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1. Introduction

BP is the Brown-Peterson spectrum for a fixed prime p; its homotopy is

BP, - Zcp)[Vl, v2,...].
By convention, Vo p. BP,X ,(BP/X) is a comodule over BP,BP -BP,[t, t2,...]. Let be the category of all BP,BP-comodules and comodule
maps. The only prime ideals of BP, which are in are

Io (0), 11 (p), I,--- (p,/)1, Un-1),
and

]oo U ]n-" (, /)1, /)2, "’’)"

The Hurewicz homomorphism gives a right unit lR: BP,- BP,BP and
rIg(V,) =-- v, modulo I, BP, BP. (N.B. rlg(V)= v + ptl 4: v.)
We say that a BP,-module M is -injective if Extp, (A, M)= 0 for all
> 0 and all comodules A in . We define the 5-weak dimension of M,

w.dim,, M, to be less than n + 1 if TorP* (A, M) 0 for all j > n and all
comodules A in. IfM, itself, is a connected comodule in,w.dim M is
the same as the BP,-projective dimension ofM [8]. Our main algebraic result
can be considered to be the dual of Landweber’s exact functor theorem [8].

THEOREM 1.1. For a BP,-module M to be o-injective, it suffices that it
satisfy two conditions"

(i)
(ii)

For each integer n > O, Hom/p, (BP,/I,, M) is v,-divisible.
w.dim M < .

Miller, Ravenel, and Wilson [13] develop a "chromatic resolution" of
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It is defined by short exact sequences of BP, BP-comodules

f
0 N M ---} Ns-1 --*0

where NO BP,, MS= v- 1Ns, and f is the localization homomorphism.

COROLLARY 1.2. The Miller-Wilson chromatic resolution is a -injective
resolution of BP, in that each M is -injective.

We prove this theorem and its corollary in Section 3. We employ the chro-
matic resolution to study spectra which are local for the direct sum homology
theory o<_,vXBP,( ). Our discussion of localization with respect to BP-
related periodic homology theories comes in the final section, Section 4. Before
this discussion--and even before our study of 0-injective modules--we can
state and prove (in Section 2) our main localization result. For spectra X and
Y, [X; Y], denotes the group of stable homotopy classes of maps from X to Y.
Let MZ(p) be the Ztp)-Moore spectrum and YZ(p)= Y/ MZ(p). YZtp) is the
BP,-localization of Y if is connective [1, Section III-6, III-14;2].

THEOREM 1.3. Let Y be a connective spectrum such that the projective dimen-
sion of BP, Y over BP, is finite. IfX is a spectrum such that v IBP,X Ofor
all n > 0, then [X; YZtp)], O.

The mod p Eilenberg-MacLane spectrum HFp has

v BP,HFp v; BP,BP/(rIR(P), qg(V), ...)-- V; 1BP, BP/(p, Vl, ...) O.

If Y is a finite spectrum, w.dime BP, Y < o [4].

COROLLARY 1.4. (Margolis [11], Lin [10].) If Y is a finite complex then
[HFp; r], 0. B

Margolis and Lin each prove the stronger result that [HFp; Y], 0 for any
CW complex Y with finite skeleta. See Question 4.3.
Our work is motivated by Doug Ravenel’s ideas on localization with respect

to BP-related periodic homologies. We are grateful to Ravenel for making his
typescript [14] available.

2. Proof of Theorem 1.3

Throughout this section, let A (R) B mean A (R)Bp, B. A BP,-module B is
M’-flat (w.dim B=0)if TorP, (A, B)-0 for all j >0 and all
BP, BP-comodules A.

LEMMA 2.1. Let B be a -flat BP,-module. Suppose A is a BP,-module
such that vA O for all s <_ n. Then Extp, (A, B)= Ofor all s <_ n.
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Proof. We follow Miller-Ravenel-Wilson [13] and define BP,BP-comodules
N, M s _> 0: NO BP*, M v 1N, and Ns+ is the cokernel of the localiza-
tion homomorphism N v-aN= M. The sequence

(2.2) 0 N M N+ 0

is short exact and is in Mo. Since B is -flat, (2.2) induces the following short
exact sequence:

OB(R)NB(R)MB(R)N+ 0.(2.3)
Ifs <n,

Ext,*p, (A, B (R) M) - Extp, (A, v-I(B @ N))- Ext_ p, (v-lA, v- I(B ( N))
0 (since v- 1A 0).

By the exactness of (2.3),
Extp, (A, B) Extp, (A, B (R) N) nomp, (A, B (R) Ss)

Homp, (A, B (R) M) 0 for s < n.

COROLLARY 2.4. Let B be a BP,-module with w.dim B < . Suppose A is
a BP,-module such that v[ aA 0 for all s > O, then Extp, (A, B) 0.

Proof Induct over the -weak dimension of B using Lemma 2.1 at the
initial stage.

Let BP BP/S, the cofiber of the inclusion of the sphere spectrum S into BP.
Let BP= BP /x.../x BP, s times. BP, BP is a free BP,-module and

BP,(BP / Y) - BP,(BP) (R) BP, Y.

Hence the -weak dimensions of BP,(BPs/ Y) and BP, Y are identical. So
we have:

COROLLARY 2.5. Let Y be a spectrum with w.dime BP, Y < . Suppose X
is a spectrum such that v 1Bp, X 0 for all n > O. Then

Extp, (BP, X, BP,(BP / Y)) 0 for all s >_ O. m

Geometric BP,-resolutions exist [4]" for any spectrum X, there are
cofibrations

fs

Z-1 Xs+ -*AX -X+ A
with (i) Xo X, (ii) BP,(f)=_ O, and (iii) BP, A BP,-free. The hypotheses,
then, of Theorem III.13.6, p. 285 of [1] are satisfied. There is a universal
coefficient spectral sequence

Extp, (BP, X, BP,(BP/ Y))=:,IX; BP/xBP/x Y],.
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Thus for X and Y as in Corollary 2.5, [X; BP/x BPs/x Y], 0 for all s __> 0. We
form an Adams resolution of Y by the cofibrations

ds+ es
BP+ /x Y BP /x Y - BP / BP / Y BP+ / Y.

The inclusion of the sphere spectrum into BP induces e. Since

[X; BP/ BP/x Y], 0,

d+ 1, "[X; B/+ 1/ Y]---} IX; BP/ Y] is an isomorphism and

[X; Y], lim [X; BP/x Y],.

THEOREM 2.6. Let Y be a p-local, connective spectrum such that the projective
dimension of BP, Y over BP, is finite. Then r is (/o <_, vBP),-local" ifX is
any spectrum with v BP, X 0 for all n > O, then IX; Y] 0.

Proof. The hypotheses that Y be p-local and connective ensure that

li._m_m IX; BP/x r], 0.

See Theorem III.15.1, pp. 316 ff of [1]. 1

Remark 2.7. A reading of the proof of Theorem III.13.6 of [1] reveals that if

Extp, (BP, X, BP,) O, 0 < j < n,

then any map g" X BP factors as a composite

fo fn g’

" X X -’" -X Xo+ - BP.

Since each BP,(f) =_ O, g has Adams-Novikov (BP) filtration at least n + 1.

3. Injective BP, BP-comodules

Recall that is the category of BP, BP-comodules. Let ,#o be the sub-
category of ’ of finitely presented comodules. In this section, we study
certain BP,-module properties related to comodules in ’ or 0. Ac-
cordingly, we adopt the conventions that Ext (A, B) and Tor (A, B) mean
Extp, (A, B)and TorP* (A, B), respectively, throughout this section.
Any such study of BP,-module properties of BP,BP-comodules properly

begins with the Landweber filtration theorem [6], [7] which states that any
comodule A in ,’o has a finite filtration whose associated subquotients are
stably isomorphic to cyclic comodules of the form BP,/In, 0 <_ n < . Here
the In are the prime, BP, BP-invariant ideals of BP, defined by

Io --(0), I (p), In-- (p, U 1, /)n-1)"
We also define I In (P, v 1, v 2, ...). The effect of the filtration theorem
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extends to M’ in that any comodule A of is a direct limit of comodules in

’o [12, Lemma 2.11]. It is meet and right to list some homological properties
of the cyclic comodules BP,/I,,, 0 < n < De. Throughout this list (3.1-3.6), M
will stand for an arbitrary BP,-module.

(3.1) For 0 < s < De, there are exact sequences in N’o"

0 BP,/I BP,/I - BP*/I+ --, O.

(3.2) As a BP,-module, the projective dimension of BP,/I is s. Hence

Ext’ (BP,/I, M)= 0 Tor (BP,/I, M) for > s.

(3.3) The sequence (3.1)induces the exact sequence
Vs#

Ext (BP,/Is, M) Ext (BP,/Is, M)
-, Ext’+ (BP,/I+ , M)- Ext’+x (BP,/I, M) .".

(3.4) By an induction using the sequence 3.3 (with s t), we may identity
M/I,M Ext" (BP,/I,, M).

(3.5) Define,M={xeM’I,x=0}.SoM=oMM2M."gives
a decreasing filtration of M by BP,-submodules. We may identify
,M - Ext (BP,/I,, M).

(3.6) There is a Koszul duality isomorphism

Ext (BP,/I,, M) Tor,_ (BP,/I,, M).
See pages 150-153 and 159 (Exercise 7)of [3].

A BP,-module M has Mgo-injective dimension _< n if Ext (A, M) 0 for all
j>n and all comodules A in Mo; we write inj dimoM_<n. If
inj dim M 0, we say M is 9o-injective. 9-injectivity is defined si-
milarly. Dually, M has 9-weak dimension <_ n (w.dim M _< n) provided
that Torj (A, M)= 0 for all j > n and all comodules A in ’9.
LEMMA 3.7. Let M be a BP,-module. Then Inj dim M <_ n if and only if

for each s > O, Ext" (BP,/Is, M) is v-divisible.

Proof By (3.2), Ext"+x (BP,/I, M)= 0 for 0 <_ s <_ n. Use (3.3)(t n)to
begin an induction on s > n to prove that if Ext" (BP,/I, M) is v-divisible
then

Ext"+1 (BP,/I+ , M) O.

If Ext"+ (BP,/I, M) 0 for all s > 0, then (3.3) shows how to prove that

Ext’(BP,/Is, M)=0 for allt>n+l,s>0.

By the Landweber filtration theorem, this implies inj dim M < n. The con-
verse should now be obvious.
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COROLLARY 3.8. Let M be a BP,-module. M is Mo-injective if and only if
for each s > O, M is vs-divisible.

Proof. (3.5)and (3.7).

COROLLARY 3.9. Let M be a BP,-module with inj dimeo M <_ n. Then
M/I,M is v,-divisible.

Proof. (3.4)and (3.7).

PROPOSITION 3.10. Let M be a connected BP,-module. Ifinj dimeeo M _< n,
then M is a Q vector space and M is No-injective. (It willjbllowfrom Theorem
3.14 that M is -injective.)

Proof. By (3.9), M/I,M is v.-divisible. For n > 0, the connectivity of M
allows this only if M/I,M 0. By a downward induction using (3.3, 3.4)
(t s), we see that MilkM is Vk-divisible (and hence 0) for k n, n 1, 1.
Thus M M/IoM is p-divisible. When s- 1, (3.3) has the form

Vs

Ext-1 (BP,/Is, M) Ext-1 (BP,/I, M) Ext (BP,/I+ 1, M) O.

Each Ext-1 (BP,/I, M) is dominated by the connected
1M Ext (BP,/I1, M). By a second downward induction,

module

Ext-1 (BP,/Is, M)
is v-divisible (and hence 0) for s n + 1, n, 1. Hence
M {x M" px 0} 0; M is a Q-vector space. Since M 1M 0, s > 0,
M is o-injective by Corollary 3.8.

COROLLARY 3.11. Let M 0 be a BP,-module with inj dimeo M <_ n. Then
tM Ofors 0, 1, n.there is no integer such that v

M 0, then v,(M/I,M) 0 mean-Proof M/I,M is v,-divisible (3.9). If v,
ing that M/I,M 0. As in the proof of (3.10), this begins a downward induc-
tion concluding that M/Io M M is p-divisible. Since ffM 0, we reach the
contradiction that M 0.

PROPOSITION 3.12. Let M be a Mo-injective BPo-injective BP,-module.
Then w.dim.e M <__ n if and only if,+ M O.

Proof By the Landweber filtration theorem as extended in [12],
w.dim M _< n provided that Tor (BP,/I, M)= 0 for j > n and all s. By
Koszul duality (3.6), Torj(BP,/I, M) - Ext- (BP,/I, M). Since M is
N’o-injective, this latter group is 0 for j 4: s. So the obstructions to

w.dim M _< n are precisely the modules Ext (BP,/Is, M)= M ,+ M,
s>_n+ l. 1
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The radical, x/J, of an ideal J in the ring BP, is the ideal

x/J {x BP,: x J, some s > 0}.

If J is BP, BP-invariant, Landweber [9] has proved that x/J I, for some
n =0, 1, 2, .
LEMMA 3.13. For a BP,-module M to be -injective, it is necessary and

sufficient for M to:

(i) be Lo-injective;
(ii) have Ext (BP,/J, M) Ofor any BP, BP-invariant ideal J in BP, with

x/J

Proof Necessity is obvious. To prove sufficiency, we must show that given
any inclusion of comodules i: A C in , i: Hom (C, M) Hom (A, M)
is onto. Fixfe Hom (A, M). Let cg be the class of extensions offof the follow-
ing form: an element of cg is a BP,-homomorphism 9: BM where
A c B C as sub-comodules in and 91A f. Partially order cg by domain
inclusion: given 9i: Bi M, 1, 2, 91 < 9 2 if and only if B B2 as como-
dules in and .q2 IB1 --01. By a classical Zorn’s lemma argument, cg has a
maximal element g’: B’ M. Suppose B’ @ C. We can then choose 0 @ c +
B’ C/B’ which is primitive. By Theorems 1 and 2 of [9], we may assume that

J {2 e BP,: c B’}

either is It, < , or has x/J I. Let B"= {b + 2c: b e B’, 2 e BP,}. Then
A B’ c B" C as comodules in 0’. So, the sequence

Hom (B", M) Hom (B’, M)- Ext (B"/B’, M)

is exact. Ext (B"/B’, M) 0 since B"/B’ is stably isomorphic to BP,/J which
either is in o or has x/J I. Thus the homomorphism 9’ extends to

9": B" M, B’ B". This contradicts the maximality of 9’ in . Thus B’ C,
and f extends to 9: C --, M as required.

THEOREM 3.14. Let M be a BP,-module so that

(i) for each n >_ 0,, M is v,-divisible, and
(ii) w.dim M < o.

Then M is -injective.

Proof Corollaries 2.4 and 3.8, Lemma 3.13.

The Landweber filtration theorem (as extended) leads to proofs of the follow-
ing dual statements.
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LEMMA 3.15. Let M be a BP,-module.

(i) w.dime,, v-aM _< {n, w.dime M}.
(ii) inj dime, v,-aM < {n, inj dim M}.

LEMMA 3.16. Let M be a BP,-module. Then v2 a(,M)= ,(v2 aM).

Proof A proof follows from a five-lemma induction using the exact se-
quence (3.3)(t 0)and (3.5), 0 - t+ aM tM - M, and the fact that v;- a( is
an exact functor. The induction begins with the observation that o M M. I

Recall the short exact sequences (2.2) which describe the Miller-Ravenel-
Wilson "chromatic resolution" of BP," 0 N M Ns+ O, No BP*,
M v- Ns.

COROLLARY 3.17. The comodules M in the Miller-Ravenel-Wilson chromatic
resolution (2.2) are -injective. The chromatic resolution is a ,3-injective
resolution of BP,.

Proof The corollary follows from Theorem 3.14 once one applies Proposi-
tion 3.12 and Lemma 3.16 to (2.2) to show that w.dim M s and that ,(ms)
is v,-divisible. I

For a BP,-module M, let (,)M {x e M" I,] x 0, some s > 0}. Note that
M (,)M and that,M 0 if and only if ,)M 0. In the special case that M

is a comodule in 2’, , + a)M can be characterized as the kernel of the localiza-
tion M v- aM [5, Theorem 0.1]. Observe that the proof of Proposition 3.12
actually shows that if w.dime M _< n, then ,+ M ,+ a)M 0. The converse
holds if M is o-injective.

LEMMA 3.18. Let M be a BP,-module which is o-injective. Thenfor each
n >_ O, ,)M is v,-divisible.

Proof It will suffice to display ,) M as a direct limit of v,-divisible modules.
Consider the collection of modules Ext (BP,/J, M) where J is any finitely-
presented, BP, BP-invariant ideal of BP, such that x/J I,. Inclusion J J’
of two such ideals induces BP,/J BP,/J’ which induces, in turn,
Ext (BP,/J’, M) Ext (BP,/J, M). This forms a direct system whose limit
is ,)M. For each such ideal J, there is some high power v, of v, such that
K J + (v,]) is a BP,-ideal belonging to o. Since M is o-injective,
Ext (BP,/K, M)= 0. Hence, v,-multiplication induces the exact sequence

Ext (BP,/J, M) Ext (BP,/J, M) - Ext (BP,/K, M) O.

Thus the Ext (BP,/J, M) are v,-divisible as required.
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COROLLARY 3.19. For any .o-injecti/)e BP,-module M, there is a short
exact sequence

0+MM
This sequence leads to the following generalization of Theorem 3.14.

PROPOSITION 3.20. Le M be a Mo-injective BP,-module such that both

li ,M=,M=0 and li.M=0.
Then M is -injective.

Proof Let D be a BP,-module like BP,/J in Lemma 3.13 such that
v; D 0 for all n 0. By Corollary 3.19,

Ext (D, t,+M) Ext (D, t,M) li Ext (D, tM).

Recall that a theorem of Roos [16] gives two spectral sequences

Ei=]im Ext (D, ,,M) and Ei=Ext (D, li
which converge to the same module. By our hypotheses on M, Eo 0
for all i. E 0 for j > 1 since the inverse system {t,M} is indexed by the
natural numbers. Thus

0 E’i li Ext (D, t,M) Ext (D, toM)

Ext (D, M) for all j.

Apply Lemma 3.13.

4. Localization and periodic spectra related to BP

Fix a spectrum E. A second spectrum X is E,-acyclic if E,X 0. A spec-
trum Y is E,-local if [X; Y] 0 for each E,-acyclic spectrum X. By Bousfield
[2], there is a natural map r/" X ---, Xt,: with X: being E,-local and E,(r/) an
isomorphism. We call q" X Xe the E,-localization of X.
The Brown-Peterson spectrum BP has been a center of our attention. Alge-

braically, we can localize the coefficient ring BP, zt,BP to form the ring
v2 BP, - Z(p)[V-a, /)’)1, /)2, ...]. There are maps 22pn- 2 BP BP inducing
v,-multiplication in homotopy. A mapping telescope using these maps realizes
v2 xBP, as the homotopy of a spectrum which we call v aBP. Localization
with respect to v2 BP, seriously alters spectra. In particular, the v BP,-local-
ization of BP is v BP. If we take all the spectra v2 BP together, nice spectra
are unchanged. The direct sum homology theory O)o_,v2XBP,( is repre-
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sented by the wedge spectrum W /o <_. v 1BP. Theorem 2.6 tells us that if Y
is connective and p-local and if BP, Y has finite BP,-projective dimension, then
Y is W,-local. Hence all finite complexes, BP, each vIBP, and
W /o<_, v BP, itself, are W,-local.

In addition to the homology theories v BP,( ), there are two other impor-
tant families of periodic homology theories associated to BP:

(i) E(n),( with coefficients E(n), Ztp)[V,,..., v,, v2’], represented by
the spectrum E(n);

(ii) the Morava K-theories K(n), - Fv[v., v21], represented by the spec-
trum K(n).

Remark 4.1. The meaning of W,-acyclic spectrum is the same regardless of
whether W stands for /o<_, v 1BP, /o<_, E(n), or /0_<, K(n).

Proofsketch. Recall there are homology theories P(n),( )with coefficients
P(n), - BP,/I,. From [9, Corollary 4.12], we know that v P(n),X 0 if and
only if K(n),X 0. Assume that K(m),X 0 for all m, 0 < m < n. We want to
show that v- 1p(m), X 0 for all m, 0 _< m < n by a downward induction on m
starting at m n. With the exact sequence

Um

v; ’P(m),X v; 1p(m), X --, v; 1p(m + 1), X ...,
the inductive hypotheses v-2’P(m+ 1),X =0 implies that v2’P(m),X
v2v2,P(m),X which is 0. Consequently, we obtain v21BP,X
v,- P(0), X 0 which is equivalent to E(n), X O. I

References [5] and [9] also show that v2 ’BP,X 0 (or E(n),X 0)implies
that vj- BP, X 0 (or E(j), X 0) for allj < n. Thus Lemma 2.1 and Remark
2.7 imply"

PROPOSITION 4.2. If E(n), X O, then every element of BP*X has Adams-
Novikov (BP) filtration at least n + 1" any 9" X BP factors as

with BP,(f)= O, 0 < N n.

Recall that our corollary is not optimal" [HFp; Y], 0 for spectra Y (e.g.
CW complexes with finite skeleta)which we do not know to be W,-local. An
answer to the following question of Ravenel seems to require a deep under-
standing of the unstable properties of BP.

Question 4.3 [14; 4.13]. If v2 BP, X 0 for every n > 0 and if Y is a CW
complex, must [X; YZtp], 0?
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An algebraic analog of the question leads to the following simple examples of
BP, BP-comodules"

A= BP,/I.
O<_n

The representation of

and B E" BP,/I. IJ E" BP,/I..
O<n O<n

Z/p BP,/I lim BP,/I.

yields a non-zero element of Exte, (BP,/I(R),A)#O. Let D be any
BP,-module with v-1D 0 for all n > 0 (e.g. D BP,/I (R)). Then

Extp, (D, B) I-I Extp, (D, Z" BP,/I,)= 0 (Corollary 2.4).
By Ravenel and Wilson’s solution of the Conner-Floyd conjecture [15], B is a
subcomodule of BP, K where K is the CW complex /0_<, K(Z/p, n) (p odd).
Our intuition is that A cannot be so represented as a subcomodule of the BP
homology of an (unstable) CW complex. We are led to seek constraints on the
annihilator ideals of elements in BP, X when X is a complex.

Question 4.4. Let X be a CW complex and let 0 # y BP,X. Let
J {2 BP," 2y 0}. By [9], x/J Ira, 0 <_ m <_ . Must m always be finite ?
Better still, must x/J Ira, 0 _< m < n?
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