QUILLEN'S \mathscr{K}-THEORY AND ALGEBRAIC CYCLES ON ALMOST NON-SINGULAR VARIETIES

BY
Alberto Collino ${ }^{1}$
\section*{Introduction}

Let X denote an irreducible quasi-projective variety defined over an algebraically closed field, x_{0} a distinguished closed point of X. We say that (X, x_{0}) is almost non-singular if $X-x_{0}$ is non-singular, and make this assumption in the following discussion.

Let X_{i} be the set of points (i.e., irreducible cycles) of codimension i in X and let $X_{i}^{*}=\left\{x \in X_{i}: x_{0} \notin \bar{x}\right\}$. Set

$$
C^{i}=\coprod_{x \in X_{i}} \mathbf{Z}_{x} \quad \text { and } \quad C^{* i}=\coprod_{x \in X^{*} i_{i}} \mathbf{Z}_{x} .
$$

Define R^{i} to be the subgroup of C^{i} which is generated by the elements of the form (s, f), where s is in X_{i-1}, f is an element of $k(s)^{*}$, the group of invertible elements in the function field of s, and (s, f) denotes the cycle $\left((f)_{0}-(f)_{\infty}\right)$ computed on X. We refer to the elements of R as "relations". The group $C^{i} / R^{i}=C H^{i}(X)$ is the i th graded part of the covariant Chow group (cf. [2]).

Quillen [5] has associated sheaves $\mathscr{K}_{i X}$ with any scheme X, and proved that if X is a non-singular quasi-projective variety then

$$
\begin{equation*}
C H^{i}(X) \simeq H^{i}\left(X, \mathscr{K}_{i X}\right) . \tag{0.1}
\end{equation*}
$$

If X is any variety, $H^{1}\left(X, \mathscr{K}_{1 X}\right)$ still has a geometric interpretation, indeed $\mathscr{K}_{1 X}=\mathscr{C}_{X}^{*}$; therefore $H^{1}\left(X, \mathscr{K}_{1 X}\right)=$ Pic (X). It is a natural question to inquire about the geometrical meaning of the groups $H^{i}\left(X, \mathscr{K}_{i X}\right)$.

Define $R^{* i}$ to be the subgroup of $C^{* i}$ generated by the relations (s, f) with the further requirement $s \in X_{i-1}^{*}$, i.e., by the relations which avoid the distinguished point. Set $C H^{i}\left(X, x_{0}\right)=C^{* i} / R^{* i}$. Our interpretation is:
(0.2) Theorem. If X is almost non-singular then

$$
C H^{i}\left(X, x_{0}\right) \simeq H^{i}\left(X, \mathscr{K}_{i X}\right) \quad i>1 .
$$

Note that if X is non-singular, (0.1) and (0.2) together provide a highbrow proof that $C H^{i}(X) \simeq C H^{i}\left(X, x_{0}\right), i>1$.

[^0]When X is non-singular one introduces a topological filtration in the group $K_{0} X$ of vector bundles on X; let $G^{i}\left(K_{0} X\right)$ denote the associated graded groups. It is a consequence of Riemann-Roch (cf. [6, XIV]), that

$$
\begin{gather*}
C H^{2}(X) \simeq G^{2}\left(K_{0} X\right) \tag{0.3}\\
C H^{i}(X) \simeq G^{i}\left(K_{0} X\right) \bmod \text { torsion, } \quad i>2 . \tag{0.4}
\end{gather*}
$$

If X is almost non-singular we also introduce a filtration of topological nature on $K_{0} X$ and still let $G^{i}\left(K_{0} X\right)$ denote the associated graded groups. Our next interpretation is:
(0.5) Theorem. (a) $C H^{2}\left(X, x_{0}\right) \simeq G^{2}\left(K_{0} X\right)$.
(b) $C H^{i}\left(X, x_{0}\right) \simeq G^{i}\left(K_{0} X\right)$ mod torsion, $i>2$.

If X is an affine surface this result appears in [4].
I would like to thank the referee for proposing crucial simplifications to a previous redaction of the paper.

1. Plan of work

We keep the notations of the introduction and assume that $\left(X, x_{0}\right)$ is almost non-singular. Let $\mathscr{M}(X)$ be the category of finitely generated coherent modules on $X, \mathscr{P}_{\infty}(X)$ the exact subcategory of $\mathscr{M}(X)$ with objects the modules of finite projective dimension, $\mathscr{P}(X)$ the category of locally free sheaves, $\mathscr{M}\left(X, x_{0}\right)$ the Serre subcategory of $\mathscr{M}(X)$ with objects the modules M which are torsion at x_{0}, namely $M_{x_{0}}=0$. Note that $\mathscr{M}\left(X, x_{0}\right)$ is also a subcategory of $\mathscr{P}_{\infty}(X)$, because $X-x_{0}$ is non-singular. On $\mathscr{M}\left(X, x_{0}\right)$ there is a decreasing filtration by codimension of the support:
(1.1) For $i \geq 0$, let $\mathscr{M}_{i}\left(X, x_{0}\right)$ be the full subcategory of $\mathscr{M}\left(X, x_{0}\right)$ whose objects are the modules M such that $\operatorname{codim}(\operatorname{supp} M, X) \geq i+1$.

Similarly one introduces filtrations on $\mathscr{M}(X)$ and $\mathscr{P}_{\infty}(X)$

$$
\begin{align*}
& \mathscr{M}_{0}^{*}(X)=\mathscr{M}(X), \mathscr{M}_{1}^{*}(X)=\mathscr{M}\left(X, x_{0}\right), \ldots, \mathscr{M}_{i+1}^{*}(X)=\mathscr{M}_{i}\left(X, x_{0}\right) . \tag{1.2}\\
& F^{0} \mathscr{P}_{\infty}(X)=\mathscr{P}_{\infty}(X), \ldots, F^{i+1} \mathscr{P}_{\infty}(X)=\mathscr{M}_{i}\left(X, x_{0}\right) . \tag{1.3}
\end{align*}
$$

We recall the standard notations $K_{i} X=K_{i}(\mathscr{P}(X)), K_{i}^{\prime} X=K_{i}(\mathscr{M}(X))$ and the isomorphism $K_{i} X \simeq K_{i}\left(\mathscr{P}_{\infty}(X)\right)$. The natural functors

$$
F^{i} \mathscr{P}_{\infty}(X) \rightarrow \mathscr{P}_{\infty}(X), \quad \mathscr{M}_{i}^{*}(X) \rightarrow \mathscr{M}(X)
$$

induce homomorphisms

$$
a: K_{j}\left(F^{i} \mathscr{P}_{\infty}(X)\right) \rightarrow K_{j} X, \quad b: K_{j}\left(\mathscr{M}_{i}^{*}(X)\right) \rightarrow K_{j}^{\prime} X
$$

For later reference we set

$$
\begin{align*}
S^{i} K_{j} X=\text { image }(a), & S^{i} K_{j}^{\prime} X=\text { image }(b), \tag{1.4}\\
G^{i} K_{j} X=S^{i} K_{j} X / S^{i+1} K_{j} X, & G^{i} K_{j}^{\prime} X=S^{i} K_{j}^{\prime} X / S^{i+1} K_{j}^{\prime} X . \tag{1.5}
\end{align*}
$$

Let $X_{x_{0}}$ denote $\operatorname{spec}\left(\mathcal{O}_{X, x_{0}}\right)$. Then the category $\mathscr{M}\left(X_{x_{0}}\right)$ is equivalent to the quotient category $\mathscr{M}(X) / \mathscr{M}\left(X, x_{0}\right)$. By Theorem 5 of [5], there is the exact sequence of localization

$$
\begin{equation*}
\cdots \rightarrow K_{i}\left(\mathscr{M}_{1}^{*}(X)\right) \rightarrow K_{i}^{\prime} X \rightarrow K_{i}^{\prime} X_{x_{0}} \rightarrow K_{i-1}\left(\mathscr{M}_{1}^{*}(X)\right) \rightarrow \cdots \tag{1.6}
\end{equation*}
$$

Similarly, for $p>0$,

$$
\begin{equation*}
\cdots \rightarrow K_{i}\left(\mathscr{M}_{p+1}^{*}(X)\right) \rightarrow K_{i}\left(\mathscr{M}_{p}^{*}(X)\right) \rightarrow \coprod_{x \in X^{*}{ }_{p}} K_{i} k(x) \rightarrow K_{i-1}\left(\mathscr{M}_{p+1}^{*}(X)\right) \rightarrow \cdots \tag{1.7}
\end{equation*}
$$

where we have used the isomorphism

$$
K_{i}\left(\mathscr{M}_{p}^{*}(X) / \mathscr{M}_{p+1}^{*}(X)\right) \simeq \coprod_{x \in X^{*} p_{p}} K_{i} k(x)
$$

which follows from Theorem 4, Corollary 1 of [5]. For $K X$, we produce, in Section 3, an exact sequence

$$
\begin{equation*}
\cdots \rightarrow K_{i}\left(F^{1} \mathscr{P}_{\infty}(X)\right) \rightarrow K_{i} X \rightarrow K_{i} X_{x_{0}} \rightarrow K_{i-1}\left(F^{1} \mathscr{P}_{\infty}(X)\right) \rightarrow \cdots \tag{1.8}
\end{equation*}
$$

while (1.7) can be rewritten as

$$
\begin{equation*}
\cdots \rightarrow K_{i}\left(F^{p+1} \mathscr{P}_{\infty}(X)\right) \rightarrow K_{i}\left(F^{p} \mathscr{P}_{\infty}(X)\right) \rightarrow \cdots \tag{1.9}
\end{equation*}
$$

By a standard process (cf. proof of (5.4) in Section 7 [5]), the exact sequences (1.8), (1.9) give rise to a spectral sequence

$$
E_{1}^{p q}(X) \Rightarrow K_{-n} X, \quad p \geq 0, p+q \leq 0, n \leq 0 .
$$

Similarly (1.6), (1.7) give rise to

$$
E_{1}^{\prime p q}(X) \Rightarrow K_{-n}^{\prime} X
$$

where

$$
E_{1}^{0 q}=K_{-q} X_{x_{0}}, \quad E_{1}^{\prime 0 q}=K_{-q}^{\prime} X_{x_{0}}, \quad E_{1}^{p q}=E_{1}^{\prime p q}=\coprod_{x \in X^{*} p} K_{-p-q} k(x) .
$$

Using the preceding notations we have $E_{\infty}^{p q}=G^{p} K_{-p-q} X, E_{\infty}^{\prime p q}=G^{p} K_{-p-q}^{\prime} X$. Following [5] we next identify $E_{2}^{p q}$.
(1.10). Theorem. $\quad E_{2}^{p q}=H^{p}\left(X, \mathscr{K}_{-q}\right), E_{2}^{\prime p q}=H^{p}\left(X, \mathscr{K}_{-q}^{\prime}\right)$.

Our procedure is to produce exact sequences of sheaves,

$$
\begin{align*}
& 0 \rightarrow \mathscr{K}_{i X} \rightarrow \mathscr{K}_{i}\left(X_{x_{0}}\right) \rightarrow \mathscr{K}_{i-1}\left(X, x_{0}\right) \rightarrow 0 \tag{1.11}\\
& 0 \rightarrow \mathscr{K}_{i X}^{\prime} \rightarrow \mathscr{K}_{i}^{\prime}\left(X_{x_{0}}\right) \rightarrow \mathscr{K}_{i-1}\left(X, x_{0}\right) \rightarrow 0 \tag{1.11}
\end{align*}
$$

where $\mathscr{K}_{i-1}\left(X, x_{0}\right)$ is obtained from $K_{i-1}\left(\mathscr{M}\left(X, x_{0}\right)\right)$ by means of a sheafifying process, while $\mathscr{K}_{i}\left(X_{x_{0}}\right)$ shall be conveniently defined. Now the sheaves $\mathscr{K}_{i}(X$,
x_{0}) have the following exact resolution by flabby sheaves, which we call the Gersten resolution:
(GR)

$$
0 \rightarrow \mathscr{K}_{n}\left(X, x_{0}\right) \rightarrow \coprod_{x \in X^{*}{ }_{1}}\left(i_{x}\right)_{*} K_{n} k(x) \rightarrow \coprod_{x \in X^{*}{ }_{2}}\left(i_{x}\right)_{*} K_{n-1} k(x) \rightarrow \cdots .
$$

Therefore

$$
\begin{equation*}
0 \rightarrow \mathscr{K}_{i X} \rightarrow \mathscr{K}_{i}\left(X_{x_{0}}\right) \rightarrow \coprod_{x \in X^{*} 1}\left(i_{x}\right)_{*} K_{i-1} k(x) \rightarrow \cdots \tag{GR*}
\end{equation*}
$$

is also exact.
The associated complex of global sections can be written as

$$
\begin{equation*}
0 \rightarrow H^{0}\left(X, \mathscr{K}_{i X}\right) \rightarrow E_{1}^{0-i}(X) \rightarrow E_{1}^{1-i}(X) \rightarrow E_{1}^{2-i}(X) \rightarrow \cdots \tag{C}
\end{equation*}
$$

The differential in (C) turns out to be the differential d_{1} in the spectral sequence, hence E_{2}^{p-i} is the p th cohomology group of (C). On the other hand we shall prove that $\mathscr{K}_{i}\left(X_{x_{0}}\right)$ is acyclic, hence GR^{*} is an acyclic resolution of $\mathscr{K}_{i x}$. Therefore $E_{2}^{p-i}=H^{p}\left(X, \mathscr{K}_{i X}\right)$. The same argument works for $\mathscr{K}_{i X}{ }_{i X}$. Furthermore by explicitly identifying the differential d_{1} in $E_{1}^{i-1,-i} \rightarrow E_{1}^{i-i}$ of (C) one gets $E_{1}^{i-i}(X)=C^{* i}$, image $d_{1}=R^{* i}$, if $i>1$. Hence

$$
\begin{equation*}
H^{i}\left(X, \mathscr{K}_{i X}\right) \simeq C H^{i}\left(X, x_{0}\right) . \quad i>1 \tag{0.1}
\end{equation*}
$$

$H^{i}\left(X, \mathscr{K}_{i X}^{\prime}\right) \simeq C H^{i}\left(X, x_{0}\right), i>1$; we chose formulation (0.1) because both functors are contravariant in the category or pointed almost non-singular varieties.

2. The sheaf $\mathscr{K}_{n}\left(X, x_{0}\right)$

Let Y denote a constructible subset of $X, \mathscr{M}(Y)$ the category of finitely generated coherent modules on $Y, \mathscr{M}\left(Y, x_{0}\right)$ the exact subcategory of $\mathscr{M}(Y)$ with objects modules M having the property that x_{0} does not belong to the closure in X of the support of M. Note that if Y is closed and x_{0} is not in Y then $\mathscr{M}\left(Y, x_{0}\right)=\mathscr{M}(Y)$.
(2.1) Lemma. $\quad \mathscr{M}\left(Y, x_{0}\right)$ is a Serre subcategory of $\mathscr{M}(Y)$.

Proof. If $0 \rightarrow M \rightarrow M^{\prime} \rightarrow M^{\prime \prime} \rightarrow 0$ is exact then

$$
\operatorname{supp}\left(M^{\prime}\right)=\operatorname{supp}(M)+\operatorname{supp}\left(M^{\prime \prime}\right)
$$

hence $\mathrm{cl}\left(\operatorname{supp}\left(M^{\prime}\right)\right)=\mathrm{cl}(\operatorname{supp}(M))+\mathrm{cl}\left(\operatorname{supp}\left(M^{\prime \prime}\right)\right)$. Using this remark it is straightforward to check that $\mathscr{M}\left(Y, x_{0}\right)$ is closed under subobjects, quotients and extensions.
(2.2) Given an open set U in X we denote $K_{n}\left(U, x_{0}\right)=K_{n}\left(\mathscr{M}\left(U, x_{0}\right)\right)$. Filtering $\mathscr{M}\left(U, x_{0}\right)$ by codimension of the support in X we obtain categories $\mathscr{M}_{p}\left(U, x_{0}\right)$ defined as in (1.1). $K_{n}\left(U, x_{0}\right)$ is filtered by the images of the groups
$K_{n}\left(\mathscr{M}_{p}\left(U, x_{0}\right)\right)$, which we denote by $S^{p} K_{n}\left(U, x_{0}\right)$. By means of the localization theorem of [5] one gets long exact sequences which provide a spectral sequence

$$
\begin{equation*}
E_{1}^{* p q}(U) \Rightarrow K_{-n}\left(U, x_{0}\right), \quad p \geq 0, p+q \leq 0,-n \geq 0 \tag{2.3}
\end{equation*}
$$

where

$$
E_{1}^{* p q}(U)=\coprod_{x \in U^{*} *_{p+1}} K_{-p-q} k(x)
$$

and U_{p+1}^{*} denotes the set of points of codimension $(p+1)$ in U which have the property that x_{0} is not in \bar{x}. By looking at the construction of the spectral sequence we find an augmented complex

$$
\begin{equation*}
0 \rightarrow K_{n}\left(U, x_{0}\right) \xrightarrow{e} \coprod_{x \in U^{*_{1}}} K_{n} k(x) \xrightarrow{d} \coprod_{\left.x \in U^{*}\right)_{2}} K_{n-1} k(x) \rightarrow \cdots . \tag{2.4}
\end{equation*}
$$

We sheafify the presheaf $K_{n}\left(, x_{0}\right)$ and let $\mathscr{K}_{n}\left(X, x_{0}\right)$ be the corresponding sheaf. Note that

$$
\mathscr{K}_{n}\left(X, x_{0}\right)_{x_{0}}=0, \quad \mathscr{K}_{n}\left(X, x_{0}\right)_{x}=\lim K_{n}\left(V, x_{0}\right) \text { for } x \in V .
$$

Complex (2.4) yields a complex of sheaves (GR) which we have written in (1).
(2.5) Proposition. Sequence (GR) is exact.
(2.6) Corollary. $\quad E_{2}^{* p q}(X)=H^{p}\left(X, \mathscr{K}_{-q}\left(X, x_{0}\right)\right)$.
(2.7) Corollary. $\quad H^{p}\left(X, \mathscr{K}_{p}\left(X, x_{0}\right)\right) \simeq C H^{p+1}\left(X, x_{0}\right)$.

Proof of (2.5). We imitate the proof of exactness for the Gersten resolution of $\mathscr{K}_{n X}$ when X is non-singular (cf. [5]) and indicate only the variations needed for the present case.

Let A denote the local ring $\mathcal{O}_{X, x}, \mathscr{M}_{p}\left(A, x_{0}\right)$ the category of finitely generated modules M on A such that (i) $x_{0} \notin \mathrm{cl}(\operatorname{supp} M)$ and (ii) codim (cl (supp M), $X) \geq p+1$. Note that $\mathscr{K}_{n}\left(X, x_{0}\right)_{x}=K_{n}\left(\mathscr{M}_{0}\left(A, x_{0}\right)\right)$. By the same argument as in [5], the proposition holds if we prove that the inclusion

$$
\mathscr{M}_{p+1}\left(A, x_{0}\right) \rightarrow \mathscr{M}_{p}\left(A, x_{0}\right), \quad p \geq 0
$$

induces the zero map on K-groups. If $x=x_{0}$ then $\mathscr{M}_{p}\left(A, x_{0}\right)$ is the zero category and everything is trivial, so take $x \neq x_{0}$. Since X is quasi-projective there is an affine open subspace of X, say spec (R), to which both x and x_{0} belong; without restriction we can assume $X=\operatorname{spec}(R)$. By Section 2, (9) of [5],

$$
K_{n}\left(\mathscr{M}_{p+1}\left(A, x_{0}\right)\right)=\lim K_{n}\left(\mathscr{M}_{p+1}\left(R_{f}, x_{0}\right)\right)
$$

where f runs over the regular elements of R for which $f(x) \neq 0$. We need to show that $\mathscr{M}_{p+1}\left(R_{f}, x_{0}\right) \rightarrow \mathscr{M}_{p}\left(A, x_{0}\right), p \geq 0$, induces zero on K-groups.

For a constructible subscheme Z in X let $\mathscr{M}_{p}(Z)$ be the full subcategory of $\mathscr{M}(Z)$ with objects modules M such that $\operatorname{codim}(\operatorname{supp} M, Z) \geq p+1$; note the shift in indexes. With this notation,

$$
K_{n}\left(\mathscr{M}_{p+1}\left(R_{f}, x_{0}\right)\right)=\lim K_{n}\left(\mathscr{M}_{p}\left(R_{f} / t R_{f}\right)\right)
$$

where t runs over the regular elements of R with $t\left(x_{0}\right) \neq 0$. Given f and t, it suffices to show that there is a multiple $f^{\prime}=f h$ with $f^{\prime}(x) \neq 0$ for which $\left(^{*}\right)$ the functor $M \rightarrow M_{f}$, from $\mathscr{M}_{p}\left(R_{f} / t R_{f}\right)$ to $\mathscr{M}_{p}\left(R_{f}, x_{0}\right)$ induces zero on K-groups.

Set $Z=\operatorname{spec}(R / t), Z_{f}=\operatorname{spec}\left(R_{f} / t\right)$ and note that $x_{0} \notin Z$ because $t\left(x_{0}\right) \neq 0$. With M as in $\left(^{*}\right)$ above, let $W=\mathrm{cl}(\operatorname{supp} M)$. Then

$$
\begin{equation*}
x_{0} \notin W \text { and } \operatorname{codim}(W, Z) \geq p+1>0 . \tag{+}
\end{equation*}
$$

(2.9) Lemma. Let Z be a divisor in $X=\operatorname{spec}(R)$, W a proper subvariety of Z as in $(+)$. Suppose that X is regular at x and let $r=\operatorname{dim} Z$. There is a morphism $u: X \rightarrow A^{r}$, where A^{r} is the affine space, so that (i) $u /{ }_{z}: Z \rightarrow A^{r}$ is finite, (ii) u is smooth at x and (iii) $u\left(x_{0}\right) \notin u(W)$.

Proof. Say X is embedded in the affine space A^{n}. The set of linear maps from A^{n} to A^{r} is itself an affine space A^{\cdot}; it is standard to check that (i), (ii) and (iii) each impose open, non-empty conditions on A, hence there is a linear map of the required type.

Take u as in the lemma and build a cartesian diagram

For any Z-module M there is an exact sequence of X-modules

$$
\begin{equation*}
0 \rightarrow \text { Kernel } \rightarrow a^{*} M \rightarrow M \rightarrow 0 \tag{++}
\end{equation*}
$$

If supp $M \subseteq W$, then by (iii) of (2.9), $x_{0} \notin \operatorname{supp}\left(a^{*} M\right)$, hence $(++)$ is a sequence of functors from $\mathscr{M}(W)$ to $\mathscr{M}_{p}\left(X, x_{0}\right)$. By the same argument as in [5, p. 50] we can take a function $f^{\prime}=f h$ in R with $f^{\prime}(x) \neq 0$ such that (i) X_{f}^{+}, is flat over Z and (ii) sequence $(++)$ becomes

$$
\begin{equation*}
0 \rightarrow I_{f^{\prime}} \otimes_{Z} M \rightarrow a^{*} M_{f^{\prime}} \rightarrow M_{f^{\prime}} \rightarrow 0 \tag{s}
\end{equation*}
$$

where $I_{f^{\prime}}$ is isomorphic to R_{f}^{+}, as an $R_{f_{i}}$-module. Sequence (s) is therefore an exact sequence of exact functors from $\mathscr{M}(W)$ to $\mathscr{M}_{p}\left(R_{f}, x_{0}\right)$; this allows us to conclude that the functor from $\mathscr{M}\left(W_{f}\right)$ to $\mathscr{M}_{p}\left(R_{f}, x_{0}\right)$ induces the zero map on K-groups. To complete the proof we remark that $K_{n}\left(\mathscr{M}_{p}\left(R_{f} / t R_{f}\right)=\lim \right.$
$K_{n}\left(\mathscr{M}\left(W_{f}\right)\right)$ where W_{f} runs over the set of subschemes of Z_{f} of codimension at least $p+1$ in Z_{f} (cf. (5.1) [5]).

Proof of (2.6). The proof of Proposition 5.8 in [5] applies.
Proof of (2.7). The proof of Theorem 5.19 of [5] applies, One should recall that if $x_{0} \notin Z, Z$ closed, then $\mathscr{M}\left(Z, x_{0}\right)=\mathscr{M}(Z)$.

3. The sheaves $\mathscr{K}_{n}\left(X_{x_{0}}\right)$ and $\mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right)$

Consider the morphism i : Sp $R \rightarrow X$ where $R=\mathcal{O}_{X, x_{0}}$. Let $\mathscr{K}_{n}\left(X_{x_{0}}\right)=$ $i_{*}\left(\mathscr{K}_{n, \mathrm{Sp} R}\right), \mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right)=i_{*}\left(\mathscr{K}_{n, \mathrm{Sp} R}^{\prime}\right)$. Our aim is to produce exact sequences

$$
\begin{align*}
& 0 \rightarrow \mathscr{K}_{n X}^{\prime} \rightarrow \mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right) \rightarrow \mathscr{K}_{n-1}\left(X, x_{0}\right) \rightarrow 0 \tag{3.1}\\
& 0 \rightarrow \mathscr{K}_{n X} \rightarrow \mathscr{K}_{n}\left(X_{x_{0}}\right) \rightarrow \mathscr{K}_{n-1}\left(X, x_{0}\right) \rightarrow 0 . \tag{3.2}
\end{align*}
$$

We start with the first one. For V open in X let $K_{n}^{\prime}\left(V_{x_{0}}\right)$ denote the group $K_{n}\left(\mathscr{M}(V) / \mathscr{M}\left(V, x_{0}\right)\right)$. Observe that this notation is coherent with our convention $X_{x_{0}}=\operatorname{Sp} R$, because $K_{n}^{\prime}\left(X_{x_{0}}\right)=K_{n}^{\prime}(\operatorname{SpR})$.

Lemma. $\quad \mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right)_{y}=\lim _{y \in V} K_{n}^{\prime}\left(V_{x_{0}}\right)$.
Proof. Let U be an open set containing $x_{0}, D=X-U$. By the localization theorem,

$$
K_{n+1}^{\prime}(U \cap V) \rightarrow K_{n}^{\prime}(D \cap V) \rightarrow K_{n}^{\prime} V \rightarrow K_{n}^{\prime}(U \cap V)
$$

is exact, Taking limit over the U 's gives

$$
\begin{equation*}
K_{n+1}^{\prime}\left(V_{x_{0}}\right) \rightarrow K_{n}^{\prime}\left(V, x_{0}\right) \rightarrow K_{n}^{\prime} V \rightarrow K_{n}^{\prime}\left(V_{x_{0}}\right) \tag{a}
\end{equation*}
$$

The right hand side of the equation in the lemma is then the limit of $K_{n}^{\prime}(U \cap V)$, where U and V vary as indicated above. Now $\mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right)_{y}$ is also the limit of the same family.

Sequence (a) gives rise to a long exact sequence of sheaves

$$
\begin{equation*}
\mathscr{K}_{n}^{\prime}\left(X, x_{0}\right) \rightarrow \mathscr{K}_{n X}^{\prime} \rightarrow \mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right) \rightarrow \mathscr{K}_{n-1}^{\prime}\left(X, x_{0}\right) \tag{b}
\end{equation*}
$$

(3.3) Proposition. Sequence (b) splits in short exact sequences of type (3.1).

Proof. By looking at stalks in (b) it suffices to show that the functor $\mathscr{M}\left(X_{x}\right.$, $\left.x_{0}\right) \rightarrow \mathscr{M}\left(X_{x}\right)$ induces the zero map on K-groups. If $x=x_{0}$ then $\mathscr{M}\left(X_{x_{0}}, x_{0}\right)$ is the zero category and everything is clear. If $x \neq x_{0}$ then the above map factors into

$$
\mathscr{M}\left(X_{x}, x_{0}\right) \rightarrow \mathscr{M}_{1}\left(X_{x}\right) \xrightarrow{a} \mathscr{M}\left(X_{x}\right) .
$$

By (5.10) of [5] we know that a induces the zero map on K-groups because X_{x} is regular.

In order to find (3.2) write the diagram with exact rows

We know that the vertical maps are isomorphisms except possibly for the stalk at x_{0}; moreover

$$
\mathscr{K}_{n-1}\left(X, x_{0}\right)_{x_{0}}=0, \mathscr{K}_{n X, x_{0}}=\mathscr{K}_{n}\left(X_{x_{0}}\right)_{x_{0}} .
$$

Therefore (3.2) is exact.
An alternative way of finding (3.2) is to imitate what we have done for $\mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right)$. We do not give the complete argument but produce only the global localization sequence which we promised in (1.8).

Since $\mathscr{P}_{\infty}(X)$ is not an abelian category we cannot use the localization theorem used previously. In [3] we find the following result.
(3.4) For any affine open subscheme U of X there is an exact sequence

$$
\begin{equation*}
K_{q+1} U \rightarrow K_{q} H \rightarrow K_{q} X \rightarrow K_{q} U \rightarrow \cdots, \tag{+}
\end{equation*}
$$

where H is the category of quasi-coherent sheaves on X which are zero on U and admit a resolution of length one by vector bundles on X.

Building on (3.4) we shall recover the exact sequence we want. Set $D=X-U$ and assume furthermore that x_{0} is in U and that D is a divisor. Let $\mathscr{M}(D)$ be the category of coherent modules on D; note that any object in $\mathscr{M}(D)$ admits a finite projective resolution by vector bundles on X, since $X-x_{0}$ is non-singular.
(3.5) Lemma. $\quad K_{q} H \simeq K_{q}(\mathscr{M}(D))$.

Proof. Apply Theorem 3 of [5] to the pair of exact categories $\left(H_{n}, H_{n+1}\right)$, $n>0$, where H_{n} denotes the subcategory of $\mathscr{M}(D)$ whose objects are modules M of X-homological dimension at most n. A routine argument shows that condition (i) of the theorem holds. To prove that condition (ii) is satisfied, for $M^{\prime \prime}$ in H_{n+1} we produce a resolution $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ with M in H_{n}. There is a resolution in $\mathscr{M}(X)$,

$$
\begin{equation*}
0 \rightarrow K \rightarrow P \rightarrow M^{\prime \prime} \rightarrow 0 \tag{r}
\end{equation*}
$$

where P is projective. Since $x_{0} \notin D$ then $\mathcal{O}(-D)$ is invertible and the restriction $P_{D}=P \otimes O_{D}$ is in H_{1}, hence in H_{n}. Now tensoring (r) with O_{D} gives $0 \rightarrow M^{\prime} \rightarrow P_{D} \rightarrow M^{\prime \prime} \rightarrow 0$.

Sequence $(+)$ of (3.4) can be written as

$$
\begin{equation*}
\cdots \rightarrow K_{q+1} U \rightarrow K_{q}^{\prime} D \rightarrow K_{q} X \rightarrow K_{q} U \rightarrow \cdots \tag{3.6}
\end{equation*}
$$

Recall that $X_{x_{0}}=\lim _{x_{0} \in U} U$, where U runs over the family of affine open neighborhoods of x_{0}. Then by Proposition 2.2 of [5], $K_{q}\left(X_{x_{0}}\right)=\lim K_{q} U$; by $[5,(9) \mathrm{p} .20], K_{q}\left(X, x_{0}\right)=K_{q}(\lim \mathscr{M}(D))=\lim K_{q}^{\prime} D$. Taking direct limits, (3.6) gives the exact sequence

$$
\begin{equation*}
\cdots \rightarrow K_{q+1} X \rightarrow K_{q+1} X_{x_{0}} \rightarrow K_{q}\left(X, x_{0}\right) \rightarrow K_{q} X \rightarrow \cdots \tag{3.7}
\end{equation*}
$$

In Section 5 below we need the following result.
(3.8) Lemma. $\quad K_{n} X_{x_{0}} \rightarrow H^{0}\left(X, \mathscr{K}_{n}\left(X_{x_{0}}\right)\right)$ is an isomorphism; similarly for K_{n}^{\prime}.

Proof.

$$
\begin{array}{r}
H^{0}\left(X, \mathscr{K}_{n}\left(X_{x_{0}}\right)\right)=H^{0}\left(X, i_{*} \mathscr{K}_{n, \mathrm{Sp} R}\right)=H^{0}\left(\operatorname{Sp} R, \mathscr{K}_{n, \mathrm{Sp} R}\right) \\
\left.\simeq \not{ }^{*}\right) \\
K_{n}(R)
\end{array}
$$

we have the isomorphism (*) because any open set containing the closed point of $X_{x_{0}}=\operatorname{Sp} R$ must contain all of $\operatorname{Sp} R$.

4. $\mathscr{K}_{n}\left(X_{x_{0}}\right)$ and $\mathscr{K}_{n}^{\prime}\left(X_{x_{0}}\right)$ are acyclic sheaves

We prove this only for \mathscr{K}_{n}; the proof for \mathscr{K}_{n}^{\prime} is similar. The global sections functor on $\mathrm{Sp} R$ is exact, so sheaves there have no higher cohomology. Thus to show that $i_{*}\left(\mathscr{K}_{n, \mathrm{Sp} R}\right)$ is acyclic, it suffices to show that the higher derived images are zero, i.e.,

$$
\begin{equation*}
R^{m} i_{*}\left(\mathscr{K}_{n, \mathrm{Sp} R}\right)=0, \quad m>0 . \tag{+}
\end{equation*}
$$

Looking at stalks we see that equality holds trivially at x if $x \in S p R$. If $x \notin \operatorname{Sp} R$, then to prove $(+)$ at x amounts to proving that the Gersten-Quillen resolution is exact for the ring $R\left(x, x_{0}\right)$, the quotient ring of $R=\mathcal{O}_{x_{0}}$ obtained by inverting all the functions which do not vanish at x.

Remark. This last statement depends on the property that the G-Q resolution of the sheaf $\mathscr{K}_{n U}$ is exact if $x_{0} \notin U, U$ open in $\operatorname{Sp} R, U$ a regular scheme.

Lemma. If x is a non-singular point of X, the Gersten-Quillen resolution of $K_{n}\left(R\left(x, x_{0}\right)\right)$ is exact.

Proof. We assume $x \notin \operatorname{Sp} R$, the other case being obvious because $R(x$, $\left.x_{0}\right)=\mathscr{O}_{x}$ if $x \in \operatorname{Sp} R$. Following Quillen we need to prove that for any $p \geq 0$, the inclusion $\mathscr{M}_{p+1}\left(R\left(x, x_{0}\right)\right) \rightarrow \mathscr{M}_{p}\left(R\left(x, x_{0}\right)\right)$ induces zero on K-groups. Let $Z^{\prime} \neq \phi$ be a divisor in $\operatorname{Sp} R\left(x, x_{0}\right)$ of equation $t^{\prime}=0$. It suffices to show that the functor $\mathscr{M}_{p}\left(Z^{\prime}\right) \rightarrow \mathscr{M}_{p}\left(R\left(x, x_{0}\right)\right)$ induces zero on K-groups. We may assume that X is affine, say $X=\operatorname{Sp} C$, and take t to be an element of C which localizes to t^{\prime}. The divisor Z on X with equation $t=0$ restricts to Z^{\prime} on $\operatorname{Sp} R\left(x, x_{0}\right)$,
hence x and x_{0} both belong to Z. One has $K_{*}\left(\mathscr{M}_{p}\left(Z^{\prime}\right)\right)=\lim K_{*}\left(\mathscr{M}_{p}\left(Z_{f g}\right)\right)$, where g runs over the elements of C which do not vanish at x_{0} and f runs over the elements of C which do not vanish at x. Therefore it suffices to show:
$(++)$ The functor $\mathscr{M}_{p}\left(Z_{f g}\right) \rightarrow \mathscr{M}_{p}\left(R\left(x, x_{0}\right)\right)$ induces zero on K-groups.
We denote by G the divisor cut on Z by the equation $g=0$, by F the divisor cut on Z by $f=0$. Without restriction we may assume that no irreducible component of Z is contained in F or G (otherwise take Z to be the original Z minus the components contained either in F or G), so that F and G are proper divisors in Z. By the same argument of Lemma (2.9) we have a diagram
(d)

where (i) $\left.u\right|_{z}: Z \rightarrow A^{r}$ is finite, (ii) u is smooth at x, (iii) $u\left(x_{0}\right) \notin u(G)$ and (iv) $u(x) \notin u(F)$. Now take ϕ to be a function in A^{r} vanishing along $u(F)$ but not vanishing at $u(x)$, take γ to be a function vanishing along $u(G)$ but not vanishing at $u\left(x_{0}\right)$. Localizing diagram (d) at $\phi \gamma$ we have

To prove $\left(++\right.$) we replace $Z_{f g}$ by $Z_{\phi \gamma}$; we may do this because $Z_{\phi \gamma} \hookrightarrow Z_{f g}$ and $\phi(x) \neq 0, \gamma\left(x_{0}\right) \neq 0$. For any $Z_{\phi \gamma}$-module M we have an exact sequence of $X_{\phi \gamma}$ modules

$$
\begin{equation*}
0 \rightarrow \text { Kernel } \rightarrow a_{\phi \gamma}^{*} M \rightarrow M \rightarrow 0 \tag{s}
\end{equation*}
$$

Returning for a moment to diagram (d) we recall that by the same argument as in [5, p. 50] there is a function h in C, not vanishing at x, such that (i) X_{h}^{+}is flat over Z and (ii) the ideal I_{h} of $\left(Z \cap X_{h}^{+}\right)$in X_{h}^{+}is principal. Localizing sequence (s) at h we have

$$
0 \rightarrow I_{h} \otimes_{Z} M \rightarrow\left(a_{\phi \gamma}^{*} M\right)_{h} \rightarrow M_{h} \rightarrow 0
$$

which is now an exact sequence of exact functors from $\mathscr{M}_{p}\left(Z_{\phi \gamma}\right)$ to $\mathscr{M}_{p}\left(X_{\phi \gamma h}\right)$. We conclude as in [5].

5. Another interpretation of $C H^{i}\left(X, x_{0}\right)$

From (1.4) and (1.10) it follows that

$$
\begin{gather*}
S K_{i}(X)=\operatorname{Ker}\left(K_{i} X \rightarrow H^{0}\left(X, \mathscr{K}_{i X}\right)\right) \tag{5.1}\\
S^{2} K_{i-1}(X)=\operatorname{Ker}\left(S K_{i-1}(X) \rightarrow H^{1}\left(X, \mathscr{K}_{i X}\right)\right) \tag{5.2}
\end{gather*}
$$

The groups $S^{j} K_{i}\left(X, x_{0}\right), j=1,2$, have a similar description. From (3.7), using (3.8), we find the top row in

By chase, one has
(5.4) $0 \rightarrow S K_{i} X \rightarrow K_{i} X \rightarrow H^{0}\left(X, \mathscr{K}_{i X}\right) \rightarrow S K_{i-1}\left(X, x_{0}\right) \rightarrow S^{2} K_{i-1}(X) \rightarrow 0$.

When $i=1$, the sequence splits because of the following result.
Lemma. $\quad K_{1} X \rightarrow H^{0}\left(X, \mathscr{K}_{1 X}\right)$ is surjective.
Proof. If X is projective or affine the result is clear, since $\mathscr{K}_{1 X}=\mathcal{O}_{X}^{*}$. A proof for the general case when X is quasi-projective can be given as follows. Consider the diagram

where $B=H^{0}\left(X, \mathcal{O}_{X}\right)$. Since Z is affine, $K_{1} Z=R^{*} \oplus S K_{1} Z$ and clearly $R^{*}=H^{0}\left(X, \mathcal{O}_{X}^{*}\right)$. By functoriality, $a^{*} K_{1} Z \hookrightarrow i^{*} K_{1} X$ in $K_{1} X_{x_{0}}$, hence

$$
a^{*}\left(H^{0}\left(X, \mathcal{O}_{X}^{*}\right)\right) \hookrightarrow i^{*} K_{1} X
$$

A look at (5.3) completes the proof.
(5.5) Proposition. $\quad S K_{0}\left(X, x_{0}\right) \simeq S^{2} K_{0} X$.

Then one has isomorphisms of the graded groups

$$
E_{\infty}^{i+1,-i-1}(X) \simeq G^{i+1} K_{0} X \simeq G^{i} K_{0}\left(X, x_{0}\right) \simeq E_{\infty}^{* i,-i}(X), \quad i \geq 1
$$

Our interpretation is:
(5.6) Theorem. (a) $C H^{2}\left(X, x_{0}\right) \simeq G^{2} K_{0} X$.
(b) if $j>2$ then $\mathrm{CH}^{j}\left(X, x_{0}\right) \simeq G^{j} K_{0} X$ mod torsion.

Proof. (a) From the spectral sequence E^{*} (cf. (2.3)), we have

$$
E_{2}^{* 1,-1}=E_{\infty}^{* 1,-1}=G^{1} K_{0}\left(X, x_{0}\right)=G^{2} K_{0} X
$$

moreover

$$
E_{2}^{* 1,-1}=H^{1}\left(X, \mathscr{K}_{1}\left(X, x_{0}\right)\right) \simeq H^{2}\left(X, \mathscr{K}_{2 X}\right) \simeq C H^{2}\left(X, x_{0}\right) .
$$

(b) Recall the isomorphism $C H^{j}\left(X, x_{0}\right) \simeq E_{2}^{* j-1,-j+1}=E_{2}^{j,-j}$. From the spectral sequence there is a surjective morphism $\sigma: E_{2}^{j,-j} \rightarrow E_{\infty}^{j,-j}$. We show that σ is injective modulo torsion. Let $a^{\prime}=\sum m_{i} z_{i}, z_{i} \in X_{j}^{*}$, represent an element a in $C H^{j}\left(X, x_{0}\right)$ such that $\sigma(a)=0$. By the construction of σ we know that $\sigma(a)$ is represented in $E_{\infty}^{j,-j}=G^{j} K_{0} X$ by $\sum m_{i} \gamma\left(z_{i}\right)$, where $\gamma\left(z_{i}\right)=$ class $\left(\mathcal{O}_{z_{i}}\right)$ in $K_{0} X$. Since $\sigma(a)=0, \sum m_{i} \gamma\left(z_{i}\right)$ is contained in $S^{j+1} K_{0} X$. In other words

$$
\begin{equation*}
\sum m_{i} \gamma\left(z_{i}\right)=\sum n_{s} \gamma\left(w_{s}\right) \quad \text { in } K_{0} X, \tag{+}
\end{equation*}
$$

where w_{s} belongs to $X_{j+t}^{*}, t>0$. This equality holds in $S^{j} K_{0} X$, hence it holds in $S^{j-1} K_{0}\left(X, x_{0}\right)$ by (5.5). Therefore $(+)$ is true in $K_{0}\left(X, x_{0}\right)$ also.

From the definition of $K_{0}\left(X, x_{0}\right)$ it follows that there is a closed whscheme S of X, S not necessarily irreducible, so that (i) $x_{0} \notin S$, (ii) z_{i}, w_{s}, are points of S and (iii) equation $(+)$ holds in $K_{0}^{\prime} S$. At this point we need a basic result from [1]. Let $C H(S)$ be the group $A(S)$ in [1]; $\mathrm{CH}(S)$ is the Chow covariant group graded by dimension. Then there is an isomorphism
$(++) \quad \tau: K_{0}^{\prime} S \simeq C H(S) \bmod$ torsion
with the property that if $t=\gamma(T)$ then

$$
\tau(t)=\text { class }(T)+\text { terms of lower degree. }
$$

Applying τ to equation $(+)$ one gets

$$
\text { class }\left(\Sigma m_{j} z_{j}\right)=\text { terms in lower degree } \bmod \text { torsion }
$$

hence class $\left(\Sigma m_{j} z_{j}\right)=0$ in $\mathrm{CH}(S)_{Q}$. From the definition of $\mathrm{CH}(S)$ we have a natural map $\mathrm{CH}(\mathrm{S}) \rightarrow \mathrm{CH}\left(X, x_{0}\right)$, hence the above equality holds also in $C H\left(X, x_{0}\right)_{Q}$.
(5.7) Remark. Since $K_{1}^{\prime} X \rightarrow H^{0}\left(X, \mathscr{K}_{1 X}^{\prime}\right)$ is not surjective in general, (5.6) does not hold for the group $K_{0}^{\prime} X$.

6. Final remarks

(6.1) If X is non-singular there are two filtrations for the groups $K_{n} X$, the topological filtration used in [5] and the one we introduced in (1.4). We want to show that the two filtrations coincide.

In Section 1 we produced a spectral sequence with the property that $E_{\infty}^{p-q, q}=G^{p-q} K_{-q} X$, the graded groups associated with the filtration (1.4).

Our proof was inspired by [5], where the same result is proved for the topological filtration. In a standard way one finds a natural map from our spectral sequence to Quillen's one. In both cases $E_{2}^{p q}=H^{p}\left(X, \mathscr{K}_{-q, X}\right)$ (cf. (1.10) and [5]), hence the two spectral sequences coincide from the $E_{2}^{p q}$ terms on. Consequently the two filtrations on $K_{n} X$ coincide.
(6.2) We now assume that X contains finitely many singular points x_{1}, \ldots, x_{n}. By analogy to what is done above, one can define groups $C H^{i}\left(X, x_{1}, \ldots, x_{n}\right)$, abbreviated $C H^{i}\left(X, x\right.$.). Similarly sheaves $\mathscr{K}_{n}(X, x$.) can be introduced. Everything we proved in Sections 1, 2, 3 above can be proved again by the same arguments properly adapted. The results in Section 4 do not extend. Let X denote the theta divisor inside the Jacobian variety of a general curve of genus 4; algebraic geometers know that X is a threefold with exactly two singular points. We have computed $H^{2}\left(X, K_{1 X}\right)=\mathbf{Z}$, hence $\mathscr{K}_{1}\left(X_{x}\right)$ is not acyclic. Details will appear elsewhere.

The results in Section 5 do not depend on Section 4, in particular Theorem (0.5) holds for the case of X with finitely many singular points.

References

1. P. Baum, W. Fulton and R. Macpherson, Riemann-Roch for singular varieties, Publ. Math. I.H.E.S., France, vol. 45 (1975), pp. 101-145.
2. W. Fulton, Rational equivalence on singular varieties, Publ. Math. I.H.E.S., France, vol. 45 (1975), pp. 146-167.
3. D. Grayson, Higher K-theory II, Lecture Notes in Math., no. 551, Springer-Verlag, New York, 1976, pp. 217-240.
4. C. Pedrini, Vector bundles over singular affine surfaces, Bollettino Unione Matematica Italiana (5), vol. 17-B (1980), pp. 1246-1255.
5. D. Quillen, Higher algebraic K-theory I, Lecture Notes in Math., no. 341, Springer-Verlag, New York, 1973, pp. 85-147.
6. P. Berthelot, A. Grothendieck, L. Illusie et al., Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Math., no. 225, Springer-Verlag, 1971.

Università di Torino
Torino, Italy

[^0]: Received January 15, 1980.
 ${ }^{1}$ Member of G.N.S.A.G.A. of C.N.R., Italia.

