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THE CUSP AMPLITUDES OF THE CONGRUENCE
SUBGROUPS OF THE CLASSICAL MODULAR GROUP

BY

H. LARCHER

1. Introduction

The homogeneous modular group F SL(2, Z). If A e F and

then A induces the linear fractional substitution

A(), where A()= (a + b)/(c + d),
x + iy and x, y real numbers. The group of all substitutions is known as the

inhomogeneous modular group. A matrix A p _+ I, where

and the substitution A() are called parabolic if, for a rational number p, or
p , A(p) p. We call p the fixed point of A() and of A. For a parabolic
matrix P with fixed point p there exist B s F and a rational integer n p 0 such
that P + B- U’B, where

and p B-(m). The modulus nl of n is called the amplitude of P. If F is a
subgroup of F and P e F then p is also referred to as a fixed point or a cusp of
F. The cusp amplitude of p in F is the smallest positive rational integer k such
that _+ B- UB e F. Two cusps q and p are said to be equivalent under F, in
which case we write q rP, if there is an A e F such that q A(p). Equivalent
cusps in F have the same amplitudes. For F c F we denote by C(F) the subset
of the set of all positive rational integers containing all different cusp ampli-
tudes of F.
For a positive rational integer m,

F(m) {A +,I"[A _= + I (mod m)}
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is known as the (homogeneous) principal congruence subgroup of F of level
m. A congruence group F of level m is a subgroup of 1F such that F F(m), but
F ff F(/) for < m. Since a congruence group F is of finite index in 1F, the
number of equivalence classes of cusps in F is finite, and hence C(F) is a finite
set.

In the following, all letters, if not otherwise stated, are rational integers, and
it is understood that fractions of rational integers are in their lowest terms. We
use g.c.d, and 1.c.m. as the customary abbreviations for greatest common divi-
sor and least common multiple, respectively. By a b we mean that a divides b.
We let

(a, b)= g.c.d. {a, b} and [a, b] l.c.m. {a, b},

1,
W=

1

and P(a; b) stands for any one of the four parabolic matrices with fixed point
p a/b and of amplitude 1; i.e.,

1 +_ ab a2 1+ + b2 1 T- ab]"
The principal results of this paper are contained in the following three

theorems.

THEOREM 1. IfF is a conlruence subgroup of F oflevel m and d and e are the
respective amplitudes of and 0 in F then de 0 (mod m).

THEOREM 2. The least cusp amplitude d in F, a con#ruence subgroup of F of
level m, is the #reatest common divisor of its cusp amplitudes.

THEOREM 3. A congruence subgroup F of F of level m contains a cusp of
amplitude m.

It was Theorem 1 which gave impetus to this investigation. It seems that
until now it has escaped being observed. Its content and a proof of it are
suggested by the proof of the Theorem of Wohlfahrt [4] which says that for a
congruence group of level m the least common multiple of its cusp amplitudes
is m. This might be considered as the complementary theorem to our Theorem
2 and it is superseded by our Theorem 3. For this reason we shall not use the
Theorem of Wohlfahrt in our proofs, though at times it would suggest alterna-
tive or shorter proofs.
The importance of the above results lies in the fact that they permit us to

determine the set of cusp amplitudes C(F) for any congruence group F.

2. Proofs of the main theorems

First we prove two lemmas which we use in the proofs of Theorems 1 and 3.
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LEMMA 1.

Proof. Let

Ifp is a prime and (p2, m)= p then

r (r(m), em/p, Wm/p} r(m/p).

and let a 1 (mod m/p). We are going to show that A F. We may assume
(, p) 1. If it does not hold for A then, because (a, p) 1, it is true for W"/’A.
And W"/’A F implies A F. Now one easily checks that, for suitablej and k,

wkm/PuJm/P(/) 0’/’,

where a’ 1 and ’ --0 (mod m). Thus, for suitable fl’ and 6’,

d /3’ F{m),

and hence 0(/2,’ r(m)" The last equivalence and / rg’/?’ imply ah r.
There exist fl" and 6" such that

B= 6,,let,
where fl" 0 (mod m/p), since all elements of F have this property. But
B-A Ur’/ for a suitable j’, and thus A F. If, in A, a -1 (mod m/p),
then -a 1 (mod re i.e., -A e F. Since -I F, A F, completing the
proof.

LEMMA 2.
then

Ifp is a prime, (p2, m)- p2, (a, b)= (ab, p)= 1 and P P(a; b),

r (r(m), ure /vn/p, pro r(m/p).

Proof. Clearly, F(m/p) F F(m). It is well known that the index of F(m)
in F--usually denoted by [1F" F(m)]--is

(1) #(m) (ma/2) I-I (1 1/p2) for m > 2, #(2)= 6.
plm

We know that p21m implies [F(m/p)" F(m)]=pa for m>4, while
[r(2): r(4)] 4. Also, if p2 m, then, for j, k, arbitrary, Ujm/p, Wkm/p, plm/p

commute with each other mod m, where

pm/p= [1 + abm/p -a2m/p 1
b2m/p 1 abm/p]"

We observe that Ujm/p Wkm/p (mod m) if and only ifj k 0 (mod p). Next
we are going to show that for m > 4, and any j and k, uJm/pwkm/’ + pm/p
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(mod m). If the congruence were to hold with the plus sign it would imply that
abm/p 0 (mod m), and thus ab 0 (mod p), contradicting the hypotheses. If
it were to hold with the minus sign it would imply that abm/p 2 and
abm/p -2 (mod m). The last two congruences can only be satisfied provided
m 4 and p 2. Thus, for m 4,

(r’(4), u, w} r(2),
and the lemma holds. For rn > 4, the pa matrices U"/wk"/’P"/ with 0 < j, k,
l<p-1 are incongruent modm, and hence [F:F(m)]>pa. Since
[F(m/p): F(m)] p3 the conclusion of the lemma follows. As to the content of
this lemma see also M. Newman [2].

Proof of Theorem 1. Let de s and let us assume that (s, m) 4: m. First we
consider the case (s, m) m/p for p prime, p lm. With F’ {F(m), Ua, We}, F in
the hypotheses satisfies F = F’ = F(m). We are going to show that F(m/p) c F’,
and thus F(m/p) c 1", contradicting that m is the level of 1". Now, (s, m) m/p
implies dplm and ep[m; i.e., U"/’ and W"/p are in F’. If (p2, m) p, F(m/p) F’
by Lemma 1, and the proof is complete. If p2lm, by Lemma 2 the proof will be
completed by showing that the parabolic matrix A with fixed point 1 and
amplitude m/p is in F’. It is well known that if (a, b) (a’, b’) 1, and a’ a
and b’ b (mod m), then a’/b’r a/b. Using the latter and in addition

Vd(a/b) (a + jdb)/b and wke(a/b)= a/(b + kea),
we can show that, for suitable j and k, the following chain of equivalences
under F’ holds:

1/e (1 + dej)/e (1 + m/p)/e (1 + m/p)/(e + (1 + m/p)ek)

(1 + m/p)/(m/p)
Observing that We()= l/e, we have only to show the third and fifth equi-
valence. The congruence 1 + dej =- 1 / m/p (mod m) can be satisfied, since
js’ 1 (mod p), where s s’m/p, and necessarily (s’, p) 1, has a solution in j.
Since e m/p and p lm/p (by the assumption p21m), it follows that, for any prime
q such that q Ira q m/p as well. Hence (1 + m/p, m/e)= 1, so that for a
suitable k,

e + (1 + m/p)ek =_ m/p (mod m).
From (1 + m/p)/(m/p), we deduce that there is a B F’ such that

B=(l+m/p )m/p

where fl 0 (mod d), a common property of the matrices in F’. As (s, m) m/p
and s de imply dlm/p if

A [1 + m/p -m/p 1
m/p 1 m/p]
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then, for a suitable l, B- 1A Ud. Since B and Ud F’, A F’, completing the
proof when (s, m) m/p.

If (de, m) m and (de, m) m/p we replace e by e’, where e [e’ and e’[m, such
that (de’, m) m/p for some prime p. The remainder of the proof is evident.

COROLLARY 1. If F is a conoruence oroup of level m, and d and e are the
respective amplitudes of and 0 in F, then

(i) de m(d, e)/(m/d, m/e),
(ii) (m/d,m/e)l(d,e).

Proof. Let (m/d, m/e) t. Then m(d, e)= tde, implying part (i). Part (ii)is
an immediate consequence of Theorem 1.
-Next we prove three lemmas, the second of which is the main tool in the

proof of Theorem 2.

LEMMA 3. If dim, e m and de 0 (mod m) then

r’ {r’(m), u", w} A e ,r’l A =- +_.
ke J) (mod m)}.

Proof. One easily verifies that any matrix in F is of the form

(l + kl m k2d )+-- kae 1 + kgm

Conversely, if

then

A=+_
ke

A +_ wkeujd (mod m).
Hence for a suitable B -l"(m), A WkeUdB.
The content of the next lemma is found also in [1].

LEMMA 4. If (a, b)= 1, (b, m/d)= m/do, P P(a; b) and 1" {r(m), u},
then

(i) the amplitude ofa/b in F is do (except when m 4, d 1 and (b, 4) 2 in
which case the amplitude is d(a/2)), and

(ii) for a suitable A F(m) and j with (j, m/dtr) 1, pdo UdOA.

Proof Let p be the amplitude of a/b in F. From IF" l"(m)] m/d, we deduce
Podia F(m), and thus dip. Letting p dtr’,

pn,, [ 1 + abda’
b2da

-a2dtr’ 1
1 abda’]"
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Applying Lemma 3 with e m, we obtain abda’ 0 and b2dtr =-0 (mod m).
The two congruences imply b--0 (mod m/dtr’). From (b, m/d)= m/da in the
hypotheses, it follows that m/dtr’[m/da, and thus a[a’. Since, by Lemma 3,
pa, F and p is the amplitude ofa/b in F, a’ a. It is straightforward to check
that a P*’, as defined above, satisfies pa,,_= Ua (mod m) only provided
m 4, d 1, (b, 4) 2, and then a’= 1.
To prove part (ii), we choose j such thatj -a2 (mod m/da). Since m/dalb,

(a, m/da)= 1, and thus (j, m/da)= 1. For this j, Ua* P* (mod m), and the
conclusion follows.
Using W instead of U and working with a of the cusp a/b we have:

LEiMA 4a. If (a, b)= 1, (a, m/e)= m/ez, P P(a; b) and F {r(m), W},
then

(i) the amplitude ofa/b in F is ez (except when m 4, e 1 and (a, 4) 2 in
which case the amplitude is e(z/2)), and

(iii) for suitable A r(m)and k with (k, m/ez)= 1, .m* wk’A.
Theorem 2 is a consequence of the following’

THEOREM 4. Ifr and s are cusp amplitudes in F, a conoruence subaroup of F
of level m, then F has a cusp of amplitude z <_ (r, s).

Proof We are going to show that F contains a parabolic matrix of ampli-
tude (r, s). If the fixed point of this parabolic matrix has amplitude z in F then
z _< s).
We may assume that U" F. Let a/b be a cusp of amplitude s in F and let

P=P(a;b). If (r,s)=t we put r=trt and s=tst, where necessarily
(rt, st)= 1. We consider the subgroup F’= {F(m), U’, P’} of F. If (b, m/r)=
m/rp it follows, by Lemma 4, that P’PF’, and hence sirp. Thus
rp r s Pt, where we have put p st Pt. We pick

a=(
where u and v are judiciously chosen later on. Let

r"= {r(m), e’} and

In F we consider the cusp 0///, where z and/ are determined below. If y is the
greatest divisor of pt such that (y, st)= 1, then p xy, where (x, y) 1 and
(rt, x)= 1. Now we choose/ m/sx and determine 0t suitably, subject to the
condition (0, fl)= 1. For any 0 with (0, fl)= 1 and Q Q(; fl), Q’ F’ by
Lemma 4. Then AQ’A R is in F", and thus in F’, where

R R(a + ufl; b + vfl).
We observe that (ao +..ufl, btx + ,fl)= 1. Next we are going to show that for
suitable choices of anl v, R’v also. Since (sx, ry) t (r, s), this implies
that R F’, and hence R F, completing the proof.
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We consider the cusp (a + u)/(b + vfl) in F’. We let b b m/rp and
observe that (b, p)= 1. Now

(bo + vfl, m/r)= (m/rp)(bl + rpv/sx, p)

(m/rp)(b, + rl yv, sl xy)
m/ryl,

where Y Y, provided we can choose suitably such that (0q fl)= 1 and
b + rxyv=O (mod sx). From (b, p)= 1, it follows that (bx, sxy)= 1,
and thus the last congruence has the solutions Oto + s xi, any integer.
Hence it remains to show that for some i’, (,, fl) 1. Clearly it suffices to show
that we can choose o such that (o, s x) 1 and use Dirichlet’s Theorem on
primes in an arithmetic progression. Since (ray, s x) 1, this can be done by
choosing a v in the matrix A such that (v, s x) 1. Now all possible v’s in A are
of the form Vk Vo + bk, where (Vo, b)= 1 and k is any integer. Applying
Dirichlet’s Theorem once more for a suitable k’, (Vk,, Sl X) 1. Thus R’1 and
R" F’, and the proof is complete.

COROLLARY 21. Theorem 2.

COROLLARY 22. Let F be a conoruence oroup of level rn and let d be the least
cusp amplitude in F. Ifd and e are the respective cusp amplitudes ofgo and 0 in F
then e m/f, where 61(d, m/d).

Proof. By Theorem 2, die and m e m/d. Hence (d, e) d and (m/d, m/e)
m/e. Since m/eld by Corollary 1, m/el(d, m/d), and the conclusion follows.

COROLLARY 2a. Let d be the least cusp amplitude in F, a congruence group of
level m. If d is the amplitude of o and k is a rational integer, then the cusp
amplitude of k in F is m/f, where 61(d, m/d).

Proof F’= U-kIUk is a congruence group of level m with Ua F’. If e is
the amplitude of 0 in F’ then, by Corollary 22, e m/f, where 61(d, m/d). Now
F UkF U- k and UkWeU- k pc, where P P(k; 1).

Corollaries 22 and 2a can be used to obtain a number of classes of congru-
ence groups of level m w.hich necessarily have a cusp of amplitude m. But these
results are special cases of Theorem 3 which we are going to prove next.

Proof of Theorem 3. Let F be a congruence group of level rn and let us
suppose that all its cusp amplitudes are less than m. We are going to show that
F is of level m’ < m, a contradiction.

If d is the least cusp amplitude in F we may assume U F. Furthermore, we
may assume that (d, m/d) > 1, since, by Corollary 2, (d, m/d) 1 would imply
that F has a cusp of amplitude m. For the amplitude ,e of 0.in F, we have
e m/6o for some 6 o (d, m/d) and 6o > 1. If l-I P’ is the canonical factoriza-
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tion of (d, mid) then o rI,".-- PP’, where 0 _< v, < u, (1 _< _< r) and at least
one vi _> 1. We distinguish two cases.

(i) vi _> 1 for 1 _< _< r. By Corollary 2 a, the amplitude of the cusp 1 is
el mini, where 61 I(d, m/d) and t > 1. Then (6 l, t o) > 1, and hence there is
a prime Pi I(6o, 6). Furthermore, Pi mld implies d lm/pi. Thus r’ , F’, where

r’= {r(m), vm/’’, w/",, pmlp,}

and P P(1;1). By Lemmas 1 and 2, F’ F(m/pi), and r is of level m’ < m.
(ii) Let vii vi vi, 0, where 1 _< s < r. Again, by Corollary 23,

the cusp a Pi,Pi"" Pi., has amplitude e’= ml6’, where 6’l(d, m/d) and iS’ > 1.
Either (a) (’, io) > 1, and the proofproceeds like in case (i), replacing the cusp
1 by the cusp a, or (b) (’, o)= 1. Then there is an h with 1 _< h <_ s such
that--letting ih i’--(2m/P"e F, where Q Q(a; 1). By Lemma 43, for suitablej
with (j, Pv)= 1 and A F(m), (2m/p"A Wjm/p’’. Since W’’/’o and W’’/p’’ are in
F and (m/Jo, jm/pi,)= m/Jo Pi,, we deduce that the amplitude of 0 in F is less
than e, a contradiction. This completes the proof of Theorem 3.

A close look at the last proof yields"

COROLLARY 31. Ifd is the least cusp amplitude of the congruence group F of
level m and Ud F then there is a rational integer whose amplitude in F is m.
An immediate consequence of Theorem 3 is"

COROLLARY 32. If F is a congruence subgroup of F of level m then
[r:r]_>m.
We note that equality in Corollary 3 2 holds for the cycloidal congruence

groups only, i.e., congruence, groups for which all cusps are equivalent under F.
This latter class of congruence groups has been investigated by H. Petersson in
[3].

In Corollary 23 we have shown that a lower bound for the cusp amplitude of
any integer is m/(d, m/d)= [d, m/d]. This is a special case of the following
theorem which gives lower bounds for the amplitudes of all cusps in F.

THEOREM 5. Let d be the least cusp amplitude in F, a congruence subgroup of
F oflevel m, let Ud . F, and let p be the amplitude ofthe cusp a/b in F. Ifv is the

oreatest divisor of m/d, with (b, v)= 1, then [d, v] p.

Proof. Let P P(a; b) and F’= {F(m), Ud, PP}. The diophantine equation
av bu 1 has the solutions

UR Uo / ak and DR Vo / bk,

where (Uo, Vo) is a solution of the equation and k is any integer. From (b, v) 1
we deduce that, for a suitable k’, v’ Vo + bk’ =_ 0 (mod v). Thus (v’, m/d) v
and, by Lemma 4, Qm/v F’, where Q Q(u’; v’) and u’= Uo + ak’. If
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and F" A- F’A, then U and W/v F". The latter is a congruence group of
level m which implies that pm/v 0 (mod m) by Theorem 1, and thus v lp. By
Theorem 2, dip, and hence [d, vii p.

In the case that m is square-free, i.e., m has no square factor greater than 1,
Theorem 5 suffices to determine the amplitudes of all cusps of a congruence
group of level m. For we have

COROLLARY 5. Ifm is square-free, F a congruence #roup of level m with least
cusp amplitude d, and l" l"’ {F(m), Ud}, then the amplitudes ofa cusp in F and
F’ are the same.

Proof. We consider the cusp a/b. By Lemma 4, if (b, m/d) m/dtr the ampli-
tude of a/b in F’ is da. If p is the amplitude of a/b in F then p ldtr. If m is
square-free then v tr and [d, v] dtr. By Theorem 5, dtrlp, and thus p dtr.

If m is square-free and F is a congruence group of level m with least cusp
amplitude d then there is a A F such that, if AFA-1= Fa, FA F’=
{F(m), Ud}. By Lemma 4, the amplitude ofany cusp in 1"’ is known. The same is
true for Fa, by Corollary 5. Thus we can find the amplitude of any cusp in F.
For any such F the set C(F)of cusp amplitudes is

{dcr" a[m/d and tr > 0}.
We record this as our next theorem.

THEOREM 6. Let m be square-free and let d be the least cusp amplitude ofF, a
congruence subgroup of F of level m. Then its set of cusp amplitudes is

c(r) {d.: .lmla and tr > 0}.
Also, in the case that m is not square-free, the results of this paper are

sufficient to determine, for any congruence group of level m, the amplitudes of
its cusps. However the work is much more involved than in the "square-free"
case, and the results will be published in another paper.
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