EXTREME INVARIANT EXTENSIONS OF PROBABILITY MEASURES AND PROBABILITY CONTENTS

BY
Harald Luschgy

1. Introduction

Let G be a semigroup which acts from the left on a set X and let \mathscr{A} and \mathscr{B} be invariant σ-algebras on X with $\mathscr{B} \subset \mathscr{A}$. In this paper we characterize the extreme points of the convex set of all invariant probability measures on \mathscr{A} which extend a given probability measure P on \mathscr{B} and we give an extremal integral representation in this set. This problem has been investigated by Farrell [8] and by several other authors for $\mathscr{B}=\{\theta, X\}$ and by Plachky [17] for $\boldsymbol{G}=\left\{\mathrm{id}_{\boldsymbol{x}}\right\}$.

Starting with a known characterization by an approximation property [14] we clarify its relation to the notion of pairwise sufficient σ-subalgebras of \mathscr{A}. For a wide class of measurable spaces (X, \mathscr{A}) and semigroups G the extreme invariant extensions of P turn out to be those invariant extensions whose conditional probabilities with respect to the σ-algebra of P-almost invariant \mathscr{B}-measurable sets are multiplicative modulo an averaging process. As an application of a Choquet type theorem of v. Weizsäcker and Winkler [20] we obtain an extremal integral representation in the set of invariant extensions of P.

Finally, given invariant algebras \mathscr{A} and \mathscr{B} with $\mathscr{B} \subset \mathscr{A}$ we derive characterizations of the extreme points of the convex set of all invariant probability contents on \mathscr{A} which extend a given probability content on \mathscr{B}.

2. Preliminaries

Let X be a set, let G be a semigroup which acts from the left on X, and let \mathscr{A} be an invariant algebra on X, i.e.

$$
g^{-1} A=\{x \in X: g x \in A\} \in \mathscr{A} \quad \text { for all } g \in G, A \in \mathscr{A}
$$

An additive set function $\mu: \mathscr{A} \rightarrow \mathbf{R}$ is called invariant if $\mu\left(g^{-\mathbf{1}} A\right)=\mu(A)$ for all $g \in G, A \in \mathscr{A}$. By $b a(\mathscr{A})$ we denote the space of all bounded, (finitely) additive real set functions on \mathscr{A} and by $b a(\mathscr{A})_{G}$ we denote the subspace of all invariant elements. Then $b a(\mathscr{A})_{G}$ is an order complete Banach sublattice of $b a(\mathscr{A})$. We may identify $b a(\mathscr{A})$ with the topological dual $B(\mathscr{A})^{\prime}$ of $B(\mathscr{A})$, where $B(\mathscr{A})$ denotes the closed linear hull of the set $\left\{1_{A}: A \in \mathscr{A}\right\}$ in the Banach lattice $B(X)$

[^0]of all bounded real functions on X. An additive real set function with values in $[0,1]$ is called probability content; $n b a(\mathscr{A})$ is the set of all probability contents on \mathscr{A}.

Given an invariant subalgebra \mathscr{B} of \mathscr{A} and $P \in n b a(\mathscr{B})_{G}$ we set

$$
F(P)_{G}=\left\{Q \in n b a(\mathscr{A})_{G}: Q \mid \mathscr{B}=P\right\} .
$$

Obviously $F(P)_{G}$ is a convex set. Let F_{G} denote the space of all set functions $\mu \in b a(\mathscr{B})_{G}$ such that $F(|\mu|)_{G} \neq 0$. Furthermore, let

$$
\begin{gathered}
\mathscr{A}_{G}=\left\{A \in \mathscr{A}: g^{-1} A=A \text { for all } g \in G\right\}, \\
\mathscr{A}(I)_{G}=\left\{A \in \mathscr{A}: Q\left(g^{-1} A \Delta A\right)=0 \text { for all } g \in G, Q \in I\right\} \text { for } I \subset n b a(\mathscr{A})_{G},
\end{gathered}
$$

and

$$
\mathscr{A}(Q)_{G}=\mathscr{A}(\{Q\})_{G} \quad \text { for } Q \in n b a(\mathscr{A})_{G} .
$$

When dealing with σ-additive set functions we shall always assume that \mathscr{A} and \mathscr{B} are invariant σ-algebras. Let $c a(\mathscr{A})$ denote the space of all σ-additive real set functions on \mathscr{A}. Then $c a(\mathscr{A})_{G}$ is an order complete Banach sublattice of $c a(\mathscr{A})$. By nca($\mathscr{A})$ we denote the set of all probability measures on \mathscr{A}. Given $P \in n c a(\mathscr{B})_{G}$ we set

$$
E(P)_{G}=\left\{Q \in n c a(\mathscr{A})_{G}: Q \mid \mathscr{B}=P\right\} .
$$

Let E_{G} denote the space of all set functions $\mu \in c a(\mathscr{B})_{G}$ such that $E(|\mu|)_{G} \neq 0$. For the following information see [14].

Proposition 2.1. (a) $\quad F_{G}\left(\right.$ resp. $\left.E_{G}\right)$ is a band in ba $(\mathscr{B})_{G}\left(\right.$ resp. ca $\left.(\mathscr{B})_{G}\right)$.
(b) Suppose $\mu_{0} \leq \mu \in F_{G}\left(\right.$ resp. $\left.E_{G}\right)$ for $\mu_{0} \in b a_{+}(\mathscr{B})_{G}\left(\right.$ resp. ca $\left.a_{+}(\mathscr{B})_{G}\right)$. Then for each $v \in F(\mu)_{G}\left(\right.$ resp. $\left.E(\mu)_{G}\right)$ there exists $v_{0} \in F\left(\mu_{0}\right)_{G}\left(\right.$ resp. $\left.E\left(\mu_{0}\right)_{G}\right)$ that satisfies $v_{0} \leq \nu$.

Given a convex set K we shall denote by ex K the set of all extreme points of K.

A semigroup G is called left amenable (LA) if there exists a left invariant mean on G, i.e. a positive linear form m on $B(G)$ satisfying $m\left(1_{G}\right)=1$ (or equivalently, a probability content on $\mathfrak{P}(G)$) which is invariant under the left translation operators. By interchanging "right" and "left" we obtain the definition of right amenable (RA) semigroups. A semigroup G is called extremely left amenable (ELA) if there exists a left invariant mean on G which is multiplicative.

3. Extreme invariant extensions of measures

Throughout this section \mathscr{B} and \mathscr{A} are invariant σ-algebras on X with $\mathscr{B} \subset \mathscr{A}$ and P is an invariant probability measure on \mathscr{B}.

The proof of our first observation is also suitable for probability contents.

Proposition 3.1. Assume ex $E(P)_{G} \neq 0$. Then the following statements are equivalent:
(a) ex $E(P)_{G}=E(P)_{G} \cap \operatorname{exnca}(\mathscr{A})_{G}$.
(b) P is an extreme point of nca $(\mathscr{B})_{G}$.
(c) The cone $\mathbf{R}_{+} \cdot E(P)_{G}$ is hereditary to the left in the cone $c a_{+}(\mathscr{A})_{G}$, i.e. $v \in c a_{+}(\mathscr{A})_{G}, \mu \in \mathbf{R}_{+} \cdot E(P)_{G}, v \leq \mu$ imply $v \in \mathbf{R}_{+} \cdot E(P)_{G}$.
(d) $E(P)_{G}$ is a face of $n c a(\mathscr{A})_{G}$, i.e. $Q \in E(P)_{G}, Q_{1}, Q_{2} \in n c a(\mathscr{A})_{G}$, $Q=\left(Q_{1}+Q_{2}\right) / 2$ imply $Q_{1}, Q_{2} \in E(P)_{G}$.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$ If $P=\left(P_{1}+P_{2}\right) / 2$ with $P_{1}, P_{2} \in n c a(\mathscr{B})_{G}$ and $Q \in$ ex $E(P)_{G}$, then according to Proposition 2.1 there exists a measure $Q_{1} \in E\left(P_{1}\right)_{G}$ such that $Q_{1} \leq 2 Q$. Defining $Q_{2}=2 Q-Q_{1}$ we have $Q_{2} \in E\left(P_{2}\right)_{G}$ and $Q=\left(Q_{1}+Q_{2}\right) / 2$. Since, by $\left.(a), Q \in \operatorname{ex~nca(\mathscr {A}}\right)_{G}$, it follows that $Q_{1}=Q_{2}$ and hence, $P_{1}=P_{2}$.
(b) \Rightarrow (c) Assume $v \in c a_{+}(\mathscr{A})_{G}, \mu \in \mathbf{R}_{+} \cdot E(P)_{G}$ with $v \leq \mu$ and $0 \neq v \neq \mu$.

Let $\alpha=\nu(X)$ and $\beta=\mu(X)$. Defining invariant probability measures on \mathscr{A} by

$$
Q=\beta^{-1} \mu, \quad Q_{1}=\alpha^{-1} v \quad \text { and } \quad Q_{2}=\beta(\beta-\alpha)^{-1}\left(Q-\beta^{-1} v\right)
$$

we obtain $Q \in E(P)_{G}$ and $Q=\alpha \beta^{-1} Q_{1}+\left(1-\alpha \beta^{-1}\right) Q_{2}$. According to (b) this implies $Q_{1}, Q_{2} \in E(P)_{G}$; hence $v \in \mathbf{R}_{+} \cdot E(P)_{G}$.
(c) $\Rightarrow(d) \Rightarrow(a)$ is obvious.

The following generalization of the characterization of extreme invariant probability measures as ergodic measures is due to the author [14, Theorem 7].

Theorem 3.2. Let $Q \in E(P)_{G}$. Then Q is an extreme point of $E(P)_{G}$ if and only if for each $A \in \mathscr{A}(Q)_{G}$ there exists $B \in \mathscr{B}$ with $Q(A \Delta B)=0$.

In a situation treated by Bierlein [3] (without invariance considerations) we can conclude the existence of extreme points.

Corollary 3.3. Let \mathscr{A} be the σ-algebra generated by $\mathscr{B} \cup\left\{A_{n}: n \in \mathbf{N}\right\}$, where $A_{n}, n \in \mathbf{N}$ are disjoint invariant subsets of X. Then ex $E(P)_{G} \neq 0$.

Proof. We may assume $\bigcup_{n=1}^{\infty} A_{n}=X$. Obviously

$$
\mathscr{A}=\left\{\bigcup_{n=1}^{\infty}\left(A_{n} \cap B_{n}\right): B_{n} \in \mathscr{B} \text { for all } n \in \mathbf{N}\right\}
$$

is invariant. For the \mathscr{B}-measurable kernel $C_{n}\left(\right.$ resp. hull $\left.D_{n}\right)$ of A_{n} we have C_{n}, $D_{n} \in \mathscr{B}(P)_{G}$. Defining $\delta_{n}=1_{D_{n}}-1_{C_{n}}$,
$\Lambda=\left\{\lambda=\left(\lambda_{n}\right)_{n \in \mathbb{N}}\right.$:
λ_{n} is a real $\mathscr{B}(P)_{G}$-measurable function on X such that

$$
\left.0 \leq \lambda_{n} \leq 1 \text { and } \sum_{n=1}^{\infty}\left(1_{C_{n}}+\lambda_{n} \delta_{n}\right)=1 \text { P-a.e. }\right\}
$$

and

$$
Q^{\lambda}\left(\bigcup_{n=1}^{\infty}\left(A_{n} \cap B_{n}\right)\right)=\sum_{n=1}^{\infty} \int_{B_{n}}\left(1_{C_{n}}+\lambda_{n} \delta_{n}\right) d P \quad \text { for } \lambda \in \Lambda,
$$

we have according to Bierlein [3, Satz 2A] and some simple invariance considerations $E(P)_{G}=\left\{Q^{\lambda}: \lambda \in \Lambda\right\}$.

We will show

$$
\operatorname{ex} E(P)_{G}=\left\{Q^{\lambda}: \lambda \in \Lambda_{0}\right\},
$$

where
$\Lambda_{0}=$
$\left\{\lambda=\left(\lambda_{n}\right)_{n \in \mathbf{N}}: \lambda \in \Lambda, \lambda_{n}\left|D_{n}\right| C_{n}\right.$ is an indicator function P-a.e. for all $\left.n \in \mathbf{N}\right\}$.
If $Q^{\lambda} \in \operatorname{ex} E(P)_{G}$, then according to Theorem 3.2 there exist $B_{n} \in \mathscr{B}$ with $Q^{\lambda}\left(A_{n} \Delta B_{n}\right)=0$ for all $n \in \mathbf{N}$. Since

$$
Q^{\lambda}\left(A_{n} \Delta B_{n}\right)=\int_{B_{c}^{n}}\left(1_{C_{n}}+\lambda_{n} \delta_{n}\right) d P+\int_{B_{n}}\left[1-\left(1_{C_{n}}+\lambda_{n} \delta_{n}\right)\right] d P
$$

we obtain $\lambda_{n}\left|D_{n}\right| C_{n}=1_{B_{n}}\left|D_{n}\right| C_{n} P$-a.e.; hence $\lambda=\left(\lambda_{n}\right)_{n \in \mathbf{N}} \in \Lambda_{0}$. If, conversely, $\lambda=\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in \Lambda_{0}$, then by definition of Λ_{0} there exist $B_{n} \in \mathscr{B}, B_{n} \subset D_{n} \mid C_{n}$ such that

$$
\lambda_{n}\left|D_{n}\right| C_{n}=1_{B_{n}}\left|D_{n}\right| C_{n} \quad P \text {-a.e. for all } n \in \mathbf{N}
$$

Setting $B_{n}^{\prime}=B_{n} \cup C_{n}$ we obtain $Q^{\lambda}\left(A_{n} \Delta B_{n}^{\prime}\right)=0$ for all $n \in \mathbf{N}$. According to Theorem 3.2 this yields $Q^{\lambda} \in \operatorname{ex} E(P)_{G}$. From [3, Satz $2 B$] and obvious invariance considerations it now follows that ex $E(P)_{G} \neq 0$.

The following slightly more general result is an immediate consequence of Corollary 3.3 and arguments of Ascherl and Lehn [1].

Corollary 3.4. Let \mathscr{A} be the σ-algebra generated by $\mathscr{B} \cup\left\{A_{t}: t \in T\right\}$, where T is any indexing set and $A_{t}, t \in T$ are disjoint invariant subsets of X. Then ex $E(P)_{G} \neq 0$.

If G is ELA, then $\mathscr{A}(Q)_{G}=\mathscr{A}$ for any invariant probability content Q on \mathscr{A}; see Granirer [10, p. 58]. Hence, one obtains from Theorem 3.2:

Corollary 3.5. Assume that G is $E L A$ and $Q \in E(P)_{G}$. Then Q is an extreme point of $E(P)_{G}$ if and only if for each $A \in \mathscr{A}$ there exists $B \in \mathscr{B}$ with $Q(A \Delta B)=0$.

We will weaken the approximation assertion of Theorem 3.2 using the notion of pairwise sufficient σ-subalgebras. The latter were studied in this setting by Plachky [17] for $G=\left\{\mathrm{id}_{x}\right\}$, while Farrell [8] used the notion of sufficient σ-subalgebras in the case $\mathscr{B}=\{0, X\}$.

Given a σ-subalgebra \mathscr{C} of \mathscr{A} we set
$H(\mathscr{C})=\left\{Q \in E(P)_{G}:\right.$ for each $A \in \mathscr{C}$ there exists $B \in \mathscr{B}$ with $\left.Q(A \Delta B)=0\right\}$.
Theorem 3.6. For a σ-subalgebra \mathscr{C} of $\mathscr{A}\left(E(P)_{G}\right)_{G}$ consider the following statements:
(a) ex $E(P)_{G}=H(\mathscr{C})$.
(b) \mathscr{C} is pairwise sufficient for $H(\mathscr{C})$.
(c) \mathscr{C} is a determining σ-algebra for $H(\mathscr{C})$, i.e. $Q_{1}, Q_{2} \in H(\mathscr{C}), Q_{1}\left|\mathscr{C}=Q_{2}\right| \mathscr{C}$ imply $Q_{1}=Q_{2}$.
Then $(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{a})$ and if $\mathscr{B}(P)_{G} \subset \mathscr{C}$, then all statements are equivalent.
Proof. (b) \Rightarrow (c) Let $Q_{1}, Q_{2} \in H(\mathscr{C})$ such that $Q_{1}\left|\mathscr{C}=Q_{2}\right| \mathscr{C}$. Then for $A \in \mathscr{A}$ we obtain

$$
Q_{1}(A)=\int E\left(1_{A} \mid \mathscr{C}\right) \mathrm{d} Q_{1}=\int E\left(1_{A} \mid \mathscr{C}\right) d Q_{2}=Q_{2}(A)
$$

where $E\left(1_{A} \mid \mathscr{C}\right)$ denotes a simultaneous version of the \mathscr{C}-conditional probabilities of A with respect to Q_{1} and Q_{2}.
(c) \Rightarrow (a) According to Theorem 3.2 clearly ex $E(P)_{G} \subset H(\mathscr{C})$ holds. If conversely $Q \in H(\mathscr{C}), Q=\left(Q_{1}+Q_{2}\right) / 2$ with $Q_{1}, Q_{2} \in E(P)_{G}$, then $Q_{1}, Q_{2} \in H(\mathscr{C})$ and $Q_{1}\left|\mathscr{C}=Q_{2}\right| \mathscr{C}$. By hypothesis this implies $Q_{1}=Q_{2}$ and hence, $Q \in \mathrm{ex}$ $E(P)_{G}$.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$ Let us now assume that $\mathscr{B}(P)_{G} \subset \mathscr{C}$. Let $Q_{1}, Q_{2} \in H(\mathscr{C})$ and $Q=\left(Q_{1}+Q_{2}\right) / 2$. Define measures Q_{i}^{\prime} on \mathscr{A} by

$$
Q_{i}^{\prime}(A)=\int_{A} \frac{d\left(Q_{i} \mid \mathscr{C}\right)}{d(Q \mid \mathscr{C})} d Q, \quad i=1,2 .
$$

Then Q_{1}^{\prime} and Q_{2}^{\prime} are invariant probability measures on \mathscr{A} such that $Q_{i}^{\prime} \mid \mathscr{C}=$ $Q_{i} \mid \mathscr{C}, i=1,2$. Since $\mathscr{B}(P)_{G} \subset \mathscr{C}$, this implies $Q_{1}^{\prime}, Q_{2}^{\prime} \in E(P)_{G}[16,10.2]$ and hence, $Q_{1}^{\prime}, Q_{2}^{\prime} \in H(\mathscr{C})$ and moreover $\left(Q_{i}^{\prime}+Q_{i}\right) / 2 \in H(\mathscr{C}), i=1,2$. According to (a) we obtain $Q_{i}^{\prime}=Q_{i}$, and it follows that

$$
\frac{d Q_{i}}{d Q}=\frac{d\left(Q_{i} \mid \mathscr{C}\right)}{d(Q \mid \mathscr{C})} Q \text {-a.e. for } i=1,2
$$

This implies that \mathscr{C} is sufficient for $\left\{Q_{1}, Q_{2}\right\}$ (cf. [22, Satz 3.21]).
The following example shows that in general ex $E(P)_{G}=H(\mathscr{C})$ for a σ algebra \mathscr{C} with $\mathscr{B}(P)_{G} \subset \mathscr{C} \subset \mathscr{A}\left(E(P)_{G}\right)_{G}$ does not imply that \mathscr{C} is pairwise sufficient for $E(P)_{G}$, even in the case $\mathscr{B}=\{0, X\}$.

Example 3.7. Let $X=(-1,0) \cup(0,1), \mathscr{A}$ the Borel σ-algebra on X, and $\mathscr{B}=\{0, X\}$. For $x \in(0,1)$ define bijective mappings $g_{x}: X \rightarrow X$ by

$$
g_{x}=\operatorname{id}_{x} 1_{\{-x, x\}^{c}}+x 1_{\{-x\}}-x 1_{\{x\}}
$$

and let G denote the group generated by $\left\{g_{x}: x \in(0,1)\right\}$. Then

$$
\mathscr{A}_{\mathrm{G}}=\mathscr{A}\left(n c a(\mathscr{A})_{\mathrm{G}}\right)_{\mathrm{G}}=\{A \in \mathscr{A}: A=-A\} .
$$

Clearly we have

$$
\left\{\left(\delta_{x}+\delta_{-x}\right) / 2: x \in(0,1)\right\} \subset \operatorname{ex} n c a(\mathscr{A})_{G} \subset H\left(\mathscr{A}_{G}\right)
$$

where δ_{x} denotes the unit mass on \mathscr{A} placed at the point x. To see that

$$
H\left(\mathscr{A}_{G}\right) \subset\left\{\left(\delta_{x}+\delta_{-x}\right) / 2: x \in(0,1)\right\}
$$

let $Q \in H\left(\mathscr{A}_{G}\right)$ and denote the $\{0,1\}$-valued measure $Q \mid \mathscr{A}_{G}$ by Q_{0}. Since Q is inner regular with respect to compact sets it is easily verified that Q_{0} is inner regular, i.e.

$$
Q_{0}(A)=\sup \left\{Q_{0}(K): K \subset A, K \text { compact, } K \in \mathscr{A}_{G}\right\} \quad \text { for all } A \in \mathscr{A}_{G} .
$$

This implies that $Q_{0}(\{x,-x\})=1$ for some $x \in X$. In view of the invariance of Q we obtain $Q=\left(\delta_{x}+\delta_{-x}\right) / 2$. But according to Luschgy [13, Example 2], \mathscr{A}_{G} is not pairwise sufficient for $n c a(\mathscr{A})_{G}$.

Next we will show that for certain LA semigroups G the extreme points of $E(P)_{G}$ are those invariant extensions of P whose $\mathscr{B}(P)_{G}$-conditional probabilities are multiplicative modulo an averaging process with respect to any left invariant mean on G.

Let us introduce some more notations. For a subset H of G, set

$$
g^{-1} H=\{h \in G: g h \in H\} .
$$

A measurable space (X, \mathscr{A}) is called Blackwell space if \mathscr{A} is countably generated and the range of every real measurable function on X is Souslin (i.e. a continuous image of a polish space). If (X, \mathscr{A}) is a Blackwell space, then there exists a regular $\mathscr{B}(P)_{G}$-conditional probability of any probability measure Q on \mathscr{A} denoted by R_{Q}. Furthermore, let Q_{*} denote inner measure of Q.

Theorem 3.8. Suppose that (X, \mathscr{A}) is a Blackwell space, that G is $L A$, and that the following conditions are satisfied:
(i) There exists a left invariant σ-algebra \mathscr{G} on G such that the action $G \times X \rightarrow X,(g, x) \mapsto g x$ is $(\mathscr{G} \otimes \mathscr{A}, \mathscr{A})$-measurable and a non-zero, σ-finite quasi-left invariant measure ω on \mathscr{G}, i.e. $\omega(H)=0$ implies $\omega^{g}(H)=\omega\left(g^{-1} H\right)=0$ for all $g \in G, H \in \mathscr{G}$.
(ii) There exists a countably generated σ-subalgebra \mathscr{C} of $\mathscr{A}\left(n c a(\mathscr{A})_{G}\right)_{G}$ that is pairwise sufficient for nca $(\mathscr{A})_{G}$.

Then for $Q \in E(P)_{G}$ the following assertions are equivalent:
(a) Q is an extreme point of $E(P)_{G}$.
(b) For each left invariant mean m on G we have

$$
Q_{*}\left(\left\{x \in X: m\left(R_{Q}\left(x, g^{-1} A \cap B\right)\right)=R_{Q}(x, A) R_{Q}(x, B)\right\}\right)=1
$$

for all $A, B \in \mathscr{A}$.
(c) For some mean m on G we have

$$
Q_{*}\left(\left\{x \in X: m\left(R_{Q}\left(x, g^{-1} A \cap B\right)\right)=R_{Q}(x, A) R_{Q}(x, B)\right\}\right)=1
$$

for all $A, B \in \mathscr{A}$.
Proof. We may assume that ω is a probability measure. For shorter notation set $R=R_{Q}$. We will show that $R(x, \cdot)$ is an invariant probability measure on \mathscr{A} for all x in some P-null set. It is easily seen that the function

$$
G \times X \rightarrow[0,1], \quad(g, x) \mapsto R\left(x, g^{-1} A\right)
$$

is $\mathscr{G} \otimes \mathscr{B}(P)_{G}$-measurable for all $A \in \mathscr{A}$. Furthermore,

$$
R\left(\cdot, g^{-1} A\right)=R(\cdot, A) \quad P \text {-а.е. }
$$

is valid for all $g \in G, A \in \mathscr{A}$. For $A \in \mathscr{A}$ set

$$
S(A)=\left\{(g, x) \in G \times X: R\left(x, g^{-1} A\right) \neq R(x, A)\right\}
$$

then $S(A) \in \mathscr{G} \otimes \mathscr{B}(P)_{G}$ and $P\left(S(A)_{g}\right)=0$ for all $g \in G$. Setting

$$
N(A)=\left\{x \in X: \omega\left(S(A)_{x}\right)>0\right\}
$$

we obtain according to Fubini's theorem $N(A) \in \mathscr{B}(P)_{G}$ and $P(N(A))=0$. Define

$$
R_{0}(x, A)=\int R\left(x, g^{-1} A\right) d \omega(g) \text { for } x \in X, A \in \mathscr{A}
$$

Then $R_{0}(\cdot, A)$ is $\mathscr{B}(P)_{G}$-measurable for all $A \in \mathscr{A}$ and $R_{0}(x, \cdot) \in n c a(\mathscr{A})$ for all $x \in X$. Let \mathscr{A}_{0} be a countable algebra that generates \mathscr{A} and set $N_{0}=\bigcup_{A \in \mathscr{A}_{0}} N(A)$. Then $P\left(N_{0}\right)=0$ and since

$$
N(A)^{c} \subset\left\{x \in X: R_{0}(x, A)=R\left(x, g^{-1} A\right) \omega \text {-a.e. }\right\}
$$

we obtain

$$
\begin{aligned}
R_{0}\left(x, h^{-1} A\right) & =\int R\left(x,(h g)^{-1} A\right) d \omega(g) \\
& =\int R\left(x, g^{-1} A\right) d \omega^{h}(g)=\int R_{0}(x, A) d \omega^{h}(g) \\
& =R_{0}(x, A) \text { for all } x \in N_{0}^{c}, A \in \mathscr{A}_{0}, h \in G .
\end{aligned}
$$

This implies $R_{0}(x, \cdot) \in n c a(\mathscr{A})_{G}$ for all $x \in N_{0}^{c}$. Finally, since

$$
N(A)^{c} \subset\left\{x \in X: R(x, A)=R_{0}(x, A)\right\}
$$

we have $R(x, A)=R_{0}(x, A)$ for all $x \in N_{0}^{c}, A \in \mathscr{A}_{0}$. This yields $R(x, \cdot)=$ $R_{0}(x, \cdot)$ for all $x \in N_{0}^{c}$ and hence, $R(x, \cdot) \in n c a(\mathscr{A})_{G}$ for all $x \in N_{0}^{c}$.
(a) \Rightarrow (b) Note first that $R(x, \cdot) \in$ ex $n c a(\mathscr{A})_{G}$ for all x in some Q-null set. In fact, if $A \in \mathscr{C}$, then according to Theorem 3.2 there exists $B \in \mathscr{B}$ with $Q(A \Delta B)=\int R(x, A \Delta B) d Q=0$, which yields $R(\cdot, A)=1_{A} Q$-a.e. Since \mathscr{C} is
countably generated, this implies $R(x, \cdot)\left|\mathscr{C}=\delta_{x}\right| \mathscr{C}$ for all x in some Q-null set N_{1}, thus according to Theorem $3.6 R(x, \cdot) \in \operatorname{ex} n c a(\mathscr{A})_{G}$ for all $x \in N^{c}$, where $N=N_{0} \cup N_{1}, Q(N)=0$.

Now let m be a left invariant mean on G and $x \in N^{c}$. For $A, B \in \mathscr{A}$ define

$$
U(x, A)=m\left(R\left(x, g^{-1} A \cap B\right)\right)-R(x, A) R(x, B)
$$

It is easily seen that $R(x, \cdot) \pm U(x, \cdot)$ are invariant probability contents on \mathscr{A} and $R(x, \cdot) \pm U(x, \cdot) \leq 2 R(x, \cdot)$ ensures that $R(x, \cdot) \pm U(x, \cdot)$ are σ-additive. This implies $U(x, \cdot)=0$.
(b) \Rightarrow (c) Clear.
(c) \Rightarrow (a) Let $C \in \mathscr{C}$. Since $\mathscr{C} \subset \mathscr{A}\left(n c a(\mathscr{A})_{G}\right)_{G}$, we have, by (c),

$$
R(\cdot, C \cap A)=R(\cdot, C) R(\cdot, A) Q \text {-a.e. for all } A \in \mathscr{A}
$$

This implies $Q(C \cap A)=\int R(x, C) 1_{A} d Q$ for all $A \in \mathscr{A}$ and hence, $R(\cdot, C)=$ $1_{C} Q$-a.e. Setting $B=\{R(\cdot, C)=1\}$ we obtain $B \in \mathscr{B}(P)_{G}$ and $Q(C \Delta B)=0$. Thus $Q \in \operatorname{ex} E(P)_{G}$ follows from Theorem 3.6.

Remarks. (1) If G is a locally compact second countable Hausdorff group or an Abelian locally compact second countable Hausdorff semigroup which admits a non-zero sub-invariant measure ω with $\omega(K)<\infty$ for all compact subsets K of G such that the action of G on X is measurable with respect to the Borel σ-algebra on G, then condition (i) and (ii) are satisfied; see Farrell [8, Theorem 3].
(2) It is not without interest to observe that in general the extreme points of $E(P)_{G}$ are not pairwise orthogonal, in contrast to the case $\mathscr{B}=\{\theta, X\}$; compare Blum and Hanson [4] Corollary 2, for $\mathscr{B}=\{0, X\}$.

4. Extremal integral representations

In this section X is a topological Hausdorff space with its Borel σ-algebra \mathscr{A} and \mathscr{B} is a σ-subalgebra of $\mathscr{A} . G$ is a semigroup which acts from the left on X such that \mathscr{B} and \mathscr{A} are invariant σ-algebras and P is an invariant probability measure on \mathscr{B}. Let $n c a(\mathscr{A}, r)$ denote the set of all Borel probability measures on X which are inner regular with respect to compact sets. We set $E(P, r)_{G}=$ $E(P)_{G} \cap n c a(\mathscr{A}, r)$; then ex $E(P, r)_{G}=\operatorname{ex~} E(P)_{G} \cap n c a(\mathscr{A}, r)_{G}$. As an application of an integral representation theorem of v. Weizsäcker and Winkler [20] for convex non-compact sets of inner regular measures we will give an integral representation for every $Q \in E(P, r)_{G}$.

Let τ denote the narrow topology on $n c a(\mathscr{A}, r)$. Then τ is Hausdorff (cf. [19, p. 371]). For a family \mathscr{F} of bounded real Borel functions on X let $\sigma(\mathscr{F})$ be the initial topology on $n c a(\mathscr{A}, r)$ of the functions $Q \mapsto \int f d Q, f \in \mathscr{F}$; by $\tau(\mathscr{F})$ we denote the topology generated by τ and $\sigma(\mathscr{F})$. The Hausdorff topology $\tau(\mathscr{F})$ is called admissible if \mathscr{F} is countable. Let $\sum\left(\operatorname{ex~} E(P, r)_{G}\right)$ denote the σ-algebra on ex $E(P, r)_{G}$ generated by the functions $Q \mapsto Q(A), A \in \mathscr{A}$.

Proposition 4.1. Suppose that at least one of the conditions (i)-(iv) and one of the conditions (v)-(viii) is satisfied:
(i) \mathscr{B} is countably generated.
(ii) \mathscr{B} is generated by a family of bounded real continuous functions on X.
(iii) $\mathscr{B}=\phi^{-1}(\mathscr{C})$ for some continuous mapping $\phi: X \rightarrow Y$, where Y is a topological Hausdorff space with its Borel σ-algebra \mathscr{C}.
(iv) P is inner regular, i.e.

$$
P(B)=\sup \{P(K): K \subset B, K \text { compact, } K \in \mathscr{B}\} \quad \text { for all } B \in \mathscr{B} .
$$

(v) G acts continuously on X.
(vi) G is countable and \mathscr{A} is countably generated.
(vii) G has a countable dense subsemigroup with respect to the initial topology on G of the mappings $g \mapsto g x, x \in X, X$ is metrizable, and \mathscr{A} is countably generated.
(viii) G is a locally compact second countable Hausdorff group, the action $G \times X \rightarrow X,(g, x) \mapsto g x$ is $(\mathscr{G} \otimes \mathscr{A}, \mathscr{A})$-measurable (\mathscr{G} is the Borel σ-algebra), and \mathscr{A} is countably generated.

Then for every $Q \in E(P, r)_{G}$ there exists a probability measure ρ on $\sum(\mathrm{ex}$ $\left.E(P, r)_{G}\right)$ such that

$$
Q(A)=\int Q^{\prime}(A) d \rho\left(Q^{\prime}\right) \text { for all } A \in \mathscr{A}
$$

Proof. According to v. Weizsäcker and Winkler [20, Theorem 1] it suffices to prove that $E(P, r)_{G}$ is closed with respect to some admissible topology on $n c a(\mathscr{A}, r)$. We show first that under any one of the conditions (i)-(iv) $E(P, r)$ is closed with respect to some admissible topology.

Assume (i). Set $\mathscr{F}=\left\{1_{B}: B \in \mathscr{B}_{0}\right\}$, where \mathscr{B}_{0} is a countable algebra generating \mathscr{B}. Clearly $E(P, r)$ is $\tau(\mathscr{F})$-closed.

Assume (ii). Then \mathscr{B} is generated by $\mathscr{E} \subset C_{b}(X)$. Let $\widehat{\mathscr{E}}$ denote the smallest vector sublattice of $C_{b}(X)$ that contains \mathscr{E} and 1_{X}. Since $\hat{\mathscr{E}} \subset B(\mathscr{B}) \cap C_{b}(X), \mathscr{B}$ is generated by $\hat{\mathscr{E}}$. Now let $\left(Q_{\alpha}\right)_{\alpha}$ be a net in $E(P, r), Q \in n c a(\mathscr{A}, r)$ such that $\lim _{\alpha} Q_{\alpha}=Q$ with respect to τ. Then $\lim _{\alpha} \int f d Q_{\alpha}=\int f d Q$ for all $f \in C_{b}(X)$ which yields $\int f d P=\int f d Q$ for all $f \in \widehat{\mathscr{E}}$. This implies $Q \in E(P, r)(\mathrm{cf}.[2,39.3])$ and hence, $E(P, r)$ is τ-closed.

Assume (iii). Consider a net $\left(Q_{\alpha}\right)_{\alpha}$ in $E(P, r), Q \in n c a(\mathscr{A}, r)$ such that $\lim _{\alpha} Q_{\alpha}=Q$ with respect to τ. Then $\lim _{\alpha} Q_{\alpha}^{\phi}=Q^{\phi}$ narrowly in $n c a(\mathscr{C}, r)(\mathrm{cf}$. [19, p. 372]). Since $Q_{\alpha}^{\phi}=P^{\phi}$ for all α, we obtain $Q^{\phi}=P^{\phi}$ and hence, $Q \in E(P, r)$. Thus $E(P, r)$ is τ-closed.

Assume (iv). Let $\left(Q_{\alpha}\right)_{\alpha}$ be a net in $E(P, r), Q \in n c a(\mathscr{A}, r)$ such that $\lim _{\alpha} Q_{\alpha}=Q$ with respect to τ. Then $\lim _{\alpha} Q_{\alpha}(K) \leq Q(K)$ for every compact set K which yields $P(K) \leq Q(K)$ for all $K \in \mathscr{B}, K$ compact. Inner regularity of P and Q implies $Q \in E(P, r)$ and hence, $E(P, r)$ is τ-closed.

To complete the proof we remark that under any one of the conditions (v)-(viii) $n c a(\mathscr{A}, r)_{G}$ is closed with respect to some admissible topology. For (v)
and (vi) compare v. Weizsäcker and Winkler [21, Proposition 8]. For (vii) (resp. (viii)) let G_{0} be a countable dense subsemigroup (resp. subgroup) of G, \mathscr{A}_{0} a countable algebra generating \mathscr{A}, and set

$$
\mathscr{F}=\left\{1_{g-1_{A}}: A \in \mathscr{A}_{0}, g \in G_{0}\right\} .
$$

Consider the limit Q of a net in $n c a(\mathscr{A}, r)_{G}$ with respect to the admissible topology $\tau(\mathscr{F})$. It is obvious that Q is G_{0}-invariant and according to arguments of Farrell [8] (proofs of Corollary 3 and Corollary 4) Q is invariant. Hence, $n c a(\mathscr{A}, r)_{G}$ is $\tau(\mathscr{F})$-closed.

Remarks. (1) For the existence of extreme points and hence, for the integral representation in $E(P, r)_{G}$ the assumptions for \mathscr{B} and G cannot be dropped. For \mathscr{B} see f.e. Plachky [18]. For G let $X=\mathbf{R}$ and consider the semigroup

$$
G=\left\{g \in X^{X}: \#\{x \in X: g x \neq x\}<\infty\right\}
$$

and $\mathscr{B}=\{0, X\}$. Then $n c a(\mathscr{A}, r)_{G}=n c a(\mathscr{A})_{G}=\{Q \in n c a(\mathscr{A}): Q$ is non-atomic $\}$ but ex $n c a(\mathscr{A})_{G}=0$.
(2) It is easily seen by simple examples that the above integral representation is in general not unique.

5. Extreme invariant extensions of contents

Throughout this section \mathscr{B} and \mathscr{A} are invariant algebras on X with $\mathscr{B} \subset \mathscr{A}$ and P is an invariant probability content on \mathscr{B}. Then the convex set $F(P)_{G}$ of all invariant probability contents on \mathscr{A} which extend P is $\sigma(b a(\mathscr{A}), B(\mathscr{A}))$ compact. Hence, according to the theorem of Krein-Milman, ex $F(P)_{G} \neq 0$ iff $F(P)_{G} \neq 0$. Moreover, according to the theorem of Bishop-de Leeuw, for every $Q \in F(P)_{G}$ there exists a (non-unique) probability measure ρ on $\sum\left(\right.$ ex $\left.F(P)_{G}\right)$ (cf. Section 4) such that $Q(A)=\int Q^{\prime}(A) d \rho\left(Q^{\prime}\right)$ for all $A \in \mathscr{A}$.

Analogous to Proposition 3.1 we have:
Proposition 5.1. Assume $F(P)_{G} \neq 0$. Then the following statements are equivalent:
(a) ex $F(P)_{G}=F(P)_{G} \cap$ ex $n b a(\mathscr{A})_{G}$.
(b) P is an extreme point of $n b a(\mathscr{B})_{G}$.
(c) The cone $\mathbf{R}_{+} \cdot F(P)_{G}$ is hereditary to the left in the cone $b a_{+}(\mathscr{A})_{G}$.
(d) $F(P)_{G}$ is a face of $n b a(\mathscr{A})_{G}$.

We need the following information (cf. [7, IV.6.18, IV.9.10 and IV.9.11]). Let X^{\prime} be the Stone representation space of \mathscr{A} so that X may be identified with the $\sigma(b a(\mathscr{A}), B(\mathscr{A}))$-compact totally disconnected Hausdorff space of $\{0,1\}$-valued probability contents on \mathscr{A}. Then the evaluation map $T: B(\mathscr{A}) \rightarrow C\left(X^{\prime}\right)$ is an isometric lattice isomorphism onto $C\left(X^{\prime}\right)$. Let $\mathscr{A}^{\prime \prime}$ be the algebra of clopen subsets of X^{\prime}. Then the map $\phi: \mathscr{A} \rightarrow \mathscr{A}^{\prime \prime}$ defined by $\phi(A)=\left\{T\left(1_{A}\right)=1\right\}$ is an isomorphism of \mathscr{A} onto $\mathscr{A}^{\prime \prime}$. By \mathscr{A}^{\prime} we denote the σ-algebra generated by
$\mathscr{A}^{\prime \prime}\left(\mathscr{A}^{\prime}\right.$ is the Baire σ-algebra). $\quad \phi$ induces an isometric lattice isomorphism U of $b a(\mathscr{A})$ onto $c a\left(\mathscr{A}^{\prime}\right)$ determined by $U \mu(C)=\mu\left(\phi^{-1} C\right), C \in \mathscr{A}^{\prime \prime} . \quad G$ acts continuously from the left on X^{\prime}, hence $\mathscr{A}^{\prime \prime}$ and \mathscr{A}^{\prime} are invariant. Since $g^{-1} \phi(A)=$ $\phi\left(g^{-1} A\right)$ for all $g \in G, A \in \mathscr{A}$, we obtain $U\left(b a(\mathscr{A})_{G}\right)=c a\left(\mathscr{A}^{\prime}\right)_{G}$. Let \mathscr{B}^{\prime} be the invariant σ-subalgebra of \mathscr{A}^{\prime} generated by the invariant algebra $\mathscr{B}^{\prime \prime}=\phi(\mathscr{B})$ and let $P^{\prime} \in n c a\left(\mathscr{B}^{\prime}\right)_{G}$ be the (uniquely determined) extension of $P^{\prime \prime}$ defined by $P^{\prime \prime}(C)=P\left(\phi^{-1} C\right), C \in \mathscr{B}^{\prime \prime}$. Then $U\left(F(P)_{G}\right)=E\left(P^{\prime}\right)_{G}$.

From this facts and Theorem 3.2 we obtain the following generalization of results of Olshen [15] and Plachky [18].

Theorem 5.2. For $Q \in F(P)_{G}$ the following statements are equivalent:
(a) Q is an extreme point of $F(P)_{G}$.
(b) For each sequence $\left(A_{n}\right)_{n}$ in \mathscr{A} such that

$$
\lim _{n, m \rightarrow \infty} Q\left(A_{n} \Delta A_{m}\right)=0 \text { and } \lim _{n \rightarrow \infty} Q\left(A_{n} \Delta g^{-1} A_{n}\right)=0
$$

for all $g \in G$ and for each $\varepsilon>0$ there exists $B \in \mathscr{B}$ with $\inf _{n} Q\left(A_{n} \Delta B\right)<\varepsilon$.
Corollary 5.3. Assume that G is $E L A$ and $Q \in F(P)_{G}$. Then Q is an extreme point of $F(P)_{G}$ if and only if for each $A \in \mathscr{A}$ and $\varepsilon>0$ there exists $B \in \mathscr{B}$ with $Q(A \Delta B)<\varepsilon$.

Remark. If G is LA, then according to a fixed point theorem of Day [5], $F(P)_{G}=0$ and hence, ex $F(P)_{G} \neq 0$. If moreover G is ELA, then in view of Corollary 5.3 there exists $Q \in F(P)_{G}$ such that the closures of the set of all values of Q and P are equal. This is an invariant version of a result due to Sikorski (cf. [12]).

For the following theorem let us remark that G acts from the right on $B(\mathscr{A})$ by $G \times B(\mathscr{A}) \rightarrow B(\mathscr{A}),(g, f) \mapsto g f$ such that $g f(x)=f(g x), x \in X$.

Theorem 5.4. Assume that G is $R A$ and that at least one of the following conditions is satisfied:
(i) G admits a discrete right invariant mean.
(ii) G is $L A, \mathscr{A}$ is a σ-algebra, and the action of G on $B(\mathscr{A})$ is weakly almost periodic, i.e. for each $f \in B(\mathscr{A})$ the set $\{g f: g \in G\}$ is relatively weakly compact.

Then $Q \in F(P)_{G}$ is an extreme point of $F(P)_{G}$ if and only if for each $A \in \mathscr{A}_{G}$ and $\varepsilon>0$ there exists $B \in \mathscr{B}$ with $Q(A \Delta B)<\varepsilon$.

There is an extensive discussion by Granirer [9] of semigroups which satisfy (i). Theorem 5.4 is an immediate consequence of Theorem 5.2 and the following lemma. Let $D(\mathscr{A})$ denote the linear hull of the set $\left\{1_{g^{-1 / A}}-1_{A}: A \in \mathscr{A}, g \in G\right\}$.

Lemma 5.5. In the situation of Theorem 5.4, \mathscr{A}_{G} is a determining algebra for $n b a(\mathscr{A})_{G}$.

Proof. Assume (i). Then according to Granirer [9, Theorem 4.2 and Remark 5.4] there exists a discrete right invariant mean m on G such that $H=\{h \in G: m(h)>0\}$ is finite $(m(h)=m(\{h\}))$. Observe that $H g=H$ for all $g \in G$. To see this consider $(H g) g^{-1}=\{k \in G: k g \in H g\}$ and $\{h g\} g^{-1}$ for $h \in H$, $g \in G$. Then

$$
1=m(H) \leq m\left((H g) g^{-1}\right)=m(H g) \leq 1
$$

and

$$
0<m(h) \leq m\left(\{h g\} g^{-1}\right)=m(h g) .
$$

We thus obtain $\mathscr{A}_{G}=\mathscr{A}_{H}$.
As before X^{\prime} denotes the Stone representation space of \mathscr{A} and \mathscr{A}^{\prime} the σ algebra generated by $\mathscr{A}^{\prime \prime}=\phi(\mathscr{A})$. Let $\left(\mathscr{A}_{H}\right)^{\prime \prime}=\phi\left(\mathscr{A}_{H}\right)$ and let $\left(\mathscr{A}_{H}\right)^{\prime}$ be the σ-subalgebra of \mathscr{A}^{\prime} generated by $\left(\mathscr{A}_{H}\right)^{\prime \prime}$. Then $\left(\mathscr{A}_{H}\right)^{\prime \prime}=\left(\mathscr{A}^{\prime \prime}\right)_{H}$ and moreover, $\left(\mathscr{A}_{H}\right)^{\prime}=\left(\mathscr{A}^{\prime}\right)_{H}$. In fact,

$$
\mathscr{M}=\left\{C \in \mathscr{A}^{\prime}: \bigcup_{h \in H} h^{-1} C \in\left(\mathscr{A}_{H}\right)^{\prime}\right\}
$$

is a monotone class containing $\mathscr{A}^{\prime \prime}$ and hence, $\mathscr{M}=\mathscr{A}^{\prime}$. Now suppose that Q_{1}, $Q_{2} \in \operatorname{nba}(\mathscr{A})_{G}$ with $Q_{1}\left|\mathscr{A}_{H}=Q_{2}\right| \mathscr{A}_{H}$. Then $Q_{1}^{\prime}\left(\mathscr{A}^{\prime}\right)_{H}=Q_{2}^{\prime}\left(\mathscr{A}^{\prime}\right)_{H}$, where $Q_{i}^{\prime}=U Q_{i}, i=1,2$. Since $\left(\mathscr{A}^{\prime}\right)_{H}$ is obviously sufficient for $n c a\left(\mathscr{A}^{\prime}\right)_{G}$, we obtain $Q_{1}^{\prime}=Q_{2}^{\prime}$ (cf. [8, Theorem 1]) and hence, $Q_{1}=Q_{2}$.

Assume (ii). Then according to a mean ergodic theorem of Dixmier [6] we have $B(\mathscr{A})=B\left(\mathscr{A}_{G}\right) \oplus D(\mathscr{A})^{-}$, where $D(\mathscr{A})^{-}$denotes the norm closure of $D(\mathscr{A})$. From this decomposition the assertion follows immediately.

For the reader's convenience we finally give some statements which are equivalent to the proposition $F(P)_{G} \neq 0$. Let $L(\mathscr{A})$ denote the linear hull of the set $\left\{1_{A}: A \in \mathscr{A}\right\}$ and let $M(P, \mathscr{A})$ denote the linear hull of the set

$$
\left\{1_{g^{-1} A}-1_{A}+1_{B}-P(B) 1_{B}: A \in \mathscr{A}, B \in \mathscr{B}, g \in G\right\} .
$$

Define $P_{e}: L(\mathscr{A}) \rightarrow \mathbf{R} \cup\{-\infty\}$ by

$$
P_{e}(f)=\inf \{P(h): f \leq h+d, h \in L(\mathscr{B}), d \in D(\mathscr{A})\} .
$$

Proposition 5.6. The following statements are equivalent:
(a) $F(P)_{G} \neq 0$.
(b) $P_{e}(f)>-\infty$ for some $f \in L(\mathscr{A})$.
(c) $P_{e}(f)>-\infty$ for each $f \in L(\mathscr{A})$.
(d) Whenever $n, m \geq 1,\left(B_{1}, \ldots, B_{n}\right) \in \mathscr{B}^{n},\left(C_{1}, \ldots, C_{m}\right) \in \mathscr{B}^{m}$, and $d \in D(\mathscr{A})$ are such that $\sum_{i=1}^{n} 1_{B_{i}} \geq \sum_{j=1}^{m} 1_{C_{j}}+d$, we have

$$
\sum_{i=1}^{n} P\left(B_{i}\right) \geq \sum_{j=1}^{m} P\left(C_{j}\right)
$$

(e) Whenever $h_{1}, h_{2} \in L(\mathscr{B})$ and $d \in D(\mathscr{A})$ are such that $h_{1} \geq h_{2}+d$, we have $P\left(h_{1}\right) \geq P\left(h_{2}\right)$.
(f) $\sup \{f(x): x \in X\} \geq 0$ for each $f \in M(P, \mathscr{A})$.
(g) $\inf \left\{\left\|f-1_{X}\right\|: f \in M(P, \mathscr{A})\right\}=1$.
(h) $1_{X} \notin M(P, \mathscr{A})^{-}$, where $M(P, \mathscr{A})^{-}$denotes the norm closure of $M(P, \mathscr{A})$.

Proof. (a) $\Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$. This follows from Klee [11].
(a) \Rightarrow (d) Obvious.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ Suppose that there exist $h_{1}, h_{2} \in L(\mathscr{B}), d \in D(\mathscr{A})$ such that $h_{1} \geq h_{2}+d$ and $P\left(h_{1}\right)<P\left(h_{2}\right)$. We may assume that $h_{i}(X) \subset Q, i=1,2$. Hence, there exists $n \in \mathbf{N}$ such that $n h_{i}(X) \subset \mathbf{Z}, i=1$, 2. The above inequalities are valid for $n h_{1}, n h_{2}$ and $n d$. But this contradicts (d).
(e) \Rightarrow (f) For $f \in M(P, \mathscr{A})$ we can find $h_{1}, h_{2} \in L(\mathscr{B}), d \in D(\mathscr{A})$ such that $f=d-h_{1}+h_{2}$ and $P\left(h_{1}\right)=P\left(h_{2}\right)$. Setting

$$
c=\sup \{f(x): x \in X\}
$$

we obtain $h_{1}+c 1_{X} \geq h_{2}+d$ and hence, by (e), $P\left(h_{1}\right)+c \geq P\left(h_{2}\right)$. This implies $c \geq 0$.
$(\mathrm{f}) \Rightarrow(\mathrm{g}) \Rightarrow(\mathrm{h})$. Obvious.
(h) \Rightarrow (a) A routine separation argument shows that there exists $\mu \in b a(\mathscr{A})$ such that $\mu(f)=0$ for all $f \in M(P, \mathscr{A})^{-}$and $\mu(X)=1$. Then μ is invariant and $\mu \mid \mathscr{B}=P$. Hence, μ^{+}is invariant and $\mu^{+} \mid \mathscr{B} \geq P$. The assertion follows from Proposition 2.1.

Corollary 5.7. Let \mathscr{A} be the algebra generated by

$$
\mathscr{B} \cup\{A \subset X: A \text { is invariant }\}
$$

Then $F(P)_{G} \neq 0$.
Proof. Clearly \mathscr{A} is invariant. Let $T=\{t: t$ is a finite set of invariant subsets of $X\}$ and let \mathscr{A}_{t} be the invariant algebra generated by $\mathscr{B} \cup t$. From Loś and Marczewski [12] follows that for each $t \in T$ there exists an invariant probability content on \mathscr{A}_{t} which extends P. Since $\mathscr{A}=\bigcup_{t \in T} \mathscr{A}_{t}$ and $D(\mathscr{A})=\cup_{t \in T}$ $D\left(\mathscr{A}_{t}\right)$, the assertion follows from Proposition 5.6.

References

1. A. Ascherl and J. Lehn, Two principles for extending probability measures, Manuscripta Math., vol. 21 (1977), pp. 43-50.
2. H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, $3^{\text {rd }}$ print, De Gruyter, Berlin, 1978.
3. D. Bierlein, Über die Fortsetzung von Wahrscheinlichkeitsfeldern, Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 1 (1962), pp. 28-46.
4. J. R. Blum and D. L. Hanson, On invariant probability measures I, Pacific J. Math., vol. 10 (1960), pp. 1125-1129.
5. M. M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math., vol. 5 (1961), pp. 585-590 (Correction in Illinois J. Math., vol. 8 (1964), p. 713).
6. J. Dixmier, Les moyennes invariantes dans les semigroupes et leurs applications, Acta Scientiarum Math. (Szeged), vol. 12 (1950), pp. 213-227.
7. N. Dunford and J. T. Schwartz, Linear operators, part I, Interscience, New York, 1958.
8. R. H. Farrell, Representation of invariant measures, Illinois J. Math., vol. 6 (1962), pp. 447-467.
9. E. E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means I, Illinois J. Math., vol. 7 (1963), pp. 32-48.
10. -_, Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc., vol. 137 (1969), pp. 53-75.
11. V. L. Klee Jr., Invariant extensions of linear functionals, Pacific J. Math., vol. 4 (1954), pp. 37-46.
12. J. Los and E. Marczewski, Extensions of measure, Fund. Math., vol. 36 (1949), pp. 267-276.
13. H. Luschgy, Sur l'existence d'une plus petite sous-tribu exhaustive par paire, Ann. Inst. Henri Poincaré, Section B, vol. 14 (1978), pp. 391-398.
14. -_, Invariant extensions of positive operators and extreme points, Math. Zeitschr., vol. 171 (1980), pp. 75-81.
15. R. A. Olshen, Representing finitely additive invariant probabilities, Ann. Math. Statist., vol. 39 (1968), pp. 2131-2135.
16. R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, New York, 1966.
17. D. Plachky, Zur Fortsetzung additiver Mengenfunktionen, Habilitationsschrift, Münster, 1970.
18. - Extremal and monogenic additive set functions, Proc. Amer. Math. Soc., vol. 54 (1976), pp. 193-196.
19. L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, London, 1973.
20. H. v. WeizsÄcker and G. Winkler, Integral representations in the set of solutions of a generalized moment problem, Math. Ann., vol. 246 (1979), pp. 23-32.
21. - , Non-compact extremal integral representations: some probabilistic aspects, Proceedings of the $2^{\text {nd }}$ Paderborn meeting on functional analysis, North Holland, Amsterdam, 1979.
22. H. Witting, Mathematische Statistik, $3^{\text {rd }}$ print, Teubner, Stuttgart, 1978.

Instittut für Mathematische Stochastik Universität Hamburg, Federal Republic of Germany

[^0]: Received March 4, 1980.

