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1. Introduction

A standard source for generalized n-manifolds (finite dimensional ANR’s X
such that H.(X, X pt; Z) - H.(E", E" pt; Z)) is decomposition spaces of
cell-like but not necessarily cellular decompositions of n-manifolds. The gener-
alized 3-manifolds that contain no 2-disk constructed by Bing-Borsuk [3] arise
as decompositions of Sa whose nondegenerate elements form a null sequence of
noncellular arcs. The improvements produced by S. Singh [14, n 3], and D.
Wright [18, n _> 4], in which generalized n-manifolds are constructed contain-
ing no proper ANR’s of dimension greater than or equal to 2, also result from
decompositions of S" whose nondegenerate elements form a null sequence of
noncellular arcs. Cannon-Daverman [5] constructed cell-like totally noncellu-
lar decompositions of n-manifolds and used these to build totally wild flows.
We add to this list of generalized manifolds having properties not satisfied by
honest manifolds and produce a generalized n-manifold X (n >_ 3)such that,
for each map F: B2 -- X where F IS is an embedding, F(B2) has nonempty
interior in X. An interesting feature of these examples is that, while they arise
from totally noncellular decompositions similar to those of [5], they exhibit
properties similar to those exhibited in [3], [14], [15] and [18]. Clearly they
contain no 2-disks nor ANR’s of dimension strictly between 1 and n.

Prior to the description of these examples, this paper lays a broad theoretical
groundwork for dealing with defining sequences. It begins by setting forth an
axiom base for a general definition of defining sequence for an upper semicon-
tinuous decomposition, more general than the ad hoc definition given in [5],
adds another axiom for working with cell-like decompositions, introduces the
notion of shrinkable defining sequences, and treats the naturality of each. To
summarize the remaining contents of the paper, the examples themselves then
are constructed in Section 5, their pathology is studied in Section 6, and the
result that, with extra care about their construction, their product with E is a
manifold is established in Section 7.

Spaces are always assumed to be metrizable and are usually assumed to be
locally compact. The general development of defining sequences for decompo-
sitions and the specialization to those yielding cell-like decompositions are
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valid for arbitrary metric spaces while the discussion of shrinkable defining
sequences is limited to locally compact spaces.

2. Defining sequences and decompositions

The cell-like decompositions of manifolds mentioned in the literature, which
often happen to be closed-0-dimensional ones (meaning that in the decomposi-
tion space the closure of the image of the nondegenerate elements is 0-
dimensional), frequently are described by defining sequences. In this section we
generalize this standard notion of defining sequence. Although one can find
more restrictive generalizations elsewhere, such as those given in [5] and [12],
and for technical reasons aimed at producing specific kinds of decompositions
one might wish to vary our definition somewhat, ours serves as an all-
encompassing definition, because every upper semicontinuous decomposition
of a locally compact metric space arises from such a defining sequence
(Theorem 2.4).

Let X be a space and ///a collection of subsets of X. For an arbitrary subset
A of X define its star in /as

st(A,/a) A ({ lVt A + })
and, recursively for any integer k >_ 1, define its kth-star in //as

st(A, /)= st(st- ’(A, g), g).

When A {x}, x X, we write s?({x}, )simply as st(x, g).
Now suppose X is a (locally) compact metric space. A defining sequence (in

X) is a sequence 9 {, g, ...} satisfying the following axioms:

AXIOM 1. For each the set ///i is a (locally) finite collection

{M(i, 1), M(i, 2),..., M(i, r(i))}
of compact subsets of X having nonempty, pairwise disjoint interiors.

AXIOM 2. For each and each x e X, st3(x, 4i+ 1) Int st2(x, /i).

The decomposition G ofX associated with a definin9 sequence 5 {/{ 1, ’ z,

...} is the relation prescribed by the rule: for any x X, G(x) is the subset ofX
consisting of all y X such that for every integer > O, y stZ(x, #i).

Such a relation G on X obviously is reflexive and symmetric. The next lemma
aids in showing that it is transitive.

LEMMA 2.1. Suppose {(1, /2," "’} is a defining sequence on X. For each
k > 0 and each x X,

st(x, //// + ,) st3(x, #).
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Proof Certainly each x’ st4(x, /{k+ 1)satisfies x’ st(x*, /k+ 1) for some
x* st3(x, /lk+ 1). By Axiom 2,

x* st3(x, k+) Int stZ(x, k).
Name M* e ///k+l for which x* M* st3(x, /{k+ 1). By Axiom 1, M* has
non-empty interior, and the local finiteness of//k yields a point x** M* such
that some M k contains x** in its interior. The uniqueness of such an M,
guaranteed by Axiom 1, indicates that M st(x**, lk). Thus, the fact that
x** M* c stZ(x, #k) implies M st2(x, #k), and the observation that
X’ st2(x**, //k+ 1) then implies

x’ st2(x**, k+ 1) st2(x**, /[) st(M, /g) st3(x,
LEMMA 2.2. The relation G associated with the defining sequence

{2, ...} is transitive.

Proofi Suppose y G(x) and z G(y). It follows that for all i>0
z st4(x, ///i+ 2). By Lemma 2.1 and Axiom 2,

Z St4(x, /i+ 2) St3(X, /i+ 1) st2(X, /i)"
Hence, z e G(x).

THEOREM 2.3. The decomposition G associated with a defining sequence
{, 2,...} is upper semicontinuous.

Proof To see this directly from the definition of upper semicontinuity,
consider a neighborhood U of some 9G, where 9= ist2(x,i).
Lemma 2.1 and the compactness of 9 imply the existence of an integer k > 0
such that st4(x, ) U. Now define V as

u U {M M st2(x, )= }.
Then, for each M satisfying M V , M st3(x, ), and

v
According to the definition of G, any g’ G intersecting V is contained in
 ta(v,

THEOREM 2.4. If G is an upper semicontinuous decomposition of the locally
compact metric space X, then G is the decomposition associated with some
defining sequence 5 {/{1, /{2, ...}.

Proof Let X/G denote the associated decomposition space and
n: X -, X/G the induced map. For the moment, assume that 9 {, ’, ...}
is a defining sequence in X/G for the trivial decomposition consisting of single
points; further, assume that each is a cover and that

Int (zr-l(Fr (A)))= 4) for each A .
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Let /k {n- I(A): A k}; it is an easy matter to verify that {/1, ’2,...} is
a defining sequence and that G is the associated decomposition.

It remains to produce the defining sequence 5. In particular, the inductive
construction given below produces ,1. Let q/be a locally finite open cover of
X/G satisfying:

(1) each element of ’ has compact closure and diameter less than l/k;
(2) for each U //, Int (n-l(Fr (U)))= b;
(3) for each y X/G,

St3(y, l)
_

St2(y,

_
1) where Y//= {" U e ’}.

If a first choice of does not satisfy condition (2), then perform the following
modification. Let U V(U): U ’} be an open cover obtained by shrinking

[9, p. 152]. For each U , choose a mapf: /3 [0, 1] withf(Fr (U))= 0
and f(V(U))= 1; for uncountably many t (0, 1), U’=f-((t, 1])has the
property that Int (n-(Fr (U’)))= b (n-a(t)is compact and, hence, second
countable). Modify the cover ’ by replacing each U q/by such a U’.

Let U 1, U ., U,, ...} be a well-ordering of the elements of q/. For each
define P, C1 (U, a<, Oa). Finally, let be the collection of those P’s
that are nonempty. The local finiteness of insures that n-l(Fr P,) is con-
tained in a finite subcollection of

{rt-a(Fr Ua)"/ < },

implying that t-l(Fr Us) is empty.

For those who feel that, in case X is a PL n-manifold, a defining sequence
{’ 1, ///z, ...} for a decomposition G on X should involve PL n-manifolds

M as the elements of i, see Appendix 2 for a proof that G has a defining
sequence of this type.

3. Defining sequences and cell-like decompositions

A sufficient condition that a decomposition G associated with a defining
sequence 9 {/1, Az, ...} be cell-like is that 5 satisfy the additional axiom:

AXIOM 3. For each and each x X there is aj with st3(x, /gj) contractible
in stZ(x,

Given any other defining sequence 9’ {/’, /t", ...} for G, for each and
each x X, there is a j with St3(x, //[) St3(x, ,////’i); in particular, it follows
that if Axiom 3 is satisfied for one defining sequence for G, then it is satisfied for
every defining sequence for G.

PROr’OSTION 3.1. For X an ANR, Axiom 3 is a necessary and sufficient
condition for the associated decomposition G to be cell-like.
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Proof Assume that G is cell-like and let x and > 1 be given. The element

G(x) st2(x, )_ Int (st2(x, li))
is contractible in Int (stZ(x, i!i)). Since an open subset ofX is an ANR, a given
contraction extends to a contraction of a neighborhood N of G(x). One can
complete the verification of Axiom3 by choosing j>i such that
8t3(x, (j) N.
The proof that Axiom 3 implies cell-like is elementary.

4. Shrinkable defining sequences

R. H. Bing [1] and others have introduced concepts of a decomposition being
shrinkable. No matter how it is defined, all such notions of shrinkability seem
equivalent in compact spaces; however, they may differ in locally compact
spaces. We find it convenient to say that a decomposition G of a locally com-
pact space X is shrinkable provided that for each compact subset C g X, each
locally finite G-saturated cover of X by relatively compact open sets, and
each open cover q/ of X, there is a homeomorphism h: X--, X such that
h(x) J C for x j st(C, tU), such that h(x) st(x, U) for x st(C, tU), and such
that for 9 G with 9 c C 4= b there is a U q/with h(g)

_
U. The following

axion provides a notion of shrinkability for a defining sequence
5e {///, /2, ...} for G.

AXIOM 4. For each compact subset C
_

X, for each i, and for each open
cover q/of X, there is a j and a homeomorphism h: X X such that h(x) J C
for x j st2(C, /l), such that h(x) stZ(x, h) for x st2(C, //), and such that
for M ’g with M C 4: 4) there is a U q/with h(M)

_
U.

The next result records the equivalence of Axiom 4 and shrinkability of the
associated decomposition for locally compact spaces.

PROPOSITION 4.1. Let 5 be a definin9 sequence for a decomposition G of a
locally compact metric space X. Then G is shrinkable if and only if5 satisfies
Axiom 4.

Proof First suppose that G is shrinkable. Let a compact subset C
_

X, an
integer i, and an open cover q/ofX be given. Let C’ be a G-saturated compact
set with st2(C, li)_ C’. Let be a G-saturated open cover of X with
st(x, /)

_
st2(x,/[[i) for each x X. The "shrinking" homeomorphism for G

chosen with respect to C’, q/, and is the necessary homeomorphism with the
existence ofj coming from the compactness of C’.

Conversely, suppose that 5e satisfies Axiom 4. Let a compact set C
_

X, a
locally finite G-saturated cover by relatively compact open sets, and an open
cover q/be given. Let " be an open cover of X with

{stZ(u, q/’): U
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refining . Let C’ be a compact set with st(C, )_ C’. Let be such that
st2(x, /i) - st(x, ) for x e C’. The homeomorphism ofAxiom 4 chosen with
respect to C’, i, and q/’ is the desired "shrinking" homeomorphism for G.

In a locally compact space which is also locally contractible, every shrink-
able decomposition is cell-like.

COROLLARY 4.2. Suppose that X is locally compact and locally contractible.
Then a definin9 sequence ofX that satisfies Axiom 4 also satisfies Axiom 3.
The argument is left to the reader.

5. Defining sequences for totally noncellular decompositions

In this section we describe a defining sequence 5e for a cell-like but totally
noncellular decomposition G of a closed connected, PL n-manifold T (n > 2).
Such sequences have also been described by Cannon-Daverman in [5], and we
make explicit use of their techniques, with modifications ultimately yielding
decomposition spaces having properties not possible with defining sequences
purely of the form they set forth. As in [5], part of our strategy is to specify 5e so
that each element of G is 1-dimensional and contains a wild Cantor set.

Before starting the construction, we point out an indispensible result about
the formation of Cantor sets.

LEMMA 5.1. Suppose Y is a Cantor set in the n-manifold T, S is a closed,
orientable PL (n 2)-man!fold with S B2 T, and e > O. Then there exists a

finite collection Rx, Rz, R of closed, connected, PL (n 2)-manifolds in

(S x Int B2) Y such that the surfaces R , Rt have pairwise disjoint PL-
product neighborhoods R x B, R B2 in (S Int B2) Y, each of
diameter less than e, and such that whenever f: H S x B2 is an I-essential map
of a disk with holes H, then f(H)

Lemma 5.1 is due to Daverman-Edwards. Certain aspects of the proof are
presented in Section 3 of [6], where additionally a mapfof a disk with holes H
to an n-manifold N is defined to be I-essential (an abbreviation of interior-

essential) if f(OH)
_
OM and there is no map f’: H-t3M for which

f’laH -flail.
Serving as a guide for this construction of this section is a preordained

denumerable collection of thickened (n 2)-manifolds. In [5], only one such
thickened object was employed.

The collection of thickened (n- 2)-manifolds. Let

{L1, L2,..., Lk,...}
denote a collection of compact PL n-manifolds in T, each of the form
Lk--Sk X B2, where Sk denotes a closed, possibly disconnected, orientable,
PL (n- 2)-manifold. In addition, is determined so that for any PL embed-
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ding e" S x B2 T, where S is a closed, orientable, PL (n 2)-manifold, and
any e > 0, there exists Lk and there exists a PL homeomorphism e’ of
S x B2 onto Lk such that dist (e’, e) < e. This means, of course, that the ele-
ments of are NOT required to be pairwise disjoint; however, if T is not
simply connected, L1 is required to lie interior to some n-cell in T.

Description of ///1. Let ’1 {T}. Associate with T /1 the closed
(n 2)-manifold S(T)equal to the core $1 x {0} c $1 x B2 ofL1 @. In order
to begin an inductive procedure, name a set W(1, 1) as W(1, 1)=
At this spot one may wish to identify a simple closed curve J in T, where

J pt x cOB2 in $1 x B2 L1. The significance of J is the impossibility of
contracting it in T S(T), an observation which will be used later to show that
no element of G is cellular.

Inductive Hypothesis (j 1). Suppose that ’ 1, /2, ’j- (where
j > 1)and closed, possibly disconnected, orientable, PL (n- 2)-manifolds
S(A), A )- #i, are given satisfying the following properties"

(1) For l<i<j-l,’iisacoverofT.
(2) ’1, /j- satisfy the appropriate features of Axioms 1 and 2 in the

definition of defining sequence.
(3) For 1 < <j- 1 and x T, the inclusion map

st3(X, //[i+ 1)---} st2(x,
is null homotopic.

(4) For 1 < < j 1 and x T, there exists a (1/i)-map of st2(x, [i) to a
1-complex.

(5) For 1 <i< j-1, each A / is associated with a predecessor
Pre A e ’_ where A Pre A @ and {Pre A" A

(6) For 1 <i< j- 1 and A ’,, S(A) has a PL-product neighborhood
S(A) x B2 in Int A with components having diameters less than 1/i and with
S(A) corresponding to S(A) {0}.

(7) For 1 < k < j- 1, each Lk contains pairwise disjoint, compact,
PL n-manifolds W(k, 1),..., W(k, t(k))in Int Lk such that the only loops in
T Int Lk null homotopic in T ]tk__) W(k, i) are those that are null homo-
topic in T- Int Lk.

(8) For 1 < k < < j- 1 and A l, S(A) possesses a closed and open
subset (possibly empty) Skq(A) such that Skq(A)x B2 W(k, q). In case
Skq(A) 4 ok, then for any map F" B2 - T such that F-a(W(k, q))has a compon-
ent H for which F H" W(k, q)is/-essential, F(H)

(9) For 1 < k < < j 1 and A ///,, Skq(A) ck if and only if

Skq(Pre A) ok, Skq(A) x B2 c Skq(Pre A) x B2,
and for any map F" B2 T such that F-l(Skq(Pre A) x B2) has a component
H for which F IH" H Skq(Pre A) x B2 is/-essential,

F(H) S(A)
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(10) For 1 _< k < j- 1, each W(k, q) contains a point Wkq
A ’k+l contained in stS(Wkq, k+l) has Skq(A) dp.

such that every

Description of_j. Assuming Inductive Hypothesis (j 1), we shall specify
j and the associated (n- 2)-manifolds S(A), A ///, so that ////1, ///2,

and these associated manifolds fulfill Inductive hypothesis j. Our
specification involves two operations, the first a direct application of the
methods of Cannon-Daverman [5], and the second a painstaking variation of
the first. With this arrangement some of the traditionally messy details become
quite manageable, for the methods of [5] used first permit controls governing
all the epsilonic conditions arising in the Inductive Hypothesis.

The first operation. We dig far enough into the defining sequence con-
structed in [5] to extract a finite cover rj of T by compact PL n-manifolds
with pairwise disjoint interiors such that, in addition"

(2’) For all x T, st9(x, /’j) Int st2(x, //[j_ 1).
(3’) For all x T, the inclusion st9(x,)Int stE(x, //_ 1) is null

homotopic.
(4’) For all x T, there exists a (1/j)-map of st6(x, r) to a i-complex.
(5’) Each N is associated with a unique predecessor Pre N

and N Pre N.
(6’) To each N i is associated a closed, possibly disconnected, orien-

table, PL(n-2)-manifold S(N) having a PL product neighborhood
S(N) x BE, with S(N)corresponding to S(N) x {0}, and with

S(N) x B2 S(Pre N)x B2.

(8’-9’) For 1 < k < j- 1 and N ff, S(N)has a closed and open subset
Skq(S) defined as

Skq(S) S(N) c (Skq(Pre N) x B2) W(k, q),

where Sk(N) dp if and only if Skq(are N) =/= ok. Moreover, for any map

F. B2T,

if F-l(Sk(Pre N) x BE) has a component H for which

F IH" H Sk(Pre N)x B2

is/-essential, then F(H) c Skq(N)=/=
(10’) Each W(j 1, q) contains a point wq such that every N N con-

tained in stlS(w, ) satisfies S_ 1,(N) b.

By way of explanation we remark that, for any cover ///of T by compact PL
manifolds with pairwise disjoint interiors, the inductive procedure of [5] yields
another cover ’ of T such that, among other features,

st(x, //’) st(x, //) and St3(X,
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for each x T. Conditions (2’), (3’), (4’), (5’) and (6’)follow routinely from
properties of their procedure by selecting V as an iterate of that procedure
applied to d/4’t_ 1. By choosing wq Int N’, where N’ 4J has Pre N’ meeting
Int W(j- 1, q) but where N’ c O(Pre N’)= t#, one has that every N ,j
included in st2(wq, V) satisfies S_ 1,(N) 4: q; then by iterating again one also
obtains Condition (10’). Condition (8’-9’) also follows, based upon the follow-
ing fact describing how the /-essential property iterates through a nest.
Although not quite the same result, the proof of Lemma 2.2 in [6] provides the
bulk of the argument.

LEMMA 5.2. Suppose S1, S2,..., St are compact, possibly disconnected, PL n-
manifolds in T such that S + c Int S and,for every I-essential mapf: H* S of
a disk with holes H* in Si (i 1, 1),f(H*) Si+l =/= dp. IfF: H - $1 is
an I-essential map of a disk with holes, then F(H) St =/= dp. Moreover, if
F: BE -- T is a map such that F(tgB2) T $1 and F tgB2 is not homotopic to a
constant map in T- $1, then F(B2) St q: q.

Ideally from our perspective the reader not only should be acquainted with
the construction method of [5] but also should concur with the claim that this
first operation can proceed as outlined above. In order to aid those who are
unfamiliar with [5], we shall delineate it later on as a subprogram of the next
operation.

The second operation. Ultimately with any A d//t we will associate a
unique predecessor Pre* A t such that Int A Int Pre* A :/: b, and then
we will define Pre A //_ 1, in the obvious fashion, to be Pre (Pre* A). Fix
N r and let S S(N). It will suffice to describe the elements of t’ having
N as predecessor. We will construct such elements of /j to be nzmanifolds A 1,

As near N and almost covering N, together with their associated
(n- 2)-manifolds, in seven steps.

Step 1. Identifying a Cantor set Y with Lt. Since the collection

{Int st(x, t): x T}
forms an open cover of T, there exists > 0 such that every 2f-set in T lies in
some Int st(x, Vt). One should check that this implies that the 6-
neighborhood Uz of any z T satisfies

(*) U
_

Int stE(z, Vt).
By Lemma 5.1, there exist closed, connected orientable PL (n 2)-manifolds
P1, P2, Prt2 in S x Int B2 Int L having pairwise disjoint, PL-product
neighborhoods

P1 x B2, P2 x B2,..., Pr(j) B2 in S x Int B2,
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each of diameter less than , such that iff: H S x B2 is an/-essential map of
a disk with holes H, thenf(n) c (0 P,) 4: 4. Define Ljl as Pi. Repeat this
to obtain compact n-manifolds with boundary LI, L2, such that each is a
product of B2 with a closed, orientable, PL (n 2)-manifold, L,i/ c Int L,
the diameter of every component of Lj is less than 6/i, and, wheneverf: H Li
is an /-essential map, f(H) Li,+I 4 dp. Let Y denote the compact 0-
dimensional set (-]o= Li.

Step 2. Splitting the surface S(N). Again by Lemma 5.1, there exists a finite
collection R 1, Rt of closed, connected, PL (n- 2)-manifolds having pair-
wise disjoint PL-product neighborhoods

R1 x B2,..., R, x B2 in (S(N) x Int B2) Yj

such that, whenever f: H S(N) x BE is an /-essential map,

Step 3. Splitting the core Si x {0} of Lj. Since Y misses each R above
associated with (each) N Y, there exists an index k such that Lk also misses
R. Because Lk Lj, we find it convenient to think of k equalling 1 and to use
all the notation introduced in Step 1 for referring to this LI and its compon-
ents. While working near N, we will pay attention only to those components
P1,-.., P,tn) of Ljl that intersects N.

Step 4. Decomposin9 N into cells. Let o denote a PL triangulation of ON.
It defines a cell-decomposition of some (any) PL collar ON x [0, 1] on ON in N,
which extends to a PL cell-decomposition of N. Shortening the collar and
subdividing both and , if necessary, we may assume that the collar
ON x [0, 1] misses S(N) x B2 and that each of the n-cells C 1, C ofN is so
small that there exists a point b in Int B2 such that C misses

(R1 w w R,) x {bi} c (R1 w w R,) x B2

(R1 x B2) ... (R, x B2).
Furthermore, we may require general position features forcing P; P x {0} to
contain a point of Int C (i 1, s)whenever P intersects C. One should
keep in mind the realignment completed in Step 3 guaranteeing that

[(R1 w ""w R,) x B2] c [(P1 w’"w P,(j)) x B21 b.

Step 5. Ramifying the surfaces (R1 w w Rt) (P1 2 2 P,tN). Pick
distinct points b l, bs from Int B2, one for each n-cell Ci of, as in the
previous step, such that

C, [(R1 w’"w Rt) x {b,}] b.
In addition, pick distinct points Pig from Int B2, one for each ordered pair
(i, k) such that Int C meets PR (1 < k < r(N)), close enough to 0 B2 that
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Int Ci meets Pk X {Pik}, and so that the points {Pk} corresponding to the cells
{C} in N Fj differ from those corresponding to the cells {C’} in any other
N’ V’j. Now define

One should interpret these sets Pk x {pk} to be nonempty only ifP x {0} meets
Int Ci.

Step 6. Connecting C to S(C). Let a 1, a be pairwise disjoint sets, each
the union of disjoint PL arcs in Int N missing each of the (n 2)-manifolds
P {p}, where p represents any of the points pi named above, not just corre-
sponding to N Fj but to any N’ , such that the arcs of i irreducibly
join the components of

(R "’ R,)x {b,} S(C,)

Step 7. Definin9 A1, As #. After slight general position
modifications, we may assume that a c S(Cm)
and S(Ci) meet each OCm transversely. We choose a very fine triangulation of
T subdividing each N, N V, such that each C, each ai, and each S(C) is
covered by a full subcomplex of. By choosing sufficiently fine, we arrange
things so that the sets

s(c,), s(c3
have pairwise disjoint (simplicial) regular neighborhoods

s(c,)), s(c3)
in the first derived subdivision ’ of, where the first derived neighborhood of
a and ofa x {b} = S(Ci) is contained in lnt N and the first derived neighbor-
hood of any n x {p,k} S(C)is a b-set contained in Int st(N, F). (Recall
condition (*) given in Step 1.) Define A, to be C, t U(ai w S(Ci))minus the
interiors of all the other U(am S(Cm)), for 0m S(C)corresponding either
to Cm contained in N or to an n-cell C, e u, contained in any other N’

This essentially completes the inductive description of the defining sequence
S {’/1, /, ...}. With the identification of A 1, A above, we have
finished the construction of the elements of/whose predecessor (in V’) is N.
Furthermore, in the course of that construction, we have specified
(n-2)-manifolds S(Ci) (i= 1, s)and now we designate the
(n- 2)-manifolds associated with Aie ’/ as S(A)= S(C)(i 1, s). It
should be clear that S(A ) has a PL product neighborhood S(A

In a subsequent section we will need to make use of the observation that each
A e ///j is contained in the b-neighborhood of Pre* A e dV. (Recall from
Step 1 that each P has diameter less than
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Here is an appropriate place to explain that the first operation of this induc-
tive construction, the one based on [5], proceeds like the second operation
except: (i) the collection @ and Steps 1 and 3 are completely left out, which
entails leaving out all references to the (n 2)-manifolds Pk in the other steps
as well; and (ii) size controls are added on the cells Ci in the decomposition of
Step 4, on the manifolds Ri x B2 of Step 2, and on the thickenings ofC w w
S(Ci) of Step 7 so as to yield a (1/j)-map of each A to a 1-complex and to
insure st2(x, //[j) BdA is small for any x e T and any A 6 ’.

It remains to discuss why /// and the associated S(A), A ///, fulfill Induc-
tive Hypothesis j, plus to specify

W(j, 1), W(j, t(j))

corresponding to L in condition (7).
First, it should be clear from the foregoing description that conditions (1)

and (5) of the Inductive Hypothesis are satisfied.
The key to conditions (2), (3), and (4) is the observation that, for each x T,

st( ,
because the second operation yields

Aim st2(Int Ci, ’) st(N,
for each Aie /j and N Pre* Aie /j. Then

Sta(X, ///j) St9(X, t/’j) Int st2(x, [j_ 1)
and the total inclusion is null homotopic, by conditions (2’) and (3’)of the first
operation. Similarly,

and the required (1/j)-map of the former to a 1-complex can be determined as
the restriction of one on the latter, by condition (4’). It should be clear from the
definition S(A,)= S(C,)that condition (6)is satisfied.
For each Ai ./h/ define a set S*(Ai) by

S*(Ai) U,({ (Pk x {Pig})

(cf. Step 5), and regard S*(Ai) x B2 as the obvious subset ofS(Ai) x B2. List the
components of all S*(A) B2 for A ’ as W(j, 1), W(j, t(j)). Condition
(7) follows from the definition of the (n 2)-manifolds PR in Step 3 and from
the fact that to each Pk B2 there corresponds some C (anyone that intersects

Pk BE will do) and hence some A such that a component of S*(A) equals
PR X {PiR} in Pk X B2.
For A // define Sj(A) as S*(A) c W(j, q); notice that either S(A)= dp

or S(A) x B2 W(j, q), making condition (8)trivially satisfied for k i= j.
For 1 < k < j define SR(A) as

(S(A)- S*(A)) (S(Pre* A) BZ);
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the remainder of condition (8) results from Lemma 5.2, from conditions (8’-9’)
in the first operation, and from the manner that those surfaces split from
S(Pre* A)in Step 2 are ramified in Step 5 to form S(A) S*(A). Condition (9)
follows for the same reasons.

Finally, according to (10’) each W(j- 1, q) contains a point w such that
every N V included in st5(w, dg)has Si_ 1,(N)= b. Then

stS(w, dg)c st’(w,
and, for each A d/t’ included in st(w, dg3), Pre* A is included in
stS(w, 4/’), because Int A c Int Pre* A :/: b. As a result

S_ ,.(A)--(S(A)- S*(A)) c (S_ ,,(Pre* A) B)
is nonempty by construction, since S_ .(Pre* A) :/: b.

THEOREM 5.3. The sequence S- {dg, #g, ...} described above is a
defining sequencefor a cell-like upper semicontinuous decomposition G of T such
that no element of G satisfies McMillan’s Cellularity Criterion. Moreover, when
T S, (A) for any embedding f of tgB2 in T there exists afinite collection / of
open subsets ofT/G such that every map F: B2 T extendingfhas image nF(B2)
in T/G that contains some V / and (B)for every compact subset Z ofT/G that
admits an essential map h to S there exists an extension h*: U(Z) --, S ofh over
some neithborhood U(Z) ofZ and there exists afinite collection ofopen sets in

T/G such that, for any map f: tgB2 - U(Z) with h’f: tgB2 - S essential, every
extension F: B2 T/G off has image F(B2) that contains some V

Proof By condition (2) in the Inductive Hypothesis, 5e is a defining
sequence; according to Theorem 2.3, G is upper semicontinuous. By condition
(3), G satisfies Axiom 3; according to Proposition 3.1, G must be cell-like.
We claim that each 9 G contains a compact subset Co in Int L W(1, 1)

such that the simple closed curve J (identified immediately after the description
of t’l) cannot be contracted in T- Co. To verify this, fix x e 9 and use the
finiteness of the covers ’ to determine elements Mi d//’i such that
M, st2(x, //li)and M, Pre Mi+ 1. Then, by condition (9),

dp =/: Sll(M,+ 1) x B2 Sll(M,) x B2 M,.

Define Cg as i Sll(Mi) x B. Since J cannot be contracted in

T- Int L T- Int (Sll(T) x B2),
it follows from Lemma 5.2 that any map F: B2 --, T sending cOB2 homeomor-
phically onto J satisfies

F(B2) c ($11(M,) x B2) :/: b
for all i. Hence, F(B2) c Co :# b.
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By condition (4) in the Inductive Hypothesis, 9 has dimension < 1. Con-
sequently, J is homotopic in T- Co to another curve J’ in T- 9. If 9 did
satisfy the Cellularity Criterion, J’ would be contractible in T 9, and then J
would be contractible in T- Co, which was just shown to be impossible.
To establish the additional properties of this theorem, it is convenient to

work with T S", where linking theory involves no technical difficulty. The
proofs of the two additional conclusions being quite similar, we shall discuss
only conclusion (B).
To that end, suppose Z is a compact subset of T/G and h" Z S is essential.

There exists an extension h*" U(Z)-, S of h over a compact neighborhood
U(Z) of Z. It follows that

h*t" rt- I(U(Z)) S

is also essential. Hence, by a construction of Singh [15, Lemma 2.3.1], there
exists a PL embedding e" S x B2 -- T U(Z), where S denotes a closed, orien-
table, PL (n- 2)-manifold, such that, for any loop

f*" OBz -, - (U(Z))
for which h*nf* is essential, f*(OB2) links e(S {0}); in particular, f* is not
null homotopic in T- e(S Int B2). Because of the density of the guiding
collection of thickened (n-2)-manifolds, we can assume that
e(S x B2) Lk 9.

Associated with Lk there exist pairwise disjoint PL n-manifolds W(k, 1),...,
W(k, t(k)) in Int Lk satisfying condition (7) of the Inductive Hypothesis. Define
the finite collection of open sets in T/G as

Y/ {V interior in T/G of Ir(st2(wkq, /[k+ ))lq- 1, t(k)}.
Of course, the upper semicontinuity of G guarantees that n(w) V for
each q.
For purposes of contradiction, supposef: 0B2 Int U(Z) is a loop such that

h*f is essential and f has an extension F" B2- T/G that misses some

x Vq 6 /, for q 1,..., t(k). Then F "lifts" to F*" B2 -- T with F*(B2) PL
and in general position with respect to the W(k, q) and with rF* so close to F
that

rF*(OB) U(Z),

h*tF*lOB2" OB2 S is essential, and rtr*(B2) misses each Xq. Condition (7)
of the Inductive Hypothesis implies that F* lOB2 is not null homotopic in
T tk__) W(k, i). Consequently, for some q {1,..., t(k)}, there exists a com-
ponent H* of (F*)-(W(k, q)) for which

F* IH*" H* W(k, q)
is/-essential.

Set O* t-(xq). By the definition of Vq /, there exists a point x* 9*
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with x*e st2(Wk, gk/ 1)" We shall reach a contradiction by showing that
F*(H*) c g* :/: dp. To achieve this, it sumces to show that F*(H*)
st2(x*, k+j)V dp for j 1, 2, By condition (10), every A
included in st3(x*, gk+ 1) has Sk(A) =/: k because

st3(x*, #+ 1) stS(w, #+ 1).
Every A’ e /,+j included in st2(x*, //+j) satisfies A’ st2(x*, /+_ ) and
hence

Pre A’m st(A’, +-1) st3(x*, //,+-1) stY(x, ’+j- 2),
and, when Pre A’ is defined recursively as Pre (Pre*- A’), it follows by induc-
tion that

Pre A’ st3(x*, //[ +
_

i) st2(x*, //+-i-1).
Since then Prej-x A’ st3(x*, //[+ 1), condition (9)insures that S,(A’)
and the combination of condition (9)and Lemma 5.2 implies that F*(H*)
A’ :/: 4, yielding the desired contradiction.

Remark. We show in Appendix 1 that, by exercising supplemental controls,
we can produce a defining sequence St for a decomposition G as in
Theorem 5.3 such that T/G is a finite dimensional ANR.

6. Pathology of closed subsets of T/G

For a space X let :U(X) be the collection of closed subsets K of X having
empty interior and satisfying"

(*) some compact subset K* of K admits an essential map to S and, for
every neighborhood W of K there exists a neighborhood W* of K* such that
every loop in W* contracts in W.

THEOREM 6.1. If the locally compact and locally path connected space X
satisfies conclusion (B) of Theorem 5.3, then

Proof Let K be a closed subset of X and K* a compact subset of K
satisfying condition (*). Name the essential map h: K* S1. Then there exists
an extension h*: U(K*)---} S over a neighborhood U(K*)of K* and there
exists a finite collection of nonempty open sets in X satisfying conclusion (B)
in Theorem 5.3.

Express K as the intersection of open sets W1, W2, with W+ c W. Apply
(*) to obtain corresponding neighborhoods W, W, of K* such that every
loop in W’ is null homotopic in W. For the moment, assume that, for each i,
there is a map f" OB2 W.*, c U(K*) such that h*f is essential, and let
Fi: B2 W denote an extension offi. Then some V must be contained in
infinitely many Fi(B2) c W and hence in K, implying that gcg(X)= .
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It remains to produce thef’s. Using standard arguments, one obtains a cover
q/of K* consisting of path connected open sets in c U(K*), and, letting N
denote the nerve of q/, maps c: K* N and 9: N S so that 9 c and h are
"close" (in particular, are homotopic). It follows that 9 is essential. Further,
since X is locally path connected, it can be arranged that the restriction of 9 to
the 1-skeleton Ntl) of N factors as h* k, where

k" Nt) U(K*) c W.*,

Since the higher homotopy groups of S are zero, h* k" Nt) S is essential.
Then there exists a map m" S --, Nta) such that h* k m is essential, and
f k m is the desired map.

COROLLARY 6.2. Suppose the locally compact and locally pathwise connected
space X satisfies conclusion (B) of Theorem 5.3, and suppose K is a closed
2-dimensional subset ofX satisfying"

(**) there exists 6 > 0 and a sequence ofopen sets {W 1, 2,...} such that
K (-]i W and each mapf: t3B2 W+ for which diam f(t3B2) < 3 extends to
a map F" B2--, Wi
Then K has nonempty interior in X.

Proof According to [11, p. 83], the hypothesis that dim K > 2 implies K
has a compact subset K* of diameter less than 6 that maps essentially to S.
Hence, (K, K*) satisfies condition (*). But (X) q by Theorem 6.1, and the
only explanation why K q :U(X) is that Int K be nonempty.

Remark. In case X is an ANR, among its compact subsets that satisfy
Condition (**) are those which are AR’s, ANR’s, FAR’s (=cell-like sets), or
FANR’s [4] and those which satisfy Property 1-UV.

COROLLARY 6.3. Let G denote the decomposition of T S" described in
Section 5. Then sU(T/G)= dp.

A resolution of a generalized n-manifold X is a proper cell-like mapf: M X
of an n-manifold M onto X. Quinn [13] has shown that, for n > 5, every
generalized n-manifold X has a resolution. The examples here, like those of
Singh [14], [15], [16, 7.7] and Wright [18], show that some generalized n-
manifolds do not admit cell-like maps onto n-manifolds.

COROLLARY 6.4. Let G denote the decomposition of T S" in Section 5
(n _> 3). There is no cell-like map f: T/G --, M onto an n-manifold M.

Proof If f: T/G M did exist, M would contain an uncountable family
{K,} of pairwise disjoint 2-cells, and the cell-likeness offwould imply that each
element of {f-X(K,)} satisfies condition (*). Some set f-I(K,)would neces-
sarily have no interior, contradicting Theorem 6.1.
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7. The product with E

The combined work of [10], [13], and [7] shows that X x E2 is a manifold for
every generalized n-manifold X (n > 3); whether or not X E is a manifold
remains an open problem. When n > 3, R. D. Edwards’ characterization [10]
reduces the problem to deciding whether or not X x E satisfies the disjoint
2-disks property (DDP). Daverman [7] establishes that X E satisfies the
DDP for a large class of generalized n-manifolds X. In particular, spaces X
arising as decomposition spaces from decompositions G of manifolds M of
dimension at least 4 are in this class whenever G has a defining sequence 5e
satisfying conditions (i), (ii) and (iii)in Section 2 of [5]; moreover, with an
additional mild restriction on 6e, Cannon and Daverman prove that X x E is
homeomorphic to M x E when dim M > 3 [5, Section 5]. The proof of the
theorem below exploits these results.

Let 5e {//x, //2,’" "} be a defining sequence on a space T, with associated
decomposition G. Let - {9 1, 2,...} be a defining sequence on E with each
9 a cover of E consisting of closed intervals having diameters less than l/i,
and let q(a), q(2), be an increasing sequence of integers. The product decom-
position G x E on T x E has for a defining sequence

(g’l X q(1), /2 X q(2), "’’}"
The content of the next theorem is that an additional (minor) restriction on

the construction of the defining sequence {/, g2,...} in Section 5 insures
that T/G x E is a manifold, where G is the associated decomposition.

THEOREM 7.1. For n >_ 3 there exists a generalized n-manifold X such that
X x E is a manifold and X satisfies conclusion (B) ofTheorem 5.3; in particular,
for each map F" B2 -. X that restricts to an embedding on OB2, Int F(B2) =/= t.

Proof Suppose that T x E o= Di is expressed as an increasing union
of compact sets Di Ki x Ii and suppose that the lengthy "Inductive Hypoth-
esis (j- 1)" in Section 5 includes the additional condition"

(11) For 2 _< <_ j 1, there is an integer q(i) > q(i 1) (where q(1) 1)
and a homeomorphism hi" T x E - T x E such that

hi(x : Oi_ for x q st2(Oi 1, /i-1 X q(i-

hi(x) st2(x, d’i-1 x q(i-1)) for x st2(Di 1, /di-1 x qti-1)),
and diam hi(A) < 1/i for A dt’i x qti) with A

We leave to the reader to verify that condition (11) suffices to insure that the
defining sequence {’ a’z x 2), ...} satisfies Axiom 4 and, in view
of Proposition 4.1, that T/G E is a manifold. We shall describe how to
maintain condition (11) through the induction procedure of Section 5.
The first step in describing ’ in Section 5 is to extract V’ from a defining
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sequence constructed in [5], say ocg {1, 2, ...}, with 1 ’j- 1- The de-
composition H associated with ff has the property that its product with the
trivial decomposition on E is shrinkable. (This is shown directly in [5],
provided additional mild constraints are placed on the i’s and, for n > 4, this
is shown in [7] by appealing to the DDP characterization in [10].)
Proposition 4.1 implies that the defining sequence

{1 )< q(j-1), 2 X q(j_l)+l

satisfies Axiom 4.
Let q/be an open cover of T x E by sets of diameter less than 1/j. Let k and

hi: T x E --. T x E be the integer and homeomorphism from Axiom 4
chosen with respect to the compact set Dj-1, the open cover ’, and
1 x tj_ 1). Since 1 ’/j-X, we have that

h(x) q D_ for x q st2(D_ , //_
_

),
h(x) st2(x, /j_ t_ a)) for x st2(D_ , /_ x

_
),

and diam hj{A) < 1/j for A k X qt_ 1)+k with A D_ =: " The proof of
Proposition 4.1 shows that h can be chosen so that, for k’ > k, hj(A) < 1/j for
A k, X t_ 1)+k, with A c Di_ 4: b.
The choice of Y should include the stipulation that 4= k, for some

k’ > k. Now we set q(j) q(j 1) + k’. The choice of fi > 0 in the first step of
"the second operation" used in describing /j should include the conditions
that the image under h of the b-neighborhood of each A / x t) with
A D_ 4: b have diameter less than 1/j and that the b-neighborhood ofK
be contained in st(Kj, ). The latter condition insures that
A x R x q) intersects D_ only if (Pre* A) x R 4 x qj) does,
and, in turn, the former condition insures that diam h(A x R) < 1/j for those
A x R meeting Dj_ 1.

Appendix 1

A consequence of the result in Section 7 showing the product decomposition
on T E to be shrinkable is that the decomposition space T/G is finite
dimensional for any decomposition G which has a defining sequence satisfying
conditions (1)-(10)in Section 5 and condition (11) in Section 7. The proof of
the next result contains a "direct" approach to showing the finite dimensiona-
lity of certain decomposition spaces. The proof is followed by a word about
assuring that conditions (’) and (:)are satisfied by the defining sequences
constructed in Section 5.

PROPOSITION A.1. Suppose that {1, /2, ...} is a defining sequence on
a locally compact space X with the elements of the associated decomposition G
connected" suppose that each A /Zi+I is associated with an element
Pre A i such that Int A Int Pre A :/: dp" and suppose that"



A GHASTLY GENERALIZED n-MANIFOLD 573

(f) for each
_

////i, there is an open set W(,uf)containin9 Bd H and
contained in st(Bd H, f/i), where H Q) {A uf}, such that W(:U)_ W()
where

.;U {A /i+ x" Pre A

(:) for each
_

f/, and x X, st2(x, //,+ 1) Bd H has diameter less
than 1/i (whenever the intersection is not empty).

Then dim X/G < dim X + 1.

Proof Let t" X --. X/G denote the induced map. The strategy is to identify
closed subsets of X on which rt is 1-1 and whose images contain boundaries of
neighborhoods of points in X/G.

Let Yo X/G and let U be a compact neighborhood of Yo. Let Xo
and let k be such that st4(Xo, [,)c re-I(U). Let

:;/gk A /// A
_

s 3 Xo f[k and

and, recursively for > 1, let

+i={A/+,’PreAk+,-1} and W+,= W(+
The nested W+i’s yield a closed set C =0 IV+on which r is 1-1 by
condition (:I:).

Since st3(Xo, //+ 1) = stZ(xo, #) c Hk W, each element of ///+ con-
tained in st3(Xo, /+ 1) is also an element of 38+ and, therefore,

st3(Xo, f[l,+ 1) = Hk+ I/V+ 1.

The same argument shows that St3(Xo, {+ i) H/ W/ for each i. Since
each W/, separates t-l(yo) from X t-l(U), the set C also performs this
separation. Since the elements of G are connected, rr(C) separates Yo from
X/G U; and since tJC is an embedding, dim t(C) < dim X. In turn, we can
conclude that dim X/G < dim X + 1. This completes the proof of the
proposition.

Returning to the defining sequence {/1, /2, "} defined in Section 5,
we observe that the intermediate collection /j constructed in the first opera-
tion can (easily) be required to satisfy the condition that

st6(x, dVj) c Bd (H)
has diameter less than 1/(j- 1)(for Yf = ,/#’j- and H {A Yg}). Since
st2(X, //[j) st6(X, #V’j), condition ($) will be satisfied. Suppose for inductive
reasons that condition (f) is satisfied for 1 _< < j- 1. The collection yV has
the property that, for At /_1 and H ) {A 3}, Bd (H)= Bd (K)
where

{A 6 U" Pre A H}
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and K {A 3r}; name an open set W(3C)such that

Bd (K)
_

W(3eF), W()c W(), and W()_ Int st(Bd K,

Each A e /gj is contained in the 6-neighborhood of Pre* A V’j where 6 is
the number chosen in Step 1 of the second operation; for 6 chosen sufficiently
small, condition (.) will be satisfied for j 1 by letting W(oU) W(’) for
3C

_
/ where

U’= {Pre* A" A e }
_
i.

As a final remark, the W()’s can easily be chosen so that Int C 4’ (C is
defined in the proof of Proposition A.1); since T is an n-manifold, it follows
that dim C < n- 1. This leads to the conclusion that dim T/G < dim T.

Appendix 2

Frequently, upper semi-continuous decompositions of PL manifolds are
described by defining sequences 6 {/1, a’ 2,...} where each /i consists of
PL manifolds; in fact, every upper semi-continuous decomposition of a PL
manifold has such a defining sequence.

THEOREM A.2. IfG is an upper semi-continuous decomposition ofa PL mani-

fold Q", then G has a definin9 sequence 9 {///1, [2, ...} where each /i
consists ofPL manifolds.

Proof Let n: Q Q/G be the induced map. Let -= {1, 2,...} be a
defining sequence in Q/G for the trivial decomposition consisting of points with
each k a cover of Q/G and with

Int (rt-l(Fr (A))= b for each A ik.

The k’S should satisfy two additional properties: first,

St6(x, k+l) -- Int (st(x, ik)
and, second,

(A c A’) c (Int (A w A’)) b
whenever A, A’ e k with A c A’ =p d?. For example, the brick partitions in [2]
can be used to produce the defining sequence " (a detailed discussion of this
can be found in [17, Section 2]). Let {4rl, ff2, ...} be the defining se-
quence for G determined by letting

W, {z- I(A): A 6 }.
For each x Q and each k, let U(k, x) be an open set with

st6(x, t/+ 1)- U(k, x)_ C1 (U(k, x))
_

Int (st(x,
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and with U(k, x) U(k, x’) whenever st6(x, l#k+ 1) St6(X’, t#+ 1)" Let
{, ,...} be a sequence of handlebody decompositions of Q satisfying:

(1) For A, A’ e V’k with A A’ 4 tk, there are elements h, h’, h" gk with
h Int (A), h’___ Int (A’) and h" Int (A w A’) and with h h"4: th and
h’ ch"4dp.

(2) For each A k, st3(A, k)-- Int (st(A, k)).
(3) If h e fk+ and h st6(x, A/k+ 1) ok, then h U(k, x).
(4) If h ugk and h (C1 (Q st(x, /k)) 4 ok, then h C1 (U(k, x)) ok.

The second special property of the k’S listed in the preceding paragraph is
needed to achieve condition 1, and the local finiteness of {U(k, x): x e Q} is
needed to achieve conditions (3) and (4).
For each k, let Ogk: k --* V’k be a function which satisfies OOk(h) c h ck for

each h k; condition (1) forces Ogk to be onto. For each A Xk, let

f(A) {h ut: o)(h)= A}
and let {n(a): a e f}. The function f induces a bijection between

and t’ and conditions (1) and (2)insure that f(A) c f(A’)=p b if and
only if A c A’ 4= and that f(A) _c Int st(A, ). It should be clear that the
elements of ’ are PL manifolds and that O {/1, ’:, ...} satisfies
Axiom 1. It remains to show that Axiom 2 holds for 5e and that G is the
associated decomposition.
The property that k(A) k(A’) if and only if A A’4: b for A,

A’ ffk combined with the containment fk(A)
_

st(A, Vk) implies that

stJ(X, //k) - Stj+ 3(X,
for each j and each x e Q. This same property combined with conditions 3 and
4 implies that

st6(x, t/’t+ 1)
_

Int (st2(x, /)).
Axiom 2 is an immediate consequence of the containments

st3(x, + 1) __C St6(x, t#+ 1) Int (st2(x, /)).
Since G(x)= (=1 st6(x, fPt), these containments also show that G is the
decomposition associated with
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