right)$ and hence determine the same element in $H_{c}^{m}(U ; \mathscr{B}(f))$.

Proposition 2.8 (Homotopy Invariance). Suppose $\Gamma: U \times I \rightarrow M$ denotes a homotopy such that \bigcup_{t} Fix Γ_{t} is compact; i.e. the homotopy is compactly fixed. Set $\Gamma_{0}=f$ and $\Gamma_{1}=g$. The induced homotopy

$$
i \times f \sim i \times g: U \rightarrow M \times M
$$

induces a bundle equivalence

which, in turn, establishes a (coefficient) isomorphism

$$
\Gamma^{*}: H_{c}^{m}(U, \mathscr{B}(f, U)) \rightarrow H_{c}^{m}(U ; \mathscr{B}(g, U))
$$

Then

$$
\Gamma^{*}(o(f))=o(g)
$$

Proof. Let K denote a compact m-manifold with boundary ∂K such that \bigcup_{t} Fix $\Gamma_{t} \subset$ int K, so that K may be used to determine both $o(f)$ and $o(g)$. The remainder of the proof is standard.

Theorem 2.9. Given $f: U \rightarrow M$. Then there is a compactly fixed homotopy $\Gamma: U \times I \rightarrow M$ such that $H_{0}=f$ and $H_{1}=g$ is fixed point free iff the local obstruction index

$$
o(f)=0 \in H_{c}^{m}(U, \mathscr{B}(f, U)) .
$$

Proof. An immediate consequence of 2.7 and 2.8.
Remark 2.10. Sometimes we will display U in the notation for $o(f)$, i.e., $o(f)=o(f, U)$. Also, if $f: M \rightarrow M$ is globally $o(f, U)$ will denote $o(f \mid U)$.

In order to state the "addivity" property of the local index, we recall some facts. Suppose $V_{1}, V_{2}, \ldots, V_{k}$ are mutually disjoint open subsets of the open set U and $C_{l} \subset V_{l}$ are compact subsets. Suppose furthermore, that \mathscr{G} is a local system on U and $\mathscr{G}_{l}=\mathscr{G} \mid V_{l}$. Then, for each l we have

$$
H^{m}\left(V_{l}, V_{l}-C_{l} ; \mathscr{G}_{l}\right) \stackrel{j^{t}}{\approx} H^{m}\left(U, U-C_{l} ; \mathscr{G}\right) \xrightarrow{i t} H^{m}(U, U-C ; \mathscr{G})
$$

where i_{l}, j_{l} are inclusions and $C=\bigcup_{l} C_{l}$. The homomorphism $i_{l}^{*-1} j_{l}^{*}$ induces a homomorphism

$$
\alpha_{l}: H_{c}^{m}\left(V_{l} ; \mathscr{G}_{l}\right) \rightarrow H_{c}^{m}(U ; \mathscr{G})
$$

and consequently a homomorphism

$$
\alpha=\sum \alpha_{l}: \sum_{l} H_{c}^{m}\left(V_{l} ; \mathscr{G}_{l}\right) \rightarrow H_{c}^{m}(U ; \mathscr{G})
$$

The proof of the following proposition is now a simple exercise.
Proposition 2.10 (Additivity). Given $f: U \rightarrow M$ (compactly fixed as in 2.3). Suppose V_{1}, \ldots, V_{k} are finitely many mutually disjoint open sets such that Fix $f \subset \bigcup_{l} V_{l}$. Let $f_{l}=f \mid V_{l}: V_{l} \rightarrow M$. Then under the homomorphism

$$
\alpha: \sum H_{c}^{m}\left(V ; \mathscr{B}\left(f_{l}\right)\right) \rightarrow H_{c}^{m}(U ; \mathscr{B}(f))
$$

we have

$$
\alpha\left(\sum o\left(f_{l}, V_{l}\right)\right)=o(f, U)
$$

3. Local Nielsen numbers

In this section we consider compactly fixed maps $f: U \rightarrow X$, where U is an open set in a Euclidean neighborhood retract (ENR [2]). In particular, then, X may be manifold (possibly with boundary) or a locally finite polyhedron. Notice that we do not require X to be compact, nor do we require the map f to be compact. The fact that Fix f is compact is what is essential. We recall also that for ENR's we have a local index theory with the usual properties [2] for maps $f: U \rightarrow X$ with compact fixed point set. $I(f, U)$ will denote the index of f on U.

Our objective here is to take a compactly fixed $f: U \rightarrow X$ and classify the points of Fix f into local Nielsen classes and develop the necessary elementary properties. Since there is a distinct parallel between the local theory and the well-known global theory [4] we will often omit details.

Definition 3.1. Let x_{0} and x_{1} denote fixed points of $f: U \rightarrow X . x_{0}$ and x_{1} are Nielsen equivalent in U proved there is a path C in U from x_{0} to x_{1} such that C and $C f$ are homotopic with endpoints fixed in X. (Recall that composition of functions is read from left to right.) The resulting equivalence classes are called the local Nielsen classes of f in $U . \mathscr{N}(f, U)$ will denote the set of such classes.

Proposition 3.2. The local Nielsen classes of $f: U \rightarrow X$ are finite in number.
Proof. Since X is an ANR, it is ULC [5] and this forces each Nielsen class to be open in Fix (f). Since Fix f is compact the result follows.

Notation 3.3. We designate the local Nielsen classes of $f: U \rightarrow X$ by

$$
\mathscr{N}(f, U)=\left\{N_{1}(f, U), N_{2}(f, U), \ldots\right\} .
$$

Furthermore, if $f: X \rightarrow X$ is globally defined, we set $N(f, U)=N(f \mid U, U)$; i.e. a local Nielsen class of $f: X \rightarrow X$ on U is taken to be a local Nielsen class of $f \mid U: U \rightarrow X$.

Definition 3.4. The index $I\left(N_{j}(f, U)\right)$ of a Nielsen class $N_{j}(f, U)$ is defined to be $I\left(f, V_{j}\right)$ where V_{j} is an open set in U such that $V_{j} \cap(\operatorname{Fix} f)=N_{j}(f, U)$. If
the index $I\left(N_{j}(f, U)\right) \neq 0$, we recall $N_{j}(f, U)$ an essential class. Finally, the Nielsen number $n(f, U)$ of $f: U \rightarrow X$ is defined to be the number (finite) of essential Nielsen classes.

Theorem 3.5. (Homotopy Invariance). Suppose $H: U \times I \rightarrow X$ is a compactly fixed homotopy, i.e. there is a compact set $K \subset U$ such that $K \supset \bigcup_{t}$ Fix $H_{t}, 0 \leq t \leq 1$. Then, $n\left(H_{0}, U\right)=n\left(H_{1}, U\right)$.

Proof. The proof proceeds in a manner parallel to the proof for compact ANR's in [4]. First, set $f=H_{0}$ and $g=H_{1}$ and if C is a path in U set

$$
\langle H, C\rangle(t)=H(C(t), t)=H_{t}(C(t)), \quad 0 \leq t \leq 1 .
$$

Thus, $\langle H, C\rangle$ is a path in X. Now, if $x_{0} \in$ Fix f and $x_{1} \in$ Fix g, we say that $x_{0} H x_{1}\left(x_{0}\right.$ is H-related to x_{1}) provided there exists a C in U from x_{0} to x_{1} with $C \sim\langle H, C\rangle$ (endpoint homotopic) in X. This relation H induces a one-one correspondence \hat{H} from a subset of $\mathscr{N}(f, U)$ to a subset of $\mathscr{N}(g, U)$ via the relation between Nielsen classes

$$
[N(f, U)] H[N(g, U)] \Leftrightarrow x_{0} H x_{1}, \quad x_{0} \in N(f, U), \quad x_{1} \in N(g, U)
$$

(see [4, page 92]). Up to this point the fact that the homotopy is compactly fixed is not used. It is used, however, at this point to show that \hat{H} is bijective from the essential Nielsen classes of f to the essential Nielsen classes of g. Because X is locally compact one can assume that the compact set K above contains Fix H_{t} in its interior for all $t, 0 \leq t \leq 1$. Now, open sets in the interior of K may be used to compute indices of H_{t} and furthermore $H: K \times I \rightarrow X$ may be considered a path in X^{K} where the compact open topology on X^{K} coincides with the uniform topology. Now, the proof in [4, pages 93-94] applies to show
(a) $[N(f, U)] H[N(g, U)] \Rightarrow I(N(f, U))=I(N(g, U))$,
(b) $N(f, U)$ is not H-related to some $N(g, U) \Rightarrow I(f, U)=0$.

This completes the sketch of the proof.

We will also find it useful to express local Nielsen classes in terms of universal covers after the manner of Jiang [6]. Given $f: U \rightarrow X$, where X is an ENR, the components of U are open and since Fix f is assumed compact, Fix f lies in a finite number of these components and each of these components produces distinct local Nielsen classes. There is, therefore, no essential loss of generality if we assume U and X are connected.

Let $\eta: \tilde{X} \rightarrow X, \eta_{U}: \tilde{U} \rightarrow U$ denote the universal covers of X and U, respectively and $i: U \hookrightarrow X$ the inclusion map. Choose

$$
u_{0} \in U, \tilde{u}_{0} \in \eta_{U}^{-1}\left(u_{0}\right), \tilde{x}_{0} \in \eta^{-1}\left(i\left(u_{0}\right)\right), \tilde{y}_{0} \in \eta^{-1}\left(f\left(u_{0}\right)\right)
$$

These choices uniquely determine fixed lifts $\tilde{\imath}$ and \tilde{f} such that $\tilde{\imath}\left(\tilde{u}_{0}\right)=\tilde{x}_{0}$, $f\left(\tilde{u}_{0}\right)=\tilde{y}_{0}$:

Furthermore, if we let $\pi(U)$ and π denote, respectively, the covering groups of η_{U} and η, i and f induce homomorphisms $i_{U}: \pi(U) \rightarrow \pi$ and $\varphi_{U}: \pi(U) \rightarrow \pi$ with characterizing equations

$$
\sigma \tilde{\imath}=\tilde{\imath} i_{U}(\sigma), \quad \sigma \tilde{f}=\tilde{f} \varphi_{U}(\sigma), \quad \sigma \in \pi(U)
$$

We should also note that all the lifts of f have the form $f(\alpha, \alpha \in \pi$ and $f \alpha=\tilde{f} \beta$ iff $\alpha=\beta$.

Now, let Coin $[f \bar{f}, \tilde{l}]$ denote the coincidence set of $f \alpha$ and \tilde{i}; i.e.

$$
\operatorname{Coin}[\tilde{f} \alpha, \tilde{\imath}]=\{\tilde{u} \in \tilde{U}:(\tilde{f} \alpha)(\tilde{u})=\tilde{\imath}(\tilde{u})\} .
$$

Proposition 3.6. Each set $\eta_{U}(\operatorname{Coin}[\tilde{f} \alpha, \tilde{l}]), \alpha \in \pi$, is a Nielsen class or empty. Furthermore,

$$
\eta_{U}(\operatorname{Coin}[f \nsim, \tilde{i}])=\eta_{U}(\operatorname{Coin}[f f \beta, \tilde{c}])
$$

iff there is a $\sigma \in \pi(U)$ such that

$$
\sigma^{-1} f \alpha i_{U}(\sigma)=\widetilde{f} \beta
$$

or, equivalently, for some $\sigma \in \pi_{U}$,

$$
\varphi_{U}\left(\sigma^{-1}\right) \alpha i_{U}(\sigma)=\beta
$$

Proof. (a) Suppose \tilde{u} and \tilde{v} belong to Coin $[f \alpha, \tilde{\imath}]$. Then a path \tilde{C} in \tilde{U} from \tilde{u} to \tilde{v} induces a path C from $u=\eta_{U}(\tilde{u})$ to $v=\eta_{U}(\tilde{v})$ in U which does the job for showing that u and v are Nielsen equivalent fixed points in U. Thus,

$$
\eta_{U}(\operatorname{Coin}[f \alpha, \tilde{\imath}]) \subset \text { some Nielsen class } N(f, U)
$$

(b) Each fixed point $u \in U$ determines an $\alpha \in \pi$ as follows. Choose $\tilde{u} \in \eta_{U}^{-1}(u) . \alpha$ is determined by the condition $(\tilde{f \alpha})(\tilde{u})=\tilde{i}(\tilde{u})$ so that $\tilde{u} \in \operatorname{Coin}[f \alpha, \tilde{\imath}]$ and hence

$$
u \in \eta_{U}(\operatorname{Coin}[f(x, \tilde{\imath}])
$$

for some $\alpha \in \pi$. It is a simple matter to show that where u and v are Nielsen equivalent in U, we may choose \tilde{u} and \tilde{v} above to yield exactly the same $\alpha \in \pi$. Thus, each local Nielsen class is contained in some $\eta_{U}(\operatorname{Coin}[f \nsim, \tilde{i}])$. This verifies the first part of Proposition 3.6.
(c) Now, suppose

$$
\eta_{U}(\operatorname{Coin}[f \alpha, i])=\eta_{U}(\operatorname{Coin}[f \beta, i]) .
$$

Then, we have \tilde{u}, \tilde{u}_{1} in \tilde{U} such that

$$
(\tilde{f} \alpha)(\tilde{u})=\tilde{\imath}(\tilde{u}),(\tilde{f} \beta)\left(\tilde{u}_{1}\right)=\tilde{\imath}\left(\tilde{u}_{1}\right), \sigma(\tilde{u})=\tilde{u}_{1}, \sigma \in \pi(U)
$$

Then

$$
\begin{aligned}
(\tilde{f} \alpha)(\tilde{u})=\tilde{\imath}(\tilde{u}) & \Rightarrow\left(\sigma^{-1} f(\alpha)\left(\tilde{u}_{1}\right)=\left(\tilde{l} i_{U}\left(\sigma^{-1}\right)\right)\left(\tilde{u}_{1}\right)\right. \\
& \Rightarrow\left(\sigma^{-1} f \alpha i_{U}(\sigma)\right)\left(u_{1}\right)=\tilde{\imath}\left(\tilde{u}_{1}\right) \\
& \Rightarrow \sigma^{-1}(\tilde{f} \alpha) i_{U}(\sigma)=\tilde{f} \beta, \quad \alpha \in \pi(U) .
\end{aligned}
$$

Since this last equality is equivalent to $\varphi_{U}\left(\sigma^{-1}\right) \alpha i_{U}(\sigma)=\beta$ and also implies (as a simple exercise)

$$
\eta_{U}(\operatorname{Coin}[f \nsim, \tilde{i}])=\eta_{U}(\operatorname{Coin}[f f \beta, \tilde{\imath}]),
$$

the proof is complete.
Definition 3.7. Given homomorphisms (of groups) $\psi: \pi^{\prime} \rightarrow \pi$ and $\phi: \pi^{\prime} \rightarrow \pi$. We introduce the right action of π^{\prime} on π by

$$
\alpha * \sigma=\varphi\left(\sigma^{-1}\right) \alpha \psi(\sigma), \quad \sigma \in \pi^{\prime}, \quad \alpha \in \pi
$$

The resulting set of orbits $R[\psi, \varphi]$ is called the set of Reidemeister classes, i.e. each orbit is a Reidemeister class.

Definition 3.8. Given a compactly fixed $f: U \rightarrow X$ and corresponding homomorphisms $i_{U}: \pi(U) \rightarrow \pi, \varphi_{U}: \pi(U) \rightarrow \pi$ (as above), we call $R\left[i_{U}, \varphi_{U}\right]$ the set of local Reidemeister classes on U generated by f.

Proposition 3.9. The correspondence $\Gamma:[\alpha] \rightarrow \eta_{U}(\operatorname{Coin}[f \alpha, i t])$ takes Reidemeister classes to Nielsen classes bijectively provided we ignore those Reidemeister classes $[\alpha]$ for which Coin $[f \alpha, \tilde{\imath}]=\phi$.

Proof. Immediate from Proposition 3.6.
Suppose we let \hat{U} denote the component of $\eta^{-1}(U)$ which contains $\tilde{x}_{0} \in \eta^{-1}\left(i\left(u_{0}\right)\right)$. Then, $\eta \mid \hat{U}: \hat{U} \rightarrow U$ is a covering map. It is easy to see that $\pi_{1}\left(\hat{U}, x_{0}\right)$ corresponds to the kernel of $i_{U}: \pi(U) \rightarrow \pi$ and hence the covering map $\eta \mid \hat{U}$ is regular and furthermore $f: U \rightarrow X$ has a unique lift $\hat{f}:\left(\hat{U}, \tilde{x}_{0}\right) \rightarrow$ (\tilde{X}, \tilde{y}_{0}) and hence a diagram

The following lemma is easy to prove, because $\hat{\imath} \hat{f}=\hat{f}$.
Lemma 3.10. For $\alpha \in \pi, \tilde{\imath}(\operatorname{Coin}[f \alpha, \tilde{\imath}])$ and hence

$$
\eta_{U}(\operatorname{Coin}[f(\alpha, \tilde{l}]=\eta \mid \hat{U}(\operatorname{Fix} \hat{f} \alpha) .
$$

We also have the following result. Let $\hat{\pi}(U)=\pi(U) /$ ker i_{U} and $j: \pi(U) \rightarrow \hat{\pi}(U)$ the natural projection. We also have diagrams

Lemma 3.11. Since

$$
\varphi_{U}\left(\sigma^{-1}\right) \alpha i_{U}(\sigma)=\hat{\varphi}_{U}\left(j(\sigma)^{-1}\right) \alpha \hat{l}_{U}(j(\sigma))
$$

the identity map id: $\pi \rightarrow \pi$ induces a bijection

$$
R\left[i_{U}, \varphi_{U}\right] \Longrightarrow R\left[\hat{l}_{U}, \hat{\varphi}_{U}\right] .
$$

Thus, Proposition 3.9 may be reformulated as follows:
Proposition 3.12. The correspondence $R\left[\hat{l}_{U}, \hat{\varphi}_{U}\right] \rightarrow \mathcal{N}(f, U)$ which takes

$$
[\alpha] \mapsto \eta \mid \hat{U}(\text { Fix }(\hat{f} \alpha))
$$

takes Reidemeister classes to Nielsen classes bijectively provided we ignore Reidemeister classes $[\alpha]$ for which Fix $(\hat{f \alpha})=\phi$.

Suppose $U \subset V \subset X$, where U and V are both open, connected subsets of X, $f_{V}: V \rightarrow X$ is a given map, and $\tilde{U}, \tilde{V}, \tilde{X}$ are the corresponding covering spaces. Then, as before we have fixed lifts

$$
\tilde{U} \xrightarrow{\tilde{i}_{U}} \tilde{X}, \tilde{U} \longrightarrow \tilde{X}, \tilde{V} \xrightarrow{{ }^{i_{V}}} \tilde{X}, \tilde{v} \longrightarrow \tilde{X}
$$

where \tilde{I}_{U} and $\tilde{\imath}_{V}$ cover inclusions (which are not designated) and \tilde{f}_{U}, f_{V} cover f_{V} and $f_{U}=f_{V} \mid U$, respectively. Choose the lift $\tilde{i}_{U}^{V}: \widetilde{U} \rightarrow \tilde{V}$ of the inclusion map $U \hookrightarrow V$ with the property that $\tilde{i}_{U}^{V} \tilde{\imath}_{V}=\tilde{\imath}_{U}$. Then, $i_{U}^{V}: \pi(U) \rightarrow \pi(V)$ is uniquely determined by the condition

$$
\sigma \tilde{i}_{U}^{V}=\tilde{i}_{U}^{V} i_{U}^{V}(\sigma), \quad \sigma \in \pi(U)
$$

Now a simple argument shows that $i_{U}=i_{U}^{V} i_{V}$ and $\varphi_{U}=i_{U}^{V} \varphi_{V}$. Furthermore, the identity map $\pi \rightarrow \pi$ is equivalent with respect to the map $i_{U}^{V}: \pi(U) \rightarrow \pi(V)$, thus inducing

$$
h_{U}^{V}: R\left[i_{U}, \varphi_{U}\right] \rightarrow R\left[i_{V}, \varphi_{V}\right] .
$$

Convention 3.13. If $K \subset X$ is an set and $U=$ int K, it is convenient to set

$$
R\left[i_{K}, \varphi_{K}\right]=R\left[i_{U}, \varphi_{U}\right], \quad \mathscr{N}(f, K)=\mathscr{N}(f, U)
$$

Given a compactly fixed $f: U \rightarrow X$, it may be impossible to find a compact set K in U such that the fundamental group $\pi(K)$ "captures" all of $\pi(U)$. Thus, the natural map

$$
h_{K}^{U}: R\left[i_{K}, \varphi_{K}\right] \rightarrow R\left[i_{U}, \varphi_{U}\right]
$$

need not be injective. However, the following result indicates that such a K captures the essential information on Fix f in U.

Proposition 3.14. Let $f: U \rightarrow X$ denote a compact fixed map, where X is an $E N R$. Then, there exists a compact set $K \subset U$ such that $\operatorname{Fix} f \subset$ int K and $\mathscr{N}(f, U)=\mathscr{N}(f, K)$.

Proof. First, using the fact that X is locally compact, choose a compact set L such that Fix $f \subset$ int L. Each Nielsen class $N(f, L)$ of $f \mid L$ lies in a unique Nielsen class $N(f, U)$, thus defining a surjective function $\psi: \mathscr{N}(f, L) \rightarrow$ $\mathscr{N}(f, U)$. If N_{i} and N_{j} are Nielsen classes in $\mathscr{N}(f, L)$ such that $\psi\left(N_{i}\right)=\psi\left(N_{j}\right)$, there is a path $\alpha_{i j}$ in U from N_{i} to N_{j} such that $\alpha_{i j} \sim f\left(\alpha_{i j}\right)$. Only finitely many such pairs N_{i}, N_{j} occur so that there is a compact set $K \subset U$ such that Fix $f \subset$ int K and the paths $\alpha_{i j}$ are all in int K. Now, it is clear that the corresponding $\operatorname{map} \psi: \mathscr{N}(f, K) \rightarrow \mathscr{N}(f, U)$ is the identity.

Corollary 3.15. Let $f: U \rightarrow M$ denote a compactly fixed map, where U is an open set in the manifold M . Then, there exists a manifold (with boundary) $K \subset U$ such that the Nielsen classes in $\mathcal{N}(f, U)$ and $\mathscr{N}(f, K)$ correspond identically. Furthermore, if U is connected we may choose K to be connected.

Corollary 3.16. If $f: U \rightarrow X$ and K are as in Proposition 3.14, the correspondence

$$
h_{K}^{U}: R\left[i_{K}, \varphi_{K}\right] \rightarrow R\left[i_{U}, \varphi_{U}\right]
$$

is bijective provided (using Proposition 3.9) we restrict ourselves to Reidemeister classes which correspond to Nielsen classes.

4. Preliminaries to calculating $o(f, U)$

Let $p: E \rightarrow M \times M$ denote the fiber map (Section 2) replacing the inclusion map

$$
M \times M-\Delta \subset M \times M
$$

$F_{(u, v)}$ will denote the fiber over (u, v). Given a tubular neighborhood T of the diagonal $\Delta \subset M \times M$, let $T_{0}=T-\Delta$. Then, given $u \in M$ and a local orientation of M at μ we can assign an element

$$
g_{u} \in \pi_{m-1}\left(F_{(u, v)}\right), \quad(u, v) \in T_{0}
$$

as follows: Let $\bar{\Delta}$ denote the diagonal in $\tilde{M} \times \tilde{M}$, with corresponding tubular neighborhood \tilde{T}. If \tilde{T}_{0} denotes the complement of the 0 -section in \widetilde{T}, we have

where $(\tilde{u}, \tilde{v}) \in \tilde{T},(\tilde{u}, \tilde{v}) \mapsto(u, v)$, and \bar{u}, \bar{v} are constant paths at u and v, respectively. The isomorphism

$$
\pi_{m}(M, M-u, v) \rightarrow \pi_{m}(M \times M, M \times M-\Delta, \quad(u, v))
$$

is induced by the section $M \rightarrow M \times M$ given by $y \mapsto(u, y)$. If we choose a Euclidean neighborhood W of u and an orientation of W, an imbedding

$$
i_{u}:\left(D^{m}, S^{m-1}, a_{0}\right) \rightarrow(W, W-u, v)
$$

(which take 0 to u) determines an element of $\pi_{m}(M, M-u, v)$ and hence (see the diagram above) an element

$$
g_{u} \in \pi_{m-1}\left(F_{(u, v)}, \quad(\bar{u}, \bar{v})\right)
$$

g_{u} may be represented in

$$
H_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right)
$$

as follows: Given \tilde{u} over u, the imbedding i_{u} lifts to an imbedding

$$
\tilde{\tau}_{u}:\left(D^{m}, S^{m-1}, a_{0}\right) \rightarrow(\tilde{W}, \tilde{W}-\tilde{u}, \tilde{v})
$$

where \tilde{W} covers W. Define $\gamma_{u}:\left(D^{m}, S^{m-1}\right) \rightarrow\left(\tilde{T}, \tilde{T}_{d}\right)$ by $\gamma_{u}(y)=\left(\tilde{u}, \tilde{l}_{4}(y)\right)$. [$\left.\gamma_{u}\right]$ generates $H_{m}\left(T, T_{0}\right)$ and determines an element

$$
g_{\tilde{u}} \in H_{m}\left(\tilde{M} \times \tilde{M}, \tilde{M} \times \tilde{M}-\zeta^{-1}(\Delta)\right)
$$

If $\tilde{u} \sigma=\tilde{u}_{v}$, then it is easy to see that $g_{\tilde{u}}=(\operatorname{sgn} \sigma) g_{\tilde{u}}$. The following lemma is easy to prove.

Lemma 4.1. Let U denote a connected open set in M. If U is non-orientable, any choice of local orientations leads to a function $g: U \rightarrow \mathscr{B}$ with the property
that for (x, y) and $(u, v) \in T_{0} \cap(U \times U)$, there exists a path (α, β) in $T_{0} \cap(U \times U)$ from (x, y) to (u, v) such that

$$
(\alpha, \beta)_{\#}: \pi_{m-1}\left(F_{(x, y)}\right) \rightarrow \pi_{m-1}\left(F_{(u, v)}\right)
$$

takes g_{x} to g_{u}. In the orientable case the result holds provided local orientations are chosen compatibility.

Now, let $(x, y),(u, v),\left(u^{\prime}, v^{\prime}\right)$ belong to $T_{0} \cap($ int $L \times$ int $L)$ and consider (x, y) as our base point with $\pi_{m}\left(F_{(x, y)}\right)$ identified with $\mathbf{Z}[\pi]$, with g_{x} corresponding to $1 \in \pi$.

Lemma 4.2. Suppose (α, β) is any path from (u, v) to $\left(u^{\prime}, v^{\prime}\right)$. Suppose further that $\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right)$ are paths in T_{0} from (x, y) to (u, v) and from (x, y) to $\left(u^{\prime}, v^{\prime}\right)$, respectively, as in Lemma 4.1 (see Figure 1). Then, under the isomorphism of local groups

$$
(\alpha, \beta)_{\#}: \pi_{m-1}\left(F_{(u, v)}\right) \rightarrow \pi_{m-1}\left(F_{\left(u^{\prime}, v^{\prime}\right)}\right)
$$

we have

$$
(\alpha, \beta)_{\#} g_{u}=(\operatorname{sgn} \sigma)\left(\alpha_{1}, \beta_{1}\right)_{\#}\left(\tau \sigma^{-1}\right)
$$

where $\left(\alpha_{0}, \beta_{0}\right)_{\#} g_{x}=g_{u},\left(\alpha_{1}, \beta_{1}\right)_{\#} g_{x}=g_{u}$, and $\sigma=\alpha_{0} \alpha_{1}^{-1}, \tau=\beta_{0} \beta \beta_{1}^{-1}$.

Fig. 1
Proof.

$$
\begin{aligned}
(\alpha, \beta)_{\#} g_{u} & =(\alpha, \beta)_{\#}\left(\alpha_{0}, \beta_{0}\right)_{\#} g_{x} \\
& =\left(\alpha_{1}, \beta_{1}\right)_{\#}\left(\alpha_{1}, \beta_{1}\right)_{\#}^{-1}(\alpha, \beta)_{\#}\left(\alpha_{0}, \beta_{0}\right)_{\#} g_{x} \\
& =\left(\alpha_{1}, \beta_{1}\right)_{\#}\left[g_{x} \circ(\sigma, \tau)\right] \\
& =(\operatorname{sgn} \sigma)\left(\alpha_{1}, \beta_{1}\right)_{\#}\left(\tau \sigma^{-1}\right) .
\end{aligned}
$$

Convention 4.3. If α is a path from u to u^{\prime} and β is a path from v to v^{\prime} where u is "close to" v and u^{\prime} is "close to" v^{\prime} in the sense that $(u, v) \cup\left(u^{\prime}, v^{\prime}\right) \subset T_{0}$, the statement $\alpha \sim \beta$ (mod endpoints) will mean that there is a homotopy from α to $\beta: H: I \times I \rightarrow M$ such that $H(0, t)$ and $H(1, t)$ trace paths, with $(u, H(0, t))$, $\left(u^{\prime}, H(1, t)\right)$ in T_{0}. Alternatively, one may replace β by a path β^{\prime} from u to u^{\prime} with β^{\prime} close to β and then $\alpha \sim \beta$ (mod endpoints) mean $\alpha \sim \beta^{\prime}$ with endpoints fixed, as usual.

Corollary 4.4. If in Lemma 4.2, $\alpha \sim \beta$ (mod endpoints), then

$$
(\alpha, \beta)_{\#}\left(g_{u}\right)=(\operatorname{sgn} \sigma) g_{u},
$$

where $\sigma=\alpha_{0} \alpha \alpha_{1}^{-1}$.
Let $f: U \rightarrow M$ denote a compactly fixed map with U connected and choose a base point $x_{0} \notin$ Fix f. The local group of $\mathscr{B}(f)$ at x_{0} is $\pi_{m-1}\left(F_{b}\right)$, where $b=\left(x_{0}, f\left(x_{0}\right)\right) . \pi_{m-1}\left(F_{b}\right)$ is identified with $\mathbf{Z}[\pi]$ and the right action of $\pi(U)=$ $\pi_{1}\left(U, x_{0}\right)$ on $\mathbf{Z}[\pi]$ is given by

$$
\alpha \circ \sigma=\operatorname{sgn} \sigma i_{U}\left(\sigma^{-1}\right) \alpha \varphi_{U}(\sigma), \quad \sigma \in \pi(U), \quad \alpha \in \pi
$$

Define a new right action

$$
\begin{equation*}
\alpha * \sigma=\varphi_{U}\left(\sigma^{-1}\right) \alpha i_{U}(\sigma), \quad \sigma \in \pi(U), \quad \alpha \in \pi \tag{*}
\end{equation*}
$$

Now, denote the twisting action of $\pi(U)$ on \mathbf{Z} by

$$
n \circ \sigma=(\operatorname{sgn} \sigma) n, \quad \sigma \in \pi(U), \quad n \in \mathbf{Z}
$$

and consider the bilinear pairing $P_{0}: \mathbf{Z}[\pi] \otimes \mathbf{Z} \rightarrow \mathbf{Z}[\pi]$ defined by $\alpha \otimes n \mapsto n \alpha^{-1}$.

Lemma 4.5. Let $\sigma \in \pi(U)$. Then the pairing P_{0} satisfies the condition

$$
P_{0}((\alpha \circ \sigma) \otimes(n \circ \alpha))=P_{0}(\alpha \circ n) * \sigma
$$

i.e. P_{0} is equivariant.

Proof.

$$
\begin{aligned}
P_{0}(\alpha \circ \sigma \otimes n \circ \sigma) & =P_{0}\left(\operatorname{sgn} \sigma i_{U}\left(\sigma^{-1}\right) \alpha \varphi_{U}(\sigma) \otimes(\operatorname{sgn} \sigma) n\right) \\
& =n \varphi_{U}\left(\sigma^{-1}\right) \alpha^{-1} i_{U}(\sigma) \\
& =\left(n \alpha^{-1}\right) * \sigma \\
& =P_{0}(\alpha \circ n) * \sigma .
\end{aligned}
$$

Let $\mathscr{T}(U)$ denote the orientation sheaf of twisted integers over U. Then for $x \in U$, the Hurewicz homomorphism

$$
h: \pi_{m}(M, M-x) \rightarrow H_{m}(M, M-x)
$$

induces a coefficient homomorphism $h: \mathscr{B}(U) \rightarrow \mathscr{T}(U)$ where $\mathscr{B}(U)=\mathscr{B}(i)$ and $i: U \rightarrow M$ is inclusion. In particular, using as base point $x_{0} \in U$, we may identify

$$
\begin{aligned}
\pi_{m-1}\left(F_{b}\right) & \equiv \mathbf{Z}[\pi] \quad \text { with } g_{x_{0}} \mapsto 1, \\
H_{m}(M, M-x) & \equiv \mathbf{Z} \quad \text { with } h\left(g_{x_{0}}\right) \mapsto 1 .
\end{aligned}
$$

Corollary 4.6. Let $\mathscr{R}(f)$ denote the local system on U induced by the action $\left(^{*}\right)$. Then, P_{0} induces a bilinear pairing $P: \mathscr{B}(f) \otimes \mathscr{T}(U) \rightarrow \mathscr{R}(f)$ so that over every $x \in U$,

$$
P\left(g_{x} \otimes h\left(g_{x}\right)\right)=1
$$

Remark 4.7. Corollary 4.6 is valid for L a compact connected submanifold with boundary $\partial L, L \subset U$. In particular we have a corresponding pairing

$$
P_{L}: \mathscr{B}(f, L) \otimes \mathscr{T}(L) \rightarrow \mathscr{R}(f, L)
$$

where the local systems $\mathscr{B}(f, L), \mathscr{T}(L), \mathscr{R}(f, L)$ are restrictions from U to L.
Now, let L denote a compact, connected triangulated manifold with boundary ∂L such that $L \subset U$. Assume also that L is triangulated so that adjacent m-simplexes are contained in the same Euclidean neighborhood in U. L determines fundamental classes as follows:

If s is an oriented simplex of L and u_{s} is a point on ∂s, then using Lemma 4.1, the orientation of s determines an orientation around u_{s} and thereby an element $g_{u_{s}} \in \pi_{m-1}\left(F_{b}\right), b=\left(u_{s}, v_{s}\right)$ and v_{s} is near u_{s}. Set $g_{s}=g_{u_{s}}$.

Definition 4.4. The m-chain $\sum_{s} g_{s} s$, where the sum runs over a basis or oriented m-simplexes of $(L, \partial L)$, determines the homology class $\mu(L ; \pi) \in$ $H_{m}(L, \partial L ; \mathscr{B}(L))$, where $\mathscr{B}(L)=\mathscr{B}(i)$ is induced from \mathscr{B} by $i \times i: L \rightarrow M \times M$, which we call the twisted π-fundamental homology class of $(L, \partial L)$ in M.

Let $\mu(L) \in H_{m}(L, \partial L ; \mathscr{T}(L))$ denote the classical twisted integral homology class on $(L, \partial L)$ [7]. Since at the chain level $\mu(L)$ has the form $\sum_{\sigma} h\left(g_{s}\right) s$, one sees that under the induced coefficient homomorphism $h_{*}: H_{m}(L, \partial L ; \mathscr{B}(L)) \rightarrow$ $H_{m}(L, \partial L ; \mathscr{T}(L))$,

$$
h_{*}: \underline{\mu}(L ; \pi) \mapsto \underline{\mu}(L) .
$$

The corresponding dual fundamental cohomology is defined as follows:
Definition 4.5. Let s denote an oriented m-simplex of $(L, \partial L)$. The m-cochain

$$
c_{s}\left(s^{\prime}\right)= \begin{cases}g_{s} & \text { if } s^{\prime}=s \\ 0 & \text { if } s^{\prime} \neq s\end{cases}
$$

leads to a cohomology class $\bar{\mu}(L ; \pi) \in H^{m}(L, \partial L ; \mathscr{B}(L))$ called the twisted π fundamental cohomology class of $(L, \partial L)$ in M.

Remark 4.6. Using Lemma 4.2 one shows easily that $\bar{\mu}(L ; \pi)$ is independent of s, i.e. for $s \neq s^{\prime}, c_{s}$ and $c_{s^{\prime}}$ are cohomologous. Also, if we let $\bar{\mu}(L) \in$ $H^{m}(L, \partial L ; \mathscr{T}(L))$ denote the classical twisted (over Z) cohomology class [7] $\bar{\mu}(L, \pi)$ maps to $\bar{\mu}(L)$, via

$$
h^{*}: H^{m}(L, \partial L ; \mathscr{B}(L)) \rightarrow H^{m}(L, \partial L ; \mathscr{T}(L))
$$

Proposition 4.7. $\langle\bar{\mu}(L, \pi), \underline{\mu}(L)\rangle=[1] \in R\left[i_{U}, i_{U}\right]$.
Proof. Fix a simplex s and a base point $u_{s} \in \partial s$. Then,

$$
c_{s}\left(\sum_{s^{\prime}} h\left(g_{s^{\prime}}\right) s^{\prime}\right)=\Gamma_{0}\left(c_{s}(s) \otimes h\left(g_{s}\right)\right)=\Gamma_{0}\left(g_{s} \otimes h\left(g_{s}\right)\right)
$$

Therefore,

$$
\bar{\mu}(L, \pi) \cap \underline{\mu}(L)=\left[1 \cdot u_{s}\right] \in H_{0}(L ; \mathscr{R}(i))
$$

where the cap product is induced by the pairing

$$
\mathscr{B}(L) \otimes \mathscr{T}(L) \rightarrow \mathscr{B}(L)
$$

where $\mathscr{R}(L)=\mathscr{R}(i)$. But, under the isomorphism $H_{0}(L ; \mathscr{R}(L)) \equiv \mathbf{Z} R\left[i_{U}, i_{U}\right]$, $\left[1 \cdot u_{s}\right]$ corresponds to [1], the Reidemeister class in $R\left[i_{U}, i_{U}\right]$ containing $1 \in \pi$. Therefore,

$$
\langle\bar{\mu}(L, \pi), \underline{\mu}(L)\rangle \equiv \bar{\mu}(L, \pi) \cap \underline{\mu}(L)=[1] .
$$

These fundamental classes pass to U is the usual fashion as follows. First, if L_{0} denotes L minus a small 'collar" around the boundary, then the image of $\bar{\mu}(L ; \pi)$ under

$$
H^{m}(L, \partial L ; \mathscr{B}(L)) \xrightarrow{\approx} H^{m}\left(U, U-L_{0}, \mathscr{B}(L)\right) \rightarrow H_{c}^{m}(U ; \mathscr{B}(U))
$$

determines $\bar{\mu}(U ; \pi) \in H_{c}^{m}(U ; \mathscr{B}(U))$, the twisted π-fundamental cohomology class of U. Furthermore, if \mathscr{A} is the family of compact, connected manifolds L with boundary ∂L such that $L \subset U$, one can choose a compatible \mathscr{A} family [8]

$$
\underline{\mu}(U ; \pi)=\left\{\underline{\mu}(L ; \pi) \in H_{m}(L, \partial L ; \mathscr{B}(L)) \equiv H_{m}\left(U, U-L_{0} ; \mathscr{B}(U)\right)\right\}
$$

and call $\mu(U ; \pi)$, the twisted π-fundamental homology class of U. In a similar fashion, à compatible \mathscr{A} family

$$
\underline{\mu}(U)=\left\{\underline{\mu}(L) \in H_{m}(L, \partial L ; \mathscr{T}(L))\right\}
$$

determines the twisted fundamental class (up to sign) of U.
Finally, for any compactly fixed $f: U \rightarrow M$, the pairing

$$
P: \mathscr{B}(f) \otimes \mathscr{T}(U) \rightarrow \mathscr{R}(f)
$$

induces a Kronecker product

$$
H_{c}^{m}(U ; \mathscr{B}(f)) \xrightarrow{\langle, \mu(U)\rangle} \mathbf{Z} R\left[i_{U}, \varphi_{U}\right]
$$

induced by

$$
H^{m}(L, \partial L ; \mathscr{B}(f, L)) \xrightarrow{\langle\cdot \mu(L)\rangle} \mathbf{Z} R\left[i_{L}, \varphi_{L}\right] \xrightarrow{h_{L}^{\nu}} \mathbf{Z} R\left[i_{U}, \varphi_{U}\right]
$$

where $\mathscr{B}(f, L)$ is $\mathscr{B}(f)$ restricted to L.
Remark 4.8. A simple direct argument (without invoking duality) shows that

$$
\langle\cdot, \underline{\mu}(L)\rangle: H^{m}(L, \partial L ; \mathscr{B}(f, L)) \rightarrow \mathbf{Z} R\left[i_{L}, \varphi_{L}\right]
$$

is an isomorphism.

5. Calculating the local obstruction index $o(f)$

We assume again the data (M, f, U) of 2.3 , with the added assumption that U is connected. We also assume that K is a compact manifold with boundary and Fix $f \subset$ int K. Our immediate objective is to compute the local obstruction index $o(f, K) \in H^{m}(K, \partial K ; \mathscr{B}(f, K))$ of f on K (Definition 2.5). We focus our attention first on one of the components L of K and then $o(f, K)$ will be computed in terms of its components $o(f, L) \in H^{m}(L, \partial L ; \mathscr{B}(f, L))$. Thus our immediate objective is to prove, using the notation in Section 4, the following result.

Theorem 5.1. Suppose $f: U \rightarrow M$ is a compactly fixed map and L a connected compact submanifold with boundary ∂L such that $L \subset U$ and $($ Fix $f) \cap \partial L=\phi$. If $o(f, L)$ is the local obstruction index of f on L in U, then using the pairing (Section 4) $\mathscr{B}(f, L) \otimes \mathscr{T}(L) \rightarrow \mathscr{R}(f, L)$, under the isomorphism

$$
\langle\cdot, \underline{\mu}(L)\rangle: H^{m}(L, \partial L ; \mathscr{B}(f, L)) \rightarrow \mathbf{Z} R\left[i_{L}, \varphi_{L}\right],
$$

we have

$$
\langle o(f, L), \underline{\mu}(L)\rangle=\sum_{\rho \in R} I(\rho) \rho
$$

where $R=R\left[i_{L}, \varphi_{L}\right]$ is the set of Reidemeister classes and $I(\rho)$ is the index of the Nielsen class corresponding to ρ under the map $\Gamma: R\left[i_{L}, \varphi_{L}\right] \rightarrow \mathcal{N}(f, L)$ of Proposition 3.9.

Before, giving the proof of Theorem 5.1, we prove a succession of lemmas. Some of these closely parallel corresponding ones in the global case [1] so we may omit some details.

We assume now (without loss of generality), in addition to the previous data that Fix $(f) \cap L$ is finite and each fixed point lies in the interior of a maximal simplex of a triangulation of L. Furthermore, each such simplex s is contained in a Euclidean neighborhood V_{s} and if Fix $(f) \cap s \neq \phi$, then $f(s) \subset V_{s}$.

Consider the section $u=u_{L}: L-\operatorname{Fix} f \rightarrow E(f)$ given by

$$
u(y)=(\bar{y}, \overline{f(y)}), \quad y \in L-\operatorname{Fix} f .
$$

Thus, the cochain $c(f, L) \in C^{m}(L, \partial L ; \mathscr{B}(f, L))$, representing the obstruction $o(f, L)$ is given by the following: If s is an oriented m-cell, then

$$
c(f, L)(s)= \begin{cases}0 & \text { if } s \cap \text { Fix } f=\phi \\ {\left[\varphi_{s}\right] \in \pi_{m-1}\left(q^{-1}\left(u_{s}\right)\right)} & \text { otherwise }\end{cases}
$$

where $u_{s} \in \partial s$, and when $\left(D^{m}, S^{m-1}, a_{0}\right)$ and $\left(s, \partial s, u_{s}\right)$ are identified, preserving orientations,

$$
\left.\varphi_{s}(u)=\left(\overrightarrow{u u_{s}},\left(\overrightarrow{f(u) f\left(v_{s}\right.}\right)\right)\right)
$$

where $u v$ is the directed line segment from u to v (see Figure 2). As noted in [1],

Fig. 2
a simple homotopy argument shows that if we let $\delta_{s}: \partial s \rightarrow(M, M-x)$ be given by

$$
\delta_{s}(u)=f(u)-u
$$

where $V_{s} \equiv R^{m}$ and $x \equiv 0, x \in$ Fix $f \cap$ (int s), then if we let $\gamma_{s}=\delta_{s}+u_{s}$ (translation by u_{s}), we have

$$
c(f, L)(s)= \begin{cases}0 & \text { if } s \cap \text { Fix } f=\phi \\ {\left[\gamma_{s}\right]} & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
{\left[\gamma_{s}\right] \in \pi_{m}\left(M, M-u_{s}, f\left(u_{s}\right)\right) } & \approx \pi_{m}\left(M \times M, M \times M-\Delta, \quad\left(u_{s}, f\left(u_{s}\right)\right)\right) \\
& \approx \pi_{m-1}\left(F_{\left(u_{s}, f\left(u_{s}\right)\right)}\right)
\end{aligned}
$$

Thus, since $u-f(u)$ determines the (numerical) local index $I(f, x)$ at x, we have

$$
c(f, L)(s)= \begin{cases}0 & \text { if } s \cap \text { Fix } f=\phi \\ (-1)^{m} \text { Ind }(f, x) g_{\sigma} & \text { otherwise }\end{cases}
$$

Thus, we have the following proposition.

Lemma 5.2. The local obstruction index $o(f, L)$ has the cochain representation

$$
c(f, L)=(-1)^{m} \sum_{s}\left[I(f, s) g_{s}\right] s
$$

where $I(f, s)$ is the local index of f on s.
Remark 5.3. The unhappy sign $(-1)^{m}$ is the result of using $i \times f: U \rightarrow$ $M \times M$, rather than $f \times i$; thus encountering $f-\mathrm{id}$, rather than id $-f$.

Let $\mathcal{N}(f, L)$, denote the local Nielsen classes of $f \mid L$, designated individually by $N_{1}(f, L), \ldots, N_{j}(f, L), \ldots$. For each j pick a simplex s_{j} containing a fixed point representing $N_{j}(f, L)$. If s is another simplex containing a fixed point of $N_{j}(f, L)$, then there is a path α from s to s_{j} such that $\alpha \sim f(\alpha)$. Thus, since $g_{s} s$ to cohomologus to

$$
\left[\operatorname{sgn}\left(\alpha, s, s_{j}\right)(\alpha, f(\alpha))_{\#}\left(g_{s}\right)\right] s_{j}
$$

and since $(\alpha, f(\alpha))_{\#}\left(g_{s}\right)=\operatorname{sgn}\left(\alpha, s, s_{j}\right) g_{s_{j}}$, we have:
Proposition 5.4. The local obstruction index $o(f, L)$ has the cochain representation

$$
c^{\prime}(f, L)=(-1)^{m} \sum_{j}\left[I\left(N_{j}(f, L)\right) g_{s_{j}}\right] s_{j}
$$

where the sum is over the local Nielsen classes $\mathcal{N}(f, L)$ and $I\left(N_{j}(f, L)\right)$ is the (numerical) index of $N_{j}(f, L)$.

Corollary 5.5. (Local Wecken Theorem). A necessary and sufficient condition that $f \mid L$ be deformable in M (relative to ∂L) to a fixed point free map is that the local Nielsen number $n(f, L)=0$, i.e. $n(f, L)=0 \Leftrightarrow o(f, L)=0$.

Now, choose a simplex s_{1} in L and assume that our base point is $u_{1} \in \partial s_{1}$ and we identify $\pi_{m-1}\left(F_{\left(u_{1}, f\left(u_{1}\right)\right)}\right)$ with $\mathbf{Z}[\pi], g_{s_{1}}$ corresponding to 1 . See Figure 3.

Fig. 3

Choose for each j, a path ω_{j} in L such that

$$
\left(\omega_{j}, \omega_{j}\right)_{\#}\left(g_{s_{j}}\right)=g_{s_{1}} .
$$

Then, $g_{s_{j}} s_{j}$ is cohomologus to $\left[\operatorname{sgn}\left(\omega_{j}, s_{j}, s\right)\left(\omega_{j}, f\left(\omega_{j}\right)\right)_{\#}\left(g_{s_{j}}\right)\right] s_{1}$ where, by Lemma 4.2,

$$
\left(\omega_{j}, f\left(\omega_{j}\right)\right)_{\#}\left(g_{s_{j}}\right)=\operatorname{sgn} \sigma_{j}\left(\tau_{j} \sigma_{j}^{-1}\right)
$$

with $\sigma_{j}=\left[\omega_{j}^{-1} \omega_{j}\right], \tau_{j}=\left[\omega_{j}^{-1} f\left(\omega_{j}\right)\right]$. Since $\sigma=1$ and $\operatorname{sgn}\left(\omega_{j}, s_{j}, s\right)=1$, we have $g_{s_{j}} s_{j}$ cohomologous to $\tau_{j} s_{1}$ where $\tau_{j}=\left[\omega_{j}^{-1} f\left(\omega_{j}\right)\right]$. See Figure 3 .

Lemma 5.6. The local obstruction index $o(f, L)$ has the following cochain representation concentrated at s_{1} where the local group at s_{1} is identified with $\mathbf{Z}[\pi]$:

$$
c^{\prime \prime}(f, L)=(-1)^{m}\left(\sum_{j} I\left(N_{j}(f, L)\right) \tau_{j}\right) s_{1}
$$

where $\tau_{j} \in \pi$ is given by $\tau_{j}=\left[\omega_{j}^{-1} f\left(\omega_{j}\right)\right]$ for an appropriate path ω_{j} from the Nielsen class $N_{j}(f, L)$ to the Nielsen class $N_{1}(f, L)$.

Lemma 5.7. If x_{s} and x_{t} are fixed points of $f \mid L$ in simplexes s and t, respectively and if ω_{s}, and ω_{t} are paths from s to s_{1} and t to s_{1} such that

$$
\left(\omega_{s}, \omega_{s}\right)_{\#} g_{s}=g_{s_{1}},\left(\omega_{t}, \omega_{t}\right)_{\#} g_{t}=g_{s_{1}}
$$

then x_{s} and x_{t} are Nielsen equivalent in L if, and only if,

$$
\tau_{s}^{-1}=\left[f\left(\omega_{s}^{-1}\right) \omega_{s}\right] \quad \text { and } \quad \tau_{t}^{-1}=\left[f\left(\omega_{t}^{-1}\right) \omega_{t}\right]
$$

are Reidemeister equivalent on L, i.e.

$$
\tau_{s}=\varphi_{L}\left(\sigma^{-1}\right) \tau_{t} i_{L}(\sigma), \quad \sigma \in \pi(L)
$$

Proof. By the argument preceding Lemma 5.6, we have $\left(\omega_{s}, f\left(\omega_{s}\right)\right) \times$ ${ }_{\#}\left(g_{s} s\right)=\tau_{s}=\left[\omega_{s}^{-1} f\left(\omega_{s}\right)\right]$. Suppose γ is a path in L from s to t with $\gamma \sim f(\gamma)$. Then,
$\tau_{s}^{-1}=\left[f\left(\omega_{s}^{-1}\right) \omega_{s}\right]=\left[f\left(\omega_{s}^{-1}\right) f(\gamma) f\left(\omega_{t}\right) f\left(\omega_{t}^{-1}\right) \omega_{t} \omega_{t}^{-1} \gamma^{-1} \omega_{s}\right]=\varphi_{L}\left(\sigma^{-1}\right) \tau_{t} i_{L}(\sigma)$, where $\sigma=\left[\omega_{t}^{-1} \gamma^{-1} \omega_{s}\right] \in \pi(L)$.

Lemma 5.8. Let Γ denote the correspondence of Proposition 3.9 from the Reidemeister classes $R\left[i_{L}, \varphi_{L}\right]$ to the Nielsen classes $\mathcal{N}(f, L)$. Then, if $\tau_{j}=\left[\omega_{j}^{-1} f\left(\omega_{j}\right)\right]$, as in Proposition 5.6, we have $\Gamma\left(\left[\tau_{j}^{-1}\right]\right)=N_{j}(f, L)$

Proof. Let x_{j} denote the fixed point in s_{j}, and x_{1} the fixed point in x_{1}. Use x_{1} as base point and then apply part (b) of the proof of Proposition 3.6.

If $\Gamma: R\left[i_{L}, \varphi_{L}\right] \rightarrow \mathcal{N}(f, L)$ is the correspondence of Proposition 3.9, between Reidemeister classes and Nielsen classes, then we set $N_{\rho}=\Gamma(\rho)$. Also, we set
$I(\rho)=I\left(N_{\rho}\right)$, the index of the corresponding Nielsen class. Of course, if $\Gamma(\rho)=\phi$, we set $I(\rho)=0$.

We can only give a short proof of Theorem 5.1.
Proof of Theorem 5.1. By Lemma 5.6,

$$
\left\langle c^{\prime \prime}(f, L), \sum_{s} h\left(g_{s}\right) s\right\rangle=(-1)^{m} \sum_{j} I\left(N_{j}(f, L)\right) \tau_{j}^{-1} \in \mathbf{Z}[\pi] .
$$

Passing to Reidemeister classes on the right, we obtain

$$
\langle o(f, L), \underline{\mu}(L)\rangle=(-1)^{m} \sum_{\rho} I(\rho) \rho \in \mathbf{Z} R\left[i_{L}, \varphi_{L}\right]
$$

Corollary 5.9. Let $f: U \rightarrow M$ be compactly fixed and let $K=\coprod L_{j}$, a finite disjoint union of connected submanifolds with boundary. Then under the isomorphism

$$
\begin{aligned}
\sum_{j}\left\langle\cdot, \underline{\mu}\left(L_{j}\right)\right\rangle: H^{m}(K, \partial K ; \mathscr{B}(f, K)) & \approx \sum_{j} H^{m}\left(L_{j}, \partial L_{j} ; \mathscr{B}\left(f, L_{j}\right)\right) \\
\mathbf{Z} R\left[i_{K}, \varphi_{K}\right] & \approx \sum_{j} \mathbf{Z} R\left[i_{L_{j}}, \varphi_{L_{j}}\right]
\end{aligned}
$$

we have

$$
\left\langle o(f, K), \sum \underline{\mu}\left(L_{j}\right)\right\rangle=\sum_{j} \sum_{\rho \in R_{j}} I(\rho) \rho
$$

where $R_{j}=R\left[i_{L_{j}}, \varphi_{L_{j}}\right]$.
Corollary 5.10. (Global case). Let $f: M \rightarrow M$ denote a self map of a compact, connected manifold with boundary ∂M such that $(\operatorname{Fix} f) \cap \partial M=\phi$. Then the global obstruction index

$$
o(f) \in H^{m}(M, \partial M ; \mathscr{B}(f))
$$

is given by

$$
\langle o(f), \underline{\mu}(M)\rangle=\sum_{\rho \in R} I(\rho) \rho
$$

where $R=R[\mathrm{id}, \varphi]$ and $\varphi=f_{*}: \pi \rightarrow \pi=\pi_{1}(M)$.
Corollary 5.11. Let $f: U \rightarrow M$ be compactly fixed. Suppose K is a compact submanifold with boundary such that $K \subset U$, Fix $f \subset$ int K and the Nielsen classes $\mathscr{N}(f, U)$ and $\mathscr{N}(f, K)$ are identical. (The existence of such a K is guaranteed by Proposition 3.14). Then $o(f)=0$ if, and only if, $o(f, K)=0$.

Proof. The "if part" is obvious. On the other hand suppose $o(f)=0$. Then for some $K^{\prime}, K \subset K^{\prime} \subset U$ we have $o\left(f, K^{\prime}\right)=0$ and hence

$$
0=\left\langle o\left(f, K^{\prime}\right), \underline{\mu}\left(K^{\prime}\right)\right\rangle=\sum_{\rho \in R^{\prime}} I(\rho) \rho ;
$$

thus, $I(\rho)=0$ for all Reidemeister classes in $R^{\prime}=R\left[i_{K^{\prime}}, \varphi_{K^{\prime}}\right]$. Consequently, all the Nielsen classes in K^{\prime} have index 0 . This forces all the Nielsen classes of f relative to K to be inessential and thus

$$
\langle o(f, K), \underline{\mu}(K)\rangle=\sum_{\rho \in R} I(\rho) \rho=0
$$

therefore, $o(f, K)=0$.
Theorem 5.12. Suppose $f: U \rightarrow M$ is compactly fixed with U connected. Then, under the isomorphism

$$
\langle\cdot, \underline{\mu}(U)\rangle: H_{c}^{m}(U ; \mathscr{B}(f)) \rightarrow \mathbf{Z} R\left[i_{U}, \varphi_{L}\right]
$$

we have

$$
\langle o(f), \underline{\mu}(U)\rangle=\sum_{\rho \in R} I(\rho) \rho
$$

where $R=R\left[i_{U}, \varphi_{U}\right]$.
Proof. Choose a connected K satisfying the condition of Corollary 5.11. Let

$$
h_{K}^{U}: R^{\prime}=R\left[i_{K}, \varphi_{K}\right] \rightarrow R\left[i_{U}, \varphi_{U}\right]=R
$$

denote the correspondence in Section 3. Then,

$$
\langle o(f), \underline{\mu}(U)\rangle=h_{K}^{U}\langle o(f, K), \underline{\mu}(K)\rangle=h_{K}^{U}\left(\sum_{\rho \in R^{\prime}} I(\rho) \rho\right)=\sum_{\rho \in R} I(\rho) \rho
$$

Corollary 5.13. Suppose $f: U \rightarrow M$ is compactly fixed. Then f is deformable, via a compactly fixed homotopy, to a fixed point free map $g: U \rightarrow M$ if, and only if, the local Nielsen number $n(f, U)=0$.

Suppose now that $f: U \rightarrow M$ as usual, $L=\coprod_{j} L_{j} \subset K \subset U$ such that Fix $f \subset$ \coprod_{j} (int L_{j}), and L_{j}, K are connected submanifolds with boundary. We now want to describe how $o(f, L)$ in $H^{m}(L, \partial L ; \mathscr{B}(f, L))$ "coalesces" to $o(f, K)$ in $H^{m}(K, \partial K ; \mathscr{B}(f, K))$ thus yielding the appropriate "additivity property" for our generalized local index. We make use of the correspondences (Section 3)

$$
h_{L_{j}}^{K}: R\left[i_{L_{j}}, \varphi_{L_{j}}\right] \rightarrow R\left[i_{K}, \varphi_{K}\right] .
$$

Lemma 5.14. If $\rho \in R\left[i_{K}, \varphi_{K}\right]$ and $I(\rho)$ is its numerical index, then

$$
I(\rho)=\sum_{j} \sum_{\beta \in P_{j}} I(\beta)
$$

where $P_{j}=\left\{\beta\right.$: $\left.h_{L j}^{K}(\beta)=\rho\right\}$.
Proof. Let $N_{\beta}\left(L_{j}, f\right)$ denote the Nielsen class in $\mathcal{N}\left(L_{j}, f\right)$ corresponding to $\beta \in P_{j}$, and $N(\rho)$ the Nielsen class in $\mathscr{N}(K, f)$ corresponding to ρ. It suffices to prove that

$$
\coprod_{j} \coprod_{\beta \in P_{j}} N_{\beta}\left(L_{j}, f\right)=N(\gamma) .
$$

Recall (Section 3) that given a fixed point $x \in N(\rho)$, the Reidemeister class ρ is determined by the element $\alpha \in \pi$ subject to the condition

$$
\left(\tilde{f}_{K} \alpha\right)(\tilde{x})=\tilde{l}_{K}(\tilde{x})
$$

where $\tilde{x} \in \eta_{K}^{-1}(x)$. Such an x belongs to some L_{j} and hence to some Nielsen class $N_{\beta}\left(L_{j}, f\right)$ where β is the L_{j}-Reidemeister class belonging to $N_{\beta}\left(L_{j}, f\right)$. We need to show that $h_{L_{j}}^{K}(\beta)=\rho$. Or, equivalently that α also represents β. Choose $\tilde{x}=\tilde{i}_{L_{j}}^{K}(\tilde{y})$ and then

$$
\left(\tilde{f}_{L} \alpha\right)(\tilde{y})=\left(\hat{\imath}_{L_{j}}^{K} f_{K} \alpha\right) \tilde{y}=\tilde{i}_{L}(\tilde{y})
$$

thus α does represent β, and hence

$$
N(\gamma) \subset \coprod_{j} \coprod_{\beta \in P_{j}} N_{\beta}\left(L_{j}, f\right) .
$$

The reverse inclusion has a similar argument and is omitted.
The following theorem is a consequence of Lemma 5.14.
Theorem 5.15 (Additivity). Let $f: U \rightarrow M$ be compactly fixed and suppose $V=\coprod_{j} V_{j}$ is a disjoint union of open sets in U covering Fix f. We identify

$$
o(f, U) \equiv \sum_{\rho \in R} I(\rho) \rho, \quad o\left(f, V_{j}\right) \equiv \sum_{\beta \in R_{j}} I(\beta) \beta
$$

where $R=R\left[i_{U}, \varphi_{U}\right], R_{j}=R\left[i_{V_{j}}, \varphi_{V_{j}}\right]$. Then, under the correspondence

$$
h_{V}^{U}: R\left[i_{V}, \varphi_{V}\right] \rightarrow R\left[i_{U}, \varphi_{U}\right],
$$

we have

$$
o(f, V) \equiv \sum_{j} \sum_{\beta \in R_{j}} I(\beta) \beta \rightarrow \sum_{\rho \in R}\left(\sum_{j} \sum_{\beta \in P_{j}(\rho)} I(\beta)\right) \rho \equiv o(f, U)
$$

where $P_{j}(\rho)=\left\{\beta: h_{V_{j}}^{U}(\beta)=\rho\right\}$.
Remark 5.16. When M is 1 -connected, Theorem 5.15 reduces to

$$
I(f, K)=\sum_{j} I\left(f, L_{j}\right)
$$

the "addivity property" of the classical (numerical) local index.
The next result is another application of Theorem 5.1.
Theorem 5.17. Suppose $f: M \rightarrow M$ is a compactly fixed map on a connected manifold with boundary such that ($\operatorname{Fix} f$) $\cap \partial M=\phi$. Suppose K is a connected submanifold with boundary and Fix $f \subset$ int K. If $i_{K}: \pi(K) \rightarrow \pi$ is surjective then
(a) $h_{K}^{M}: R\left[i_{K}, \varphi_{K}\right] \rightarrow R\left[i_{M}, \varphi_{M}\right]$ is bijective,
(b) $\mathscr{N}(f, K) \equiv \mathscr{N}(f, M)=\mathscr{N}(f)$,
(c) $n(f, K)=n(f, M)=n(f)$,
(d) $o(f, K)=0$ if, and only if, $o(f, M)=0$.

Proof. Part (a) is a simple exercise which establishes a one-one correspondence between Nielsen classes relative to K and Nielsen classes relative to M. Then (d) is an immediate consequence of Theorem 5.1.

References

1. E. Fadell and S. HUSSEInI, Fixed point theory for non simply connected manifold, Topology, to appear.
2. A. Dold, Lectures on algebraic topology, Springer-Verlag, New York, 1972.
3. G. Whitehead, Elements of homotopy theory, Springer-Verlag, New York, 1978.
4. R. F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, Glenview, Illinois, 1971.
5. J. P. Serre, Homologie singuliere des espaces fibrés, Ann. of Math., vol. 54 (1951), pp. 425-505.
6. B. J. Jiang (Po chu Chiang), Estimation of Nielsen numbers, Acta Math. Sinica, vol. 14 (1964), pp. 304-312.
7. N. Steenrod, The topology of fiber bundles, Princeton University Press, Princeton, New Jersey, 1951.
8. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

University of Wisconsin-Madison
Madison, Wisconsin

[^0]: Received January 21, 1980.
 ${ }^{1}$ Sponsored by the United States Army. This material is also based upon work supported by the National Science Foundation.

