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HYPERCOMPLEX FOURIER AND LAPLACE
TRANSFORMS I

F. SOMMEN

Introduction

In [7], a hypercomplex function theory has been introduced, which gener-
alizes the theory of holomorphic functions of one complex variable to the
(m + 1)-dimensional space. The functions in this theory, which are called mon-
ogenic functions, are M-valued, s being the Clifford algebra constructed over
an n-dimensional real quadratic vector space (n > m). Hence if one wants to
apply this function theory to analysis in a natural way, the role of the complex
field as range of the functions and distributions under consideration is taken
over by the Clifford algebra.

This means that our theory deals with the left and right modules M-valued
testfunctions, Coo-functions, rapidly decreasing Coo-functions, etc., and their
corresponding dual modules, the elements of which are called M-distributions,
M-distributions with compact support, tempered M-distributions, etc.
The aim of this paper is to study the Fourier and Laplace transforms in the

context of monogenic functions and M-distributions, by making use of the
exponential function E(t, x), (t, x) Im X Im+ introduced in [12], which
itself is a natural generalization of e-"’, (t, z) e x ff and which for fixed t is
monogenic in m+ X. The restriction E(t, x), (t, x) m x m of E(t, x) to the
hyperplane Xo 0 replaces in our theory the Fourier kernel functions e-"",
(t,x) ex.
We first introduce the Fourier transform b(x)= fetE(t, x)b(t)dt of

rapidly decreasing s-valued Co-functions, which leads to the definition ofthe
Fourier transforms of tempered -distributions.

Next we investigate the generalized Fourier transform ’b(x)=
Ie E(t, x)b(t)dt of -valued testfunctions. In this way we generalize the
Gelfand-Schilow -space of one complex variable (see e.g. [1], [2], [8] and
[10]), which consists of all entire functions of the formf(z) Ie-""$(t) dt, for
some b e N(). Moreover the classical result is extended, stating that g coin-
cides with the space of entire functions such that for some R > 0 and for every
k e 1 there exists C > 0 for which Izf(z)l < Ceslvl.

In the third section we introduce the generalized Fourier transform

(Tt, E(t, x))
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of M-distributions with compact support and we prove the analogue of the
classical Paley-Wiener-Schwartz theorem (see [1], [2], [9] and [10]).

Finally we define the Laplace transform .eT of tempered -distributions
which vanish in a neighbourhood of the origin in such a way that Aa T is left
monogenic in m+\, and that it extends the complex Laplace transform

zeT(z)

0

e-it’Ttdt, if im z > 0

if im z < 0.

Moreover, by making use of the theory of distributional boundary values of
mon0genic functions (see [11]), we generalize the result which states that the
boundary values lim_.o+ L’T(x +_ ie) exist in 6P’() and that

BV,.T lim (qT(x + ie)- T(x- i))= T.

Using this Laplace transform we extend the following boundary value result to
higher dimensions.

Let R(cg\) and tR(cg) be the spaces of holomorphic functions in re-
spectively c\ and c which satisfy respectively estimates of the form

If(z)l _< c 1 / (1 / Izl)’ett, k, leW, C>O

f(z)l < C(1 + Izl)’e 1 V’, C > 0.

and

Then the boundary value mapping BV: 3’a(cg\) 6e’() is surjective,
bounded and open. Moreover the kernel of this mapping coincides with

An extension of these results to the case of holomorphic functions in tubular
radial domains has been obtained by Carmichael in [3].

In a forthcoming paper [13] we shall study Laplace transforms and boundary
values in 2,(1)(m; ), as has been done in the case of several complex
variables in [4], [5] and [14], for example.

Acknowledgement. We are indebted to the referee for his valuable and help-
ful suggestions, and to Prof. R. Delanghe for his continuous interest and
encouragement.

Preliminaries

Throughout this paper, denotes the Clifford algebra constructed over a
real quadratic vector space V. A basis for z is given by

{ea; A
_

N, N {1,..., n}}
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2where ei=eti (i= 1,...,n), eo=e is the identity of a’, e =-eo
(i 1, n) and ee + ee 0 (i # j, i, j 1, n), and where

eA eo,1 eh when A {01, ah} and 1 (1 < IXh ’ n.

We define an involution in as follows" let a A aAeA; then we put
aA ?Za, where

A h , j= --ej (j= 1, n) and o=eo.
If a A aA eA is an arbitrary clement of, then its norm [a 1o is defined by

la12o 2" E aA2"
A

Now let t
_
m+l be open (1 < m < n) and let

m

D=
0

be the hypercomplex differential operator generalizing the classical Cauchy-
Riemann operator (see [7]). Then M(f; a) and Mt[)(t; a) stand for the
spaces of functions f C (f; M’) satisfying respectively

m

Df e,
CO

,=o x f=O
m 0

and fD fez O
i=-o x

in f.
By 6tt)(m )(6t,)( ))we denote the left (right)-module of rapidly

decreasing -valued Co-functions while t)(; )(t,)(m; ))is its sub-
module of -valued Coo-functions with compact support.
The space of the bounded left -linear functionals on 6et)(; ) is

denoted by 6et)(; ); it is called the right -module of all tempered
-distributions.
The action of T

Note that for any a
Distributions in 5ei)("; M) have the same behaviour as ordinary tempered

distributions, i.e., for any T 6 5e)(m; ) there exists a continuous -valued
function O which is of polynomial growth in m and 6 m such that for any
ck e m /),

where

< T, b> (- 1)Ill f.fm O[(b(t))o(t) dt,

011 0/mg
Ot Otm and III ,=E l,.

Oil)(,m;de) is the submodule of distributions in l)(,m’ d) with compact
support.
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Analogous definitions may be given for ,)(,m; ,) and ,)(m; a’). For
T %(m; /) and 6 t)(m; ), (T, ) denotes the action of T on .
Furthermore, for any a 6 , (T, a) (T, )a.

In the sequel, arbitrary elements ofm and m+ will be denoted by

t=(t,...,tm) and x=(xo, x)=x+xo=(Xo, X,...,Xm)
while It [2 =1 t and Ix [2 =0 X stand for their respective Euclidean
norms. Moreover, if e m and + , we put

=I...: and =d....
Let us recall that the exponential function E(t, x) intruced in [12] is

defined in the following way. For (t, x) m x m we put

E(t, x)= etxe etmxmem where etx cos tx + e sin tx.
The exponential function E(t, x), (t, x) s m X m+ 1, iS the unique function

which for any fixed t m iS left monogenic for x s m+ and which for X o 0
equals E(t, x)(see [12]). For m 1,

E(t, x)= etxe cos x + e sin t X

and

E(t, x)= e’ e’(-x).

Hence, if we put -e i, t t, x x and Xo y, we obtain

E(t,x)=costx-/sintx=e-’’ (t, x) s x

and

E(t, x)= e-’tx+i’)i e -i’" (t, z)e x .
Let us recall that the exponential function may be written in the following way"

(1) E(t, x)= E nsl(t x1).., nsm(tmXm)Lsl ...,(t, Xo)
(s sin) {0, 1

where, for j 1, m,

cos tx, s o
H,(tx) Isin tx, s 1,

and where L m(t, XO) is analytic for (t, Xo)e m x . Moreover, for any
t m, (la,..., lm) m and (s,..., sin) {0, 1} fixed, there exists a posi-
tive constant C m, t, and k such that

IL,, ,re(t, 0)10 C,, ’m,’,’(1 + )e’ o.
On the other hand, E(t, x) may be decomposed into

(2) e(t, )= e(t, )- e(t, )
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where

and

E2(t, x)= B(t, x)e-IrIs

E(t, x)= A(t, x)eItl

are analytic for (t, x)6 (m\{0}) x m+l and monogenic in x 6 m+ 1. In the
complex case this decomposition is given by

itz

so that, in this case,

and

(cos tx -/sin tx)eItly

{cos tx -/sin tx)e-I1

B(t, x)= 1 (cos tx -/sin tx)

A(t, x)= - 1 + (cos tx -/sin tx).

In the general case it easily follows from the construction of E(t, x) in [12] that
A(t, x) and B(t, x) are of the following form"

B(t, x)= E n(t x1) nsm(tmxm)Bsl m(t),
(Sl Sm) {0, 1}m

(3)
A(t, x) Ht(tt x1) nsm(tmXm)as....sm(t

(Sl sin) {0, 1}m

where B ,(t) and At ...sm(t) can be written as -linear combinations of 1,
t /Itl,...,tm/Itl.
As we shall see in section 4, the decomposition (2) plays an essential role in

the definition of the Laplace transform. The function

1(t, x + Xo)= (2n)m/(t, x- Xo)

is called the conjugate exponential function.
For every fixed t 6 m, g(t, x) is right monogenic in m+ and its restriction

to the hyperplane x0 0 equals

1 1(t, x)= (2) (t, x)---(2)m e-tmxme e-tlXlel
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If we put

-11 l(t, x) and (t, x)= .(2n)m (t, x),(t, x)= (2n)m

it is easy to see that the conjugate exponential function admits the
decomposition

](t, x)= 2(t, x)-/l(t, x)
where

/2(t, x)= (t, x)e-Itlx and

are analytic for (t, x) 6 (#m\(0)) x m+ and right monogenic in x
Of course we may also obtain relations of the form (3) for the functions

(t, x)and (t, x).

1. The Fourier transforms in {} and

In this section we study the hypercomplex version of the classical Fourier
transform in (#) and ’(m).

Let $ ,)(#m; a’) and let j 6 {1, m}; then we define

+0o

,.’(tl,..., tj_ 1, X, t+ 1," tin) j etec(t) dt

and

-b(x) fmE(t, x)b(t)dt -1 ,’m )(x).

b is called the Fourier transform of q. As in the classical theory we obtain"

THEOREM 1. ,-j is a topological automorphism of(r)(m; d). Moreover

1 f-0o -tmic/)(t)dtj.-f lctb(tl, ti-1, x, ti+ t, tm)= e

Proof In view of the equation etm* cos tx + (sin tx)e, for any real
valued b 6 5e,)(om; a’) the classical Fourier inversion formula can be written
as

= 1 +
(t).

As and are right M-linear, the above equality holds for any
$ e ,(’; M). Furthermore and f are continuous. I
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As -, is a topological automorphism of 6e,)(; ’)
and

1 f tmXmem tlxle- q(x)
(2n)" ,e- e b(t) dt.

In an analogous way, for any 4 e (’; s), we put
+

(tl, t_ 1, x, tg+ 1,..., t,,) f (t)e’x dtg, j 1,..., m,

and

b(x) q(-m I)(X)= f tk(t)E(t, x)dt.

So is a topological automorphism of the left -module t)(m; ).
NOW consider a distribution T t)(m;) and define its Fourier trans-

form T by
(fiT, ) (T, ), tt}(m; ).

Ast(; )is the dual module oftt(; ), is a topological automor-
phism of both (;),, and (";), where s and b stand for the
weak and strong topology. For T,(;) we put for any

Remark. We want to mention some important calculation formulae for the
Fourier transfo introduced above. Hereby we make use of the reflection
operators Si, 1, m, given by

s f(,, ,..., )=f(,, -,, )
where f stands for a function or an -distribution in .

(1) f ()= -x,e,S S,_(/){x)

() (e, f) eS,.., s,_,s,,.., s(fI

(3) e f ()= x,S+... S(/){x)

(4 (t, fI(I= -eS s,_(fI(I

(5/ (t,e ft(/= s,,, s(f(I

(6) {f{ + .))(x)= e-"’’e-"s’ e-"s’ ""s-’(/())(x)
where for e , e’s ...s,_ (cos ) + e(sin 2)S S_.
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2. The space l(m; )
Take b s (r)(m; )and define

b(x) f E(t, x)b(t)at.

Then clearly -b is left monogenic in m+ 1. Moreover b(x) is the unique left
monogenic extension of the Fourier transform

(x) f E(t, x)(t)dt.

Hence we obtain the inversion formula

!m[/(t, x) b(x)]xo_-odx b(t).

We call (m; z) the space of all functions -b where b (,)(m; ). Ob-
viously t(m; ) is a right submodule of M(/; ). In the following
theorem we prove an estimate for elements belonging to (m; ).

THEOREM 2. Let f M (m+ ) be of the form

f= k for some ck (,(m;)
with supp B(O, R). Then for any a e > O, a positive constant C.
may befou such that

c,! e(+)lxl

for every x m+ .
Proof. As f= -b for some b (,)(m; ) with supp b.___ (0, R), for

any l= (11, lm) Vm,

x* Xtmmf(x) Io < fx xtm’E(t, x)b(t) at

Z f XtlHs,(tl x1)"" XtmHsm(tmXm)
(s sin) {0, 1}m

x Ls, ...sin(t, Xo)b(t) at ]o
(S Sm) {0, n

OIH,+t,(t,xx) O[,Hsm+lm(lmXm)

L, ...sin(t, Xo)b(t)at
o
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A partial integration yields

fm [lt Hst*lt(tl X1) [:Hsm*lm(tmxm)Lst’"sm(t’ Xo)b(t) dt

< f 19:"" ,7,(Ls, s.(t, Xo)q(t))Io dt.

Consequently, as the support of b is contained in/(0, R), we find--using
Leibniz’s formula and the above mentioned estimates for the derivatives of
Ls s.--that

Ix’ xL’f(x)lo c(1 +xI1,
for some C > 0 and k e . Hence given e > 0, a constant C,, > 0 may be
found such that

[X’"" xmf(x)l0 C,,,e’+*’ld. I
Note that in virtue of Cauchy’s representation theorem (see [7]), for any > 0,
sm and a m+ there exists C,,, > 0 such that

Ix m  f(x)lo
In the following theorem we prove that the element of Zt(m; M) are com-
pletely determin by such estimates.

(m+ 1. d) be such that for a certain R > 0 and forTHEOREM 3. Let f M1
any rm, e > 0 and rm+ 1, there exists Ca, , > 0 such that

tm e(R +OlxolIX Xm Dxf(X) IO < C,,,
Then there exists ’.(r)(m’ d2 with supp dp

_
(0, R) such that T

Proofi In view of the stated estimatesf(x)= f(x)l,o= o belongs to
6e{,(-; ). Hence f(x)= ’(x) for some 6e{,}(-; ). We now prove
that the support of b is contained in B(0, R + e) for any e > 0.
Choose e > 0 and t ’\B(0, R + e) arbitrarily. As -- f, we obtain

that

b(t) (t, x)f(x)dx I,,(t, x)f(x)dx.

As and 1 are bounded for x m and as for a certain constant C > O,

Ce(R +e)lxol

f(x)lo <-

we obtain, by applying Cauchy’s theorem (see [7]), that, for any 6 > 0,

It.(t, x)f(x)dx It.(t, x)e-ltlf(x 6)dx.
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Hence, in view of the definition of ,(t, x) and the relations (3), for any > 0,

ffl(t,x)f(x)dx _<C’eCa+e-ltl)
0

and, as R + e I1 < O, by taking the limit for

x)f(x) dx 0.

Analogously,

f (t, x)f(x)dx 0

so that we have proved that b(t)= 0.
Hence the support of b is contained in/(0, R) and -b is a left monogenic

extension off[. ’bl.. As this extension is unique (see [12]),f b in
.,,m + 1.

Now we are able to construct a natural topology on em; a’). Let k, s ;V

and call .Z, ,, the right Fr6chet M-module consisting of those left monogenic
functions in / such that, given /-m and V"+ t, a constant C, > 0
may be found such that

lm e(i + 1/s)lxolIXI1 X C3xf(X)lo <_ Ca,!
Then a locally convex topology may be defined on Z(m; a’) by putting

.Zt(m; a lim ind lirn proj .Zt, k, s.
k

Note that t(m; a’) is an inductive limit of right Fr6chet -modules.
We now state the topological result"

THEOREM 4. (r)(m is topologically isomorphic to .(m /).

Proof. Making use of Theorem 1 and Theorem 3, one can prove this
theorem analogously to the case of one complex variable (see [1] for
example).

Remarks. (i) Denote by [(m; a’) the left M-module of bounded right
-linear functionals on .Z(m; ). In view of the previous theorem ."m; a)
and i,)(m; a’) are topologically isomorphic spaces.

(ii) If b t)(’; M’) then we may define

b-(x) I.b(t)(t’ x) dt.

Then b-I M’)(; M).
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Let ,(m; ) be the set of the functions b--, q {)(; ’); then this
space may be characterized in the same way as .’(m; ’). Moreover a locally
convex topology may be defined on it such that .,(m; ’) is topologically
isomorphic to {)(’; ’). Its dual module ’,(m; ) is then topologically
isomorphic to l)(m d2 ).

3. The generalized Fourier transform in il)(m; )
Let T i)(m; ’). Then T [)(m;) and hence -T is defined. On

the other hand, one may consider the function

(x) (T, E(t, x)>,
and it is easily proved that for any b 6et)(m; ’)

(-T, tk> b(x)’(x)dx.

Hence it is natural to define the generalized Fourier transform of T by

T(x) (Tt, E(t, x)),
As T is left -linear and bounded on (0(";) and as E(t, x) is analytic in

" x "+ , one can easily show that T(x) C(m+ ; ) and that

DT(x)= (Tt, DE(t, x)) 0 in m+ .
Hence -T(x) is in fact the unique left monogenic function in m/ such that

T(x)Ixo=O ’(x).
The two following theorems may be considered as the hypercomplex

analogues of the well known Paley-Wiener-Schwartz theorems (see [9] and [10]
for example).

THEOREM 5. Let T 6)(; at’) and R > 0 such that shpp T __G_/(0, R).
Then for some k 4 and C > 0

[-T(x)lo < C(1 + [Xl2)keRll.

Proof. The desired inequality follows immediately from the definition of
T. |

Now we prove that such estimates determine completely the Fourier trans-
form of elements in i0(; ).

THEOREM 6. Let f M (m/ ) and R > 0 such thatfor some C > 0 and
k,

f(x)lo <- c(1 + [xl2)ke11.
Then f T for some T 6rl,)(m ) with supp T _/(0, R).
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Proof. As f(x)=f(x)]xo=O e6e{,)("; z), --l(f(x))= T e 6a{,)("; z).
Now we claim that the support of T is contained in (0, R). Choose
b Y’,(=; z) such that supp "\B(0, R). Then anticipating the results
stated in Section 4, Lemma 1 and Lemma 2, ’- is the 5e-boundary value of
some h e. M’)("+ \"; z’) satisfying

’" h(x)lo < e -R’lxl01 ,,
for every x e "+ x\", for some R’ > R. Hence

<T, > <’T, b-a> lim f (h(x + Xo)- h(x- Xo))f(x)dx.
xO--O +

In view of Cauchy’s theorem (see [7]), for any 6 > 0

and as

h(x + xo)f(x)dx f h(x + Xo + 6)f(x + di)dx

f.h(x + Xo + 6)f(x + 6)dx 0

whenever 6 -- + m, (which immediately follows from the above estimates forf
and h),

f,h(x + xo)f(x)dx O.

Analogously,

je,h(x xo)f(x)dx 0,

so that < T, b> 0. Hence T has its support contained in B(0, R). Finally as
-Tlo=O--f Ixo=O and since both functions are left monogenic in+ we
have that f= T. |

Let k e JF and R > 0 and call Zt, k, a the space of all left monogenic functions
in "+ satisfying an estimate of the form

f(x)1o < C(1 + Ix 12)ke11.
Then clearly gt, k, is a right Banach zC’-module. Letting

zt(m; ) lim ind ;tt, , ,
k, R

we obtain the following result.

THEOREM 7.
isomorphism.

The mapping : til)(m; d),b zt(m; ) is a topological

Proof. Using Theorem 1 and Theorem 6, the proof runs analogously to the
case of one complex variable. |
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4. The Laplace transform in 6elo(; )
In this section we show that the Fourier transform of an element

T 6 0(?m; z/) is the distributional boundary value of a special left mon-
ogenic function inm+ \,, called the Laplace transform .T of T. In this way
we construct a new class of representing functions for 0(m; /) (see also
[11]).
t t0(;) with 0 in (0, R); then we know that- exists

and belongs to t)(m; ).
NOW we construct a right monogenic function in m+m which admits- as -boundary value. Let

+1 {X m+l. X0 > 0}, +1 {X m+l. X0 < 0}

and, for any $ 6 m(m;) such that supp $ mB(0, R), define

$(t)(t, x)e-I’ll dt if x 6 + t,

[ (t)(t, x)eItlx dt if x +.
LEMMA 1. t (l)(m;) be equal to zero in (0, R). Then, for any

g e m+ t, 16m a O < e < R, there exists C,,, > O such that, in
m+m, .- -o.m ()10 Ca, e,! e(e

Proof. In view of the relations (3), there exist analytic functions ..., in
m\{0}, which are of polynomial growth when tl oo, such that

tB(t, x)e-IrIs ns,(tl Xl) nsm(tmXm)s .(t)e-IrIs.
(Sl Sm)e {0, 11

Hence, we obtain by partial integration that for any /m and 0 < e < R

lmIX/1 Xm .% -1(x)]0

(Sl Sin) {0, 1}m m\B(O, R)

< C,,e(-)lxl,
in ’+ . An analogous estimate holds in "_+ . |

LEMMA 2. The boundary values
,(l)(m ,. ). Moreover

limoo / bAa- (x + xo)

b--(x) lira (b&a- (x + Xo) b.-(x Xo)).
xoO +

exist in
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Proof. In view of the previous lemma, for each V"+ and 4" there
exists C, > 0 such that for Xo ]0, 1],

I .:e- ()1o c,, ..
Hen for each a e and Xo,, X0,2 e ]0, 1],

’- :(-(x + )--(x + ))1o

XO,2

which implies that (eft- (x + Xo))o o, is a Cauchy-net in ()(m ) and
hen that

1 -(x + Xo)
xoO +

exists in ()("; ). Analogously

1 - (x Xo)
xoO +

exists in ()(m ). Furthermore

-’(x + xo)- -’(x o)= (t)g(t, x),-’o t

onvergs to -(x) for Xo 0+. [

A converse of Lemma 1 runs as follows.

LEMMA 3. Let fe M(I")(Im+ l\lm; ) be such that there exists R > 0 for
which, given any t/’m + 1, 4/TM and 0 < e < R, a constant C, , > 0 may be
found such that

x x Ol f(X)lo < C, , ,et*- 1-ol.

Thenf= &,-1 for some e t,("; z) with ck 0 in (0, R).

Proof. From the given estimates and the proofs of Lemma 2, it follows that
the boundary value f(x + 0) -f(x 0) off exists in 6ett(’; ). Let b(t)
(f(x + 0)- f(x- 0))’; then b belongs to 6et,(,; z). Using Cauchy’s
theorem (see [7]) one easily proves that (f(x _+ Xo))(t)= 0 for t e/(0, R)
which implies that b 0 in l(0, R). Hence, as bothfand b- have the same
boundary value and satisfy estimates of the above type, using Liouville’s
theorem (see [6]) we obtain f= tk.e-. |
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In the following theorems we consider distributions in ,.l)(,m; d2)which
are equal to zero in/(0, R).

Let T6 5t)(9m;) be zero in /}(0, R) and choose a real-valued
Co-function (t)depending on e 6 ]0, R[ such that

Then for any 4) 6 "(1)(m J),

if t 6/(0, R )
if t 6 m\](0, R e/2)"

Furthermore the functions

A(t, x)= g(t)A(t, x), B,(t, x)= g,(t)B(t, x),
and their t-derivatives, are Co-functions of polynomial growth in m x m.
Let

and

Ez,,(t, x) B,(t, x)e-Itlx, x ’+,

Et,,(t, x)= A,(t, x)eItlx, x 6 #t_+ t.
Then for x fixed, E x, ,(t, x) and E2,,(t, x) belong to 5)(#m ). NOW we define
the Laplace transform &aT of T by

](Tt, E2,(t, x)), x e+T(x) , E ,(t, x)), x 6 E+"
One may prove that T is left monogenic in m+ m and that its definition
does not depend on e.

In the following theorem an estimate for T is given.

THEOREM 8. Let T l)(m;) be zero in (0, R)a lt e ]0, R[. Then
there exist k, r and C > 0 such that, in m+ km,

I T(x)lo C, 1 + iXol
, (1 + Ix )’e-t"

Proof As T )(; M) there exist a continuous function 9, W and
s W such that [v(t)lo c( + Itl2 and T= t9. Consequently for any

(T, ) (-1)l’l(g, O[(g(t)))
whereby, in+,

T(x) (- )’ l(B,(t, x)e- Itl)(t) dt.
mk(0, R e)
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Using Leibniz’s formula and the equations (3) we have that for some C’ > 0,

c[(B(t, x)e-I’l)lo < C’(1 4- Ix ])’e -I’lx.
Hence, letting C"= CC’,

and, as

! (1 + [tl2)e-Itlx dtIZ(x)lo _< C"(1 4- Ixl2

f (1 + It )e- Itlxo dt _< Cte(1 +m\B(O, R-e)
2s + m) eft -’)1 xol

we may find C > 0 such that

I eT(x)lo _< 1 + ix
An analogous estimate may be obtained for x m_+ a. I
Now we prove that T is the boundary value of &aT.

THEOREM 9.. O(l)(m ),
Let T ,)(.m; d) be zero in (0, R). Then for any

(T, > lim I b(x)(’T(x + Xo)- ZaT(x Xo))dx.
x00+

Proof. For Xo > 0 fixed, b(x)LaT(x + Xo) belongs to (,)(m; d2) and
hence, using an approximation by Riemann sums,

,b(x)aT(x + Xo)dx

( N

lim Tt, E b(x, s)B(t, x, s)e-Itlx#(K, s
Noo v=0

where # denotes Lebesgue measure.
Observe that =o b(xv, N)B(t, xv, N)/(K, ) and all its t-derivatives are uni-

formly bounded with respect to N and t and that this sequence converges in C(R)
to m tk(x)B(t, x)dx. Hence

N

E (x, s)B(t, x, s)e-I’I/(K, s)
v=O

converges to

ImC(x)Bt([, x)e-I’1 dx
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in tg(l)(m" J:), which implies that

ck(x’T(x+xo)=(Tt, ft,,,ck(x’B(t,x)e-"’Xdx).
Furthermore,

converges to

t b(x)B,(t, x)e-Itlx dx

j.b(x)B(t, x)dx

in 5eo(m; z’) if Xo 0 +. Analogously,

.b(x)A(t, x)e-Itlx dx

converges to

Imt(x)A,(t, x)dx

in 6eo)(/; )if Xo - 0+. Hence, as E(t, x),(t)= Be(t, x)- A,(t, x),

lim f b(x)(aT(x + Xo)- .T(x xo))dx
x0O + e,m

Now we state the converse of Theorem 9.

THEOREM 10. Let fe MI(m+ l\m; ,3’) be such that there exists R > Ofor
which, liven any 0 < e < R, k, r ff, C > 0 may be found such that, in
m+ \m,

1 ) 2)ret_/)lxof(x)lo-< 1 + iX0[k (1 + Ixl
Then there exists T il)(m; d2) such that T 0 in (0, R) af= T.

Proof. As

If(x)lo <C 1+
ixol (1+ xl2) forxol-l, 0[w]0,1[,

f admits an 6et)(cm;za’)-boundary value for Xo0__+ (see [11]). Hence
f(x + Xo) -f(x Xo) tends to T for a certain T 5et)(m; ). We prove
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that Tl&o,g 0. Choose a testfunction with support in _(0, R) and
take e>0 sufficiently small such that supp

_
B(0, R-2e). As-- ,(m; ), there exists C > 0 such that

Hence

(T, ) lim I -’(x)(f(x + Xo)- f(x- Xo))dx,
x0"-*0 +

and in view of the given estimate and Cauchy’s theorem (see [7]), for any 6 > 0,

-(x)f(x+xo)dxl f ,-(x+6)f(x+xo+)dx
0 0

(1 + Ix + 6 Iz)"+m+’ dx e-’/z""+’.

Consequently, letting 6- oo, for any Xo > O,

Ict b,-’(x)f(xo + x)dx O.

Analogously, for any Xo > O,

It b.-’(x)f(x Xo)dx 0

so that T 0 in/(0, R).
Consider &aT; then as ’T and f have the same distributional boundary

value, T-f is left monogenic in m+t (see [11]). Furthermore, as
’T f e 6e0(m; ’), it is a polynomial (see [11]) and, as both &aT and f
satisfy an estimate of the given form, ’T(x + Xo)-f(x + Xo)--,0 if
Xo --, . Hence f= T. |

Now, let
T e ff’)(m; ), R>0,0<e<R

be given. Then T Tt + T2 where T 6et’0 (m; ), Tt 0 in/(0, R e)and
T2 }(m;) has its support in/(0, R e/2).
As we know from the foregoing, -Tt is the 6e’-boundary value of a certain

fe Ml(.flm+ l\,.tm; d) satisfying

1 ) 12yet +,_s,lolf(x)lo < c 1 + 1 o1’ +

and -T2(x) is the 6e’-boundary value of 0 e Mt(.m+ l\m; ,) defined by



350 F. SOMMEN

and which satisfies

]g(x)[o _< c(1 + ]xlZ)enll.
Hence T is the boundary value of T f+ g satisfying an inequality ofthe
form

(*) I er( )lo < C 1 + Ix01’ (1 + Ix
Conversely when h MI(m+ 1\,,; ) satisfies an estimate of the type (.),
then the boundary value of h exists in ’ and hence equals T for some
T t)(;) (see [11]). In view of [11] one easily shows that h T is an
entire monogenic function satisfying

(**) ]h T(x)Io C(1 +
Now let R > 0 be given and call M ,(m+a;)the space ofmonogenic

functions in m+ satisfying (.), and M,(m+;.)the spa of entire
monogenic functions satisfying (**). Then, in view of the above considerations
and [11], one obtains the following theorem.

are isomorphic right -modules.
(b) The bouMary value mapping pom M x, ,(" + M) to ,)(; M)

is bouMed aM open.

and

Remarks. The previous theory leads to the following decomposition.
Let R > 0 and let T 6it)(; ), T 0 in/(0, R). Then we define

Z,f’+ T(x)= {0T(x)

T(x)=
0 ifx]+l
[T if x "_+ 1.

As both / T and a T satisfy the estimate ofTheorem 10, there exist unique
P / T and P_ T in t)(; ), being equal to zero in/(0, R), such that

’+T= P+ T and &a_T= &ap_ T.

Furthermore p2+ T P/ T, p2_ T P_ T, (P / + P_)T T and P + P_ T
P_ P/ T 0. We illustrate the decomposition of such a T in the cases where
m= 1 andm=2.

If m 1, then one may easily check that

PT= _+ r,.

Note that P_ is the restriction operator to +/-.
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For m 2, let t (t l, t2)ff 2 and let 0 be the angle between the positive
tl-axis and the oriented half line joining the origin with t. Then one obtains

0
P Tt 1/2(1 _+ cos O)Ttl, t2)+ sin T(_tl,,).

In complex analysis one can define the Laplace transform as follows. Letfbe a
continuous function of polynomial growth in 2 for example, and let

P,f=f]{: >0, >0}

Then for (a , a) e {1, 1} one can define

which is a holomorphic function in {(z, zz) 2: sgn y a}. So the Laplace
transform, which is defined by

f(z,, z2)= al, a2 f(z,, Z2) if sgn y

is holomorphic in ()2 and can be divided in four parts,

which correspond to the Laplace transforms of the restriction of f to the
"octants". (Hen one could say that this Laplace transform is of"Carthesian
nature".) In hypercomplex function theory, the Laplace transform always con-
sists of two parts,

f+
where P are the above introduced "orientation operators" in the EuclMean
space, which have a rather "spherical nature". Only in the case where m 1 do
both ways of thinking coincide.
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