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HYPERCOMPLEX FOURIER AND LAPLACE
TRANSFORMS 1

F. SoMMEN!

Introduction

In [7], a hypercomplex function theory has been introduced, which gener-
alizes the theory of holomorphic functions of one complex variable to the
(m + 1)-dimensional space. The functions in this theory, which are called mon-
ogenic functions, are «/-valued, &/ being the Clifford algebra constructed over
an n-dimensional real quadratic vector space (n > m). Hence if one wants to
apply this function theory to analysis in a natural way, the role of the complex
field as range of the functions and distributions under consideration is taken
over by the Clifford algebra.

This means that our theory deals with the left and right modules <7 -valued
testfunctions, C-functions, rapidly decreasing C . -functions, etc., and their
corresponding dual modules, the elements of which are called .« -distributions,
& -distributions with compact support, tempered &/ -distributions, etc.

The aim of this paper is to study the Fourier and Laplace transforms in the
context of monogenic functions and &/-distributions, by making use of the
exponential function E(t, x), (t, x) € 2™ x #™** introduced in [12], which
itself is a natural generalization of e "%, (t, z) € # x € and which for fixed t is
monogenic in #™* 1. The restriction E(t, x), (t, x) € Z™ x #™ of E(t, x) to the
hyperplane x, = 0 replaces in our theory the Fourier kernel functions e™**,
(t,x)e Z x A.

We first introduce the Fourier transform & ¢(x)= [am E(t, X)¢(t) dt of
rapidly decreasing o -valued C-functions, which leads to the definition of the
Fourier transforms of tempered o/-distributions.

Next we investigate the generalized Fourier transform £ ¢(x)=
fam E(t, x)$(t) dt of of-valued testfunctions. In this way we generalize the
Gelfand-Schilow Z-space of one complex variable (see e.g. [1], [2], [8] and
[10]), which consists of all entire functions of the form f(z) = [ge~"*¢(t) dt, for
some ¢ € D(R). Moreover the classical result is extended, stating that & coin-
cides with the space of entire functions such that for some R > 0 and for every
k € A" there exists C, > 0 for which |2*f(z)| < C, RV,

In the third section we introduce the generalized Fourier transform
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of «/-distributions with compact support and we prove the analogue of the
classical Paley-Wiener-Schwartz theorem (see [1], [2], [9] and [10]).

Finally we define the Laplace transform # T of tempered o/ -distributions
which vanish in a neighbourhood of the origin in such a way that £ T is left
monogenic in Z™*\#™ and that it extends the complex Laplace transform

0
j e T dt, ifimz>0

—

ZLT(z)=

+ oo

—j e" T dt, ifim z <O0.
0

Moreover, by making use of the theory of distributional boundary values of
monogenic functions (see [11]), we generalize the result which states that the
boundary values lim, o, £ T(x + ie) exist in &'(#) and that
BVST=1lm(ZT(x+ig) — LT(x —ie))=FT.
-0+

Using this Laplace transform we extend the following boundary value result to
higher dimensions.

Let #g(¢\2) and #g(¥) be the spaces of holomorphic functions in re-
spectively ¢\# and ¥ which satisfy respectively estimates of the form

k
| f(2)] < C(l +L) (L+ |z]|)e®™, kles,C>0

|y]

and
|f2)| <C(+ |z]|)efP, le ¥, C>0.

Then the boundary value mapping BV: #'R(6\Z)—> F'(®) is surjective,
bounded and open. Moreover the kernel of this mapping coincides with
Hr(6).

An extension of these results to the case of holomorphic functibns in tubular
radial domains has been obtained by Carmichael in [3].

In a forthcoming paper [13] we shall study Laplace transforms and boundary
values in 2, (#™; /), as has been done in the case of several complex
variables in [4], [S] and [14], for example.

Acknowledgement. We are indebted to the referee for his valuable and help-
ful suggestions, and to Prof. R. Delanghe for his continuous interest and
encouragement.

Preliminaries

Throughout this paper, &/ denotes the Clifford algebra constructed over a

real quadratic vector space V. A basis for &/ is given by

{ess AS N,N={1, ..., n}}
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where e, =¢y (i=1,...,n), ey=¢, is the identity of o, e}= —e,
(i=1,...,n)and e;e; + e;e;=0 (i#j,i,j=1, ..., n), and where

eq=¢€, e, whend={oy,...,a} and 1<o, <oq,<n

1

We define an involution in </ as follows: let a = ZA ase,; then we put
a=)y, a,e,, where

4 =28, &, e=—e(j=1..,n) and e,=e,.
If a= )4 aye, is an arbitrary element of &, then its norm |a|, is defined by
lafd=2" Z a;

Now let Q< 2™* ! be open (1 < m < n) and let

< 0
D= ei T
i=20 a i

be the hypercomplex differential operator generalizing the classical Cauchy-
Riemann operator (see [7]). Then M,(Q; &) and M{(Q; /) stand for the
spaces of functions f'e€ C,(Q; &) satisfying respectively

Df=.§0e -f=0 and fD= Z fei=0

in Q.

By & (Z™; A ) (&L (#™; o)) we denote the left (right) o/ -module of rapidly
decreasing &/-valued C,-functions while D (%™; ) (D ,(R™; &) is its sub-
module of &/-valued C-functions with compact support.

The space of the bounded left .«/-linear functionals on & (#™; o) is
denoted by &,(#™; «); it is called the right «/-module of all tempered
& -distributions.

The action of T € & (#R™; #) on ¢ € & ((R™; o) is dgnoted by <T, ¢).
Note that for any a € o/, T, a¢> = a{T, ¢).

Distributions in & ;,(#™; &) have the same behaviour as ordinary tempered
distributions, i.., for any T € F{,(#™; o) there exists a continuous 2/-valued
function g which is of polynomial growth in #™ and 1 € #™ such that for any
b e L (2" A),

(T, ¢ = (—1)" [ 2(e®)g(e) dt

Rm
where
ah al,.. m
— = and |[1| =) 1.
oth at’m 1 ,;1

Ey(R™; ) is the submodule of distributions in Z;(#™; /) with compact
support.

&=
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Analogous definitions may be given for &(,(#"; o) and &,(%#"; o). For
Te SR #)and ¢ € L, (R"; ), T, ¢ denotes the action of T on ¢.
Furthermore, for any a € o, T, ¢a) =T, ¢)a.

In the sequel, arbitrary elements of 2™ and #™*! will be denoted by

t=(ty,....tn) and x=(xq, X)=X+ Xq= (X0, X1, ++-» Xp)

while |¢|> =37, t? and |x|* = Y7L, x? stand for their respective Euclidean
norms. Moreover, if le /™ and a € /™%, we put

A= o and 8L=0% - .

Let us recall that the exponential function E(t, x) introduced in [12] is
defined in the following way. For (t, x) € 2™ x 2™ we put

— pti1xi1e1 ... ptmXme; tixjej 3
E(t, x) = e'1¥1¢1 - .- g'm*nm  where "% = cos t;X; + e; sin t;X;.

The exponential function E(t, x), (t, x) € #™ x #™* 1, is the unique function
which for any fixed t € #™ is left monogenic for x € #™* ! and which for x, = 0
equals E(t, x) (see [12]). Form =1,

E(t, x) = e"*1t = cos t, x; + e, sin t;x,

and
E(t, x) = e'171e1 = ghlx1=xoen)er,
Hence, if we put —e; =i, t; =t, x; = x and x, = y, we obtain
E(t,x)=costx —isintx=e" " (,x)eR x R

and

E(t,x)=e "= (1 7)e R xE.
Let us recall that the exponential function may be written in the following way:
(1) E(t, x)= Y H, (tyxy) "+ Hg (tmXm)Ls, - 5, (t Xo)

(515 ..., Sm) € {0, 1}m
where, for j=1, ..., m,
cost;x;, s;=0
Htx)=\. "7 7
sin t;x;, §;=1,

and where L, (t, x,) is analytic for (t, x,) € #™ x #. Moreover, for any
te A" 1=y, ..., l,)e #™and (sy, ..., 5,) € {0, 1} fixed, there exists a posi-
tive constant C;, | . ;and k € A" such that

|a: le, ...,sm(ts xO)IO < Csl, vees Sy € I(1 + x%)kem Ixol'
On the other hand, E(t, x) may be decomposed into
() E(t, x) = E,(t, x) — E,(t, x)
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where

E,(t, x) = B(t, x)e~ItIx
and

E,(t, x) = A(t, x)el*I*

are analytic for (t, x) € (2™\{0}) x 2™*! and monogenic in x € #™*1. In the
complex case this decomposition is given by

. 1 t
e itz = 3 (1 + W) (cos tx — i sin tx)e!”

1 t .
+ = [1 —+|(cos tx — i sin tx)e~ "
2 |¢]
so that, in this case,

B(t, x) = (1 - IL)(cos tx — i sin tx)

t|

N =

and

t
A(t, x)= 1 1+ —|(cos tx — i sin tx).
2\ e
In the general case it easily follows from the construction of E(t, x)in [12] that

A(t, x) and B(t, x) are of the following form:
B(t, x) = Y H, (ty %) Hy (tmXm)Bs, - 5n(t)s

(S15 .y Sm)€ {0, 1)m

3)
ARx)= T Hyx) Holtwxae )

(S1y «oes Sm) € {0, 1}m
where B, ..., (t) and A;, ..., (t) can be written as &/-linear combinations of 1,
to/|t],.os tm/|t].

As we shall see in section 4, the decomposition (2) plays an essential role in

the definition of the Laplace transform. The function

E@t, x + xo) = E(t, x — x,)

1
@ny
is called the conjugate exponential function.

For every fixed t € #™, E(t, x) is right monogenic in #™* ! and its restriction
to the hyperplane x, = 0 equals

1
@y

Et, x)= E(t, x) =

e"'mxmem e e"lxlel

1
@y
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If we put

B(t, x) = A(t,x) and A(t, x)=

aor 2

it is easy to see that the conjugate exponential function admits the
decomposition

E(t, x) = E,(t, x) — E,(t, x)
where

Ez(t, x) = ﬁ(t, x)e-ltlxo and F.(t W(t x)= (t x)eltlxo

are analytic for (t, x) € (2™\{0}) x #™*! and right monogenic in x € Z™**.
_ Of course we may also obtain relations of the form (3) for the functions
A(t, x) and B(t, x).

1. The Fourier transforms in & and &'(}

In this section we study the hypercomplex version of the classical Fourier
transform in &(#™) and &'(#™).
Let ¢ € &, (#™; o) and let j e {1, ..., m}; then we define

F d’(tls .. J 15 xj’ FR LIRS m) j e!jxjelqs(t)dti

and
Fd(x) = ij(t, X)p(t) dt=F | o -+ o F, $(x).
& ¢ is called the Fourier transform of ¢. As in the classical theory we obtain:

THEOREM 1. Z ; is a topological automorphism of & ,(#™; o4 ). Moreover

1 7 _
1¢(t1, .o J 1 ', tj+ 19 sy tm) = 5;"[ e tjxjej¢(t) dtj.

- 00

Proof. In view of the equation €%/ = cos t;x; + (sin t;x;)e; for any real
valued ¢ € &, (#™; &) the classical Fourier inversion formula can be written
as

+ o +

1 - _ 1

— 00

e” e dt,) = $(t).

As #; and ;' are right «/-linear, the above equality holds for any
¢ € &, (R"; o). Furthermore & ; and & ; ! are continuous. |}
Q) j i
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ASF =F, oo F, F is atopological automorphism of & (#™; /)
and

a~l¢

21[)"‘ j ~tmXmém ... e—‘1x181¢(t) dt

In an analogous way, for any ¢ € & ;(#™; &), we put

+ o0

¢y1(tl’ sy J 1s x-, tj+1, sy tm) =j d)(t)etjxjej dtj, j= 1, ey m,

— o

and
DF(W)= $(F oo F )W) =] PUEE x) dt

So & is a topological automorphism of the left o -module & (A" ; A ).
Now consider a distribution T € % {;(#™; &) and define its Fourier trans-
form # T by

<9T’ ¢> = <T’ ¢y>9 ¢ € ey(l)('%m; Jﬂ),
As & (#™; o) is the dual module of & ;,(#™; <), F is a topological automor-
phism of both &{,(#"; o), and L ,(#™; &), where s and b stand for the
weak and strong topology. For Te & (#™; %) we put for any
pe g’m(gg'"; ),
(TF, ¢ =<T, F¢).

Remark. We want to mention some important calculation formulae for the
Fourier transform introduced above. Hereby we make use of the reflection
operators S;, i =1, ..., m, given by

Sif(Xgs vves Xig oves X)) =L (X105 ooy =Xy vy X))

where f'stands for a function or an &/ -distribution in #™.

(1) ?’(ait‘ f)(x)= —x8;y * Si- 1 F(f)x)
Q) Flf)=eS1 - Si1Sit1 - SuZ(f)

O) # (e )0 = 8ies = SuF (1)
@ 0= —e j L S ()

6) Fle/x) = e Sivs -+ SuF ()

6 F(fe+ a))(X) = e'“"“e‘e‘“”"e’s‘ e e eSS A (£ ()(x)

where for 1 € &, e**S1 " Si-1 = (cos 1) + e(sin A)S; - S;_;.



HYPERCOMPLEX FOURIER AND LAPLACE TRANSFORMS I 339

2. The space 2 (m; /)
Take ¢ € 9,,,(#"; o) and define

Fd(x) = ij(t, X)o(t) dt.

Then clearly & ¢ is left monogenic in 2™ * 1. Moreover Z ¢(x) is the unique left
monogenic extension of the Fourier transform

Fo0) = E@x)6(0) dt
Hence we obtain the inversion formula
[ [BC. %) F6()gmodx = 600

We call Z(m; /) the space of all functions & ¢ where ¢ € D,,,(Z™; ). Ob-
viously Z,(m; /) is a right submodule of M;(#™*'; ). In the following
theorem we prove an estimate for elements belonging to 2,(m; ).

THEOREM 2. Let fe M,(R"*'; o) be of the form
f=F¢ forsome e D, (R"; )

with supp ¢ < B(0, R). Then for any 1 € & and & > 0, a positive constant C.a
may be found such that

|xh o xinf (x)|o < C,. e+ Rl

for every x € #™* 1.

Proof. As f=% ¢ for some ¢ € D ,(#™; o) with supp ¢.< B(0, R), for
any l=(ly, ..., L) e #™,

) < ]_ot - < 000
Rm 0

<

J. xlllel(tlxl) xkthsm(tmxm)

(515 +oes Sm) € {0, 1)1 | “ Rm

X Ly, . s,(t, Xo)(t) dt
0

[ ohH, (%)) e O s (k)
Rm

(S15 ey Sm) € {0, 1)m

X le ...sm(ta x0)¢(t) dt

0
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A partial integration yields

L O Hyyy(t1%1) -+ Ol Ho o (tmXm)Ly, e snlt, X0)(E) dt

0

<[ ol BtnlLa, st X0)(E) o dt.
Rm

Consequently, as the support of ¢ is contained in B(0, R), we find—using
Leibniz’s formula and the above mentioned estimates for the derivatives of
L,,..,,—that

lell xf,',"f(x)‘o < C(l + x%Y‘eklxd’

for some C >0 and k € 4. Hence given ¢ > 0, a constant C, ; > 0 may be
found such that

[ X () ]o < GO0,

Note that in virtue of Cauchy’s representation theorem (see [7]), for any & > 0,
le #™and o € #™*! there exists C, , , > 0 such that

| Xt - xim 0% £(x)|o < Cy, o, €R+D1*,

In the following theorem we prove that the element of Z(m; &) are com-
pletely determined by such estimates.

THEOREM 3. Let f € My(R™*'; o) be such that for a certain R > 0 and for
anyle /™ ¢>0 and a € /™", there exists C, 4 > 0 such that

'xlll e xk a‘:f(x)lo < Ce,a,|e(R+e)|x°'.
Then there exists ¢ € D, (R™; o) with supp ¢ < B(0, R) such that T = F ¢.

Proof. In view of the stated estimatesf(x)= f(x)|,=o belongs to
L R™; o). Hence f(x) = F ¢(x) for some ¢ € &, (#"; o). We now prove
that the support of ¢ is contained in B(0, R + ¢) for any ¢ > 0.

Choose ¢ > 0 and t € 2™ B(0, R + ¢) arbitrarily. As ¢ = F ~!f, we obtain
that

o(t) = j B(t, x)f( x)dx—f A(t, x)f(x) dx.

As A and B are bounded for x € #™ and as for a certain constant C > 0,

Ce'R +¢)lxol
| f(X)o < T+ X

we obtain, by applying Cauchy’s theorem (see [7]), that, for any é > 0,

| A% f(x)ax=] A x)e”f (x — ) dx.
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Hence, in view of the definition of A(t, x) and the relations (3), for any & > 0,

[ A %)/(x)dx

and, as R + ¢ — |t| <0, by taking the limit for - + oo,

< Cle(R+8—|t|)6
0

[ A x)/(x)dx=0.

Rm
Analogously,

| B x)s®dx=0

so that we have proved that ¢(t) = 0. _

Hence the support of ¢ is contained in B(0, R) and # ¢ is a left monogenic
extension of f|gm = F ¢|am. As this extension is unique (see [12]), f = F¢ in
R,

Now we are able to construct a natural topology on & (m; &/ ). Letk,s € &
and call Z, , , the right Fréchet o/-module consisting of those left monogenic
functions in 2™ *! such that, givenle 4™ and « € #™*1, a constant C, , > 0
may be found such that

|x’1‘ x,','," a«;f(x)lo < Ca,le(k+ 1/s)|xol
Then a locally convex topology may be defined on Z (m; &) by putting
Z\(m; &) =lim ind lim proj & ; ,.

keN seN

Note that Z(m; &) is an inductive limit of right Fréchet «/-modules.
We now state the topological result:

THEOREM 4. 9, (R™; ) is topologically isomorphic to Z (m; /).

Proof. Making use of Theorem 1 and Theorem 3, one can prove this
theorem analogously to the case of one complex variable (see [1] for
example). |l

Remarks. (i) Denote by Zj(m; «/) the left &/-module of bounded right
& -linear functionals on & (m; &/). In view of the previous theorem Z(m; /)

and 2,,,(#"; &) are topologically isomorphic spaces.
(i) If ¢ € 9, (#™; &) then we may define

67 "(x)=[ G(E(, x) dt.
Rm
Then ¢F ~' € MP(R™; ).
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Let Z,(m; o) be the set of the functions ¢F ~ !, ¢ € D ,(R™; o ); then this
space may be characterized in the same way as & ,(m; «/). Moreover a locally
convex topology may be defined on it such that Z,(m; &) is topologically
isomorphic to Z(2™; ). Its dual module Z,(m; &) is then topologically
isomorphic to 2(,(#™; ).

3. The generalized Fourier transform in &,(2™; /)

Let T € &)(#™; /). Then T € & ,(#"; o) and hence & T is defined. On
the other hand, one may consider the function

T(x)=<T, E(t, x)),
and it is easily proved that for any ¢ € &, (2™ ; )
(FT,¢>=[ ¢x)Tx)dx.
Rm
Hence it is natural to define the generalized Fourier transform of T by
F T(x) =T, E(t, x)>,

As T is left o/-linear and bounded on & ;(#™; &) and as E(t, x) is analytic in
A™ x A™*1, one can easily show that # T(x) € C(#™*'; &) and that

DF T(x)= (T, DE(t, x)) =0 in A"+
Hence & T(x) is in fact the unique left monogenic function in £™*! such that
FT(X)|xo=0 = T(x).

The two following theorems may be considered as the hypercomplex
analogues of the well known Paley-Wiener-Schwartz theorems (see [9] and [10]
for example).

THEOREM 5. Let T € &y)(R™; /) and R > 0 such that sapp T < B(0, R).
Then for some k€ 4" and C > 0

| T(x)]o < C(1 + |x[2)eRi=dl,

Proof. The desired inequality follows immediately from the definition of
FT. |}

Now we prove that such estimates determine completely the Fourier trans-
form of elements in &{,(#"; ).

THEOREM 6. Let fe M,(R™**; o) and R > O such that for some C > 0 and
ke,

| £(x)|o < C(1 + |x[?)eRixl.
Then f = F T for some T € &y (R™; ) with supp T < B(0, R).
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Proof. As f(x)=f(x)|x,=0 € L(R"; ), F U f(x)= Te LA™ o).
Now we claim that the support of T is contained in B(0, R). Choose
¢ € L y(#™; o) such that supp ¢ = £™\B(0, R). Then anticipating the results
stated in Section 4, Lemma 1 and Lemma 2, % ~ ! is the #-boundary value of
some h € MP(R™* "\ R™; o) satisfying

[ - B2h(x) o < e
for every x € ™+ \&™, for some R’ > R. Hence
(T, ¢y =(FT, ¢F = Tim [ (h(x+x0) = h(x — xo))f(x) dx.
x0—=0+ “Rm
In view of Cauchy’s theorem (see [7]), for any 6 > 0
[ Hx+ xo)f(x)dx = [ h(x+ xo + 6)f (x + 8) dx

Rm Rm
and as

| Hoc+ xo + 6)f(x + 8) dx >0

Rm

whenever § - + oo, (which immediately follows from the above estimates for f
and h),

f h(x + x)f(x) dx = 0.
Analogously,
j h(x — xo)f (x) dx = 0,
Rm

so that (T, ¢) = 0. Hence T has its support contained in B(0, R). Finally as
FT|ro=0=S|xo=0 and since both functions are left monogenic in "' we
have that f=ZT. |

Letk € 4" and R > 0 and call x;,,  the space of all left monogenic functions
in #™*! satisfying an estimate of the form

| £(x)]o < C(L + |x]|*)eRixl.
Then clearly y; ,, g is a right Banach «/-module. Letting
x(m; o) =lim ind x, 4, g,
k, R
we obtain the following result.

THEOREM 7. The mapping F : & 4,(R™; ), — xilm; o) is a topological
isomorphism.

Proof. Using Theorem 1 and Theorem 6, the proof runs analogously to the
case of one complex variable. ||
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4. The Laplace transform in &, (#™; /)

In this section we show that the Fourier transform of an element
T e &) (R™; A) is the distributional boundary value of a special left mon-
ogenic function in 2™ * 1\#™, called the Laplace transform £ T of T. In this way
we construct a new class of representing functions for &{;(#™; o) (see also
[11]).

Lgt ¢ € L o(#™; o) with ¢ = 0 in B(0, R); then we know that ¢F ~! exists
and belongs to & ,(#™; ).

Now we construct a right monogenic function in #™*'\%™ which admits
¢F ~! as SP-boundary value. Let

A ={xe A" xo >0} A" = {xe A1 x, <0}
and, for any ¢ € & ;,(#™; o) such that supp ¢ = #™\B(0, R), define
| #®B@ x)e = dt if x e 1,
b= { "

[ 6@ x)eti=ode  if x e g,
Rm

LEMMA 1. Let ¢ € & (R™; o) be equal to zero in B(0, R). Then, for any
a€A™ 1 1e #™ and 0 <e<R, there exists C, ,,>0 such that, in
Rt l\gm,

| Xt <o xie 80L 1 (x) o < Cyp o1

Proof. In view of the relations (3), there exist analytic functions B, ..., in
2™\{0}, which are of polynomial growth when |t| — oo, such that

a";‘ﬁ(t, x)e"l‘lxo = Z HSn(tlxl) o Hsm(tmxm)le s.,.(t)e_mxo-

(51, ...s Sm) € {0, 1}m .
Hence, we obtain by partial integration that for any le /™ and 0 < ¢ <R
| -+ 0292

< |01t -+ ti(Bs, .. s e 1o)(t) o dt

(51, -+es Sm) € {0, 1}m J.9?»-\13(0,1()
< Ca, 6 et —R)Ixol,

in 2™ *!. An analogous estimate holds in 2. |

LeMMA 2. The boundary values lim, o, ¢L '(x £ x,) exist in
& o(R™; o). Moreover

OF “Y(x)= lim (L 1(x + xo) — L~ (x — xo)).

x0—0+
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Proof. In view of the previous lemma, for eachx € /™% and l € #"™ there
exists C; , > 0 such that for x, € 10, 1],

|x} e xbm 0L (x)]o < Cyy -
Hence for each a € #™ and x, 1, Xo € 10, 1],

| x5 - xam (DL 1K + x0,1) — 6L X + X0,2)) o

[ xt e e 2 g1+ 5)) |

X0,2

= Cl»<1.u)|xo, 1 xo,zl,

which implies that (¢.£~(x + Xo))x, < 10,11 is @ Cauchy-net in F,(#™; /) and
hence that

lim ¢.2~1(x + xo)

x0—~+0+

exists in & (2™ ; «). Analogously
lim ¢~ 1(x — x,)
x0—0+

exists in & (2" ; ). Furthermore
L7 Hx + Xo) — ¢L 7 (x — xo) = Lmd)(t)l?(t, x)e~1t1xo g
converges to ¢F ~(x) for xo—»0+. |
A converse of Lemma 1 runs as follows.

LemMa 3. Let fe MP(R™ '\R™; /) be such that there exists R > 0 for
which, given any a. € #™*1 1€ /™ and 0 < ¢ < R, a constant C,_, , > 0 may be
found such that

|k -+ xhm 8% f(x)|o < Co e, 1€ Pl

Then f= ¢L~* for some ¢ € & ;(R™; ) with ¢ = 0 in B(0, R).

Proof. From the given estimates and the proofs of Lemma 2, it follows that
the boundary value f(x + 0) — f(x — 0) of fexists in &, (#™; ). Let ¢(t) =
(f(x +0) — f(x —0))#; then ¢ belongs to F,\(#"; ). Using Cauchy’s
theorem (see [7]) one easily proves that (f(x £ xo)#)(t) =0 for te B(0, R)
which implies that ¢ = 0 in B(0, R). Hence, as both fand ¢.# ~ ! have the same
boundary value and satisfy estimates of the above type, using Liouville’s
theorem (see [6]) we obtain f= ¢Z 1. |
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In the followmg theorems we consider distributions in &(,(#™; /) which
are equal to zero in B(0, R).

Let Te Sy(R"; ) be zero in B, R) and choose a real-valued
C ,-function o,(t) depending on ¢ € ]0, R[ such that

wt) = 0 ifte B(O, R —¢)
T ifte 2" B(O, R —¢2)°

Then for any ¢ € &L ,(2"; ),
(T, ¢> =<T, . $>.
Furthermore the functions
AL, x) = o, ()A(t, X),  B(t, x) = o, (t)B(t, x),

and their t-derivatives, are C  -functions of polynomial growth in £™ x #™.
Let

E, .(t, x) = B,(t, x)e”!I*0, x e gmt,
and
E, (t, x) = A,(t, x)e'*I*, xegmtl.

Then for x fixed, E, ,(t, x) and E,_(t, x) belongto & ,(#™; /). Now we define
the Laplace transform £ T of T by

<’1;, E2,5(t, X)>, xeg"-:-+l
(T, Ey ot X)), xe Rt

One may prove that ZT is left monogenic in 2™ * !\@™ and that its definition
does not depend on e.

In the following theorem an estimate for £ T is given.

ZLT(x)=

THEOREM 8. Let T € Fjy)(R™; o) be zero in B(0, R) and let ¢ € 10, R[. Then
there exist k, r € & and C, > 0 such that, in #"* \R™,

1

| %o f*

Proof. As T € ¥(#™; o) there exist a continuous function g,1 € 4™ and
s e A" such that |g(t)|o < C(L + |t*} and T = dig. Consequently for any
e SR A),

| £ T(x |0<C(1+ ) 14 |x[2ye R-olxol,

(T, ¢y = (= 1), 2(g(t)>

whereby, in Z2m*1,

LT(x)= (-1 | OMB.(t, X)e™ "o)p(t) dt.

Am\B(0, R —¢)
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Using Leibniz’s formula and the equations (3) we have that for some C' > 0,
reft,

|3(B,(t, x)e~1t1=) |, < C'(1 + |x[2Ye I,
Hence, letting C" = CC,

|2 T(x)|o < C'(1+ |xPY | (1+ [tPye e dt
Am\B(0, R — e)
and, as
f (1 + ltlz)se"ltlxo dt < Cte(l + ___lm)e(s—mlxol’
#m\B(0, R—¢) |x0|

we may find C, > 0 such that

LTl {1+ s + fyeeove.

|0

An analogous estimate may be obtained for x € 2. |
Now we prove that # T is the boundary value of £ T.

THEOREM 9. Let T e Syy(R"; /) be zero in B(0, R). Then for any
¢ € y(l)('@m; ﬂ)’

(FT,¢y= lim [ SENLT(x+ x0) = LT(x = %) dx
x0—0+
Proof. For x,>0 fixed, ¢(x)LT(x + x,) belongs to & (#™; &) and
hence, using an approximation by Riemann sums,

Lmqb(x)gT(x + xo) dx

= 1im< ., gjcp B,(t, x,, v)e”"*ou(K v,~)>

N-ow

where u denotes Lebesgue measure.

Observe that szv=0 &(x, ~)B.(t, x, ~)u(K,, ~)and allits t-derivatives are uni-
formly bounded with respect to N and t and that this sequence converges in C,
to [am ¢(X)B,(t, x) dx. Hence

§0¢(xv, N)Bs(t’ xv, N)e_ |t|xo'u(Kv, N)

converges to

j B(x)B,(t, x)e~ "% dx



348 F. SOMMEN
in & (#™; &), which implies that
[T+ x0) = (T [ 00BN ).
Rm Rm

Furthermore,

j @(x)B,(t, x)e™ 1% dx

converges to

[ 6Bt x) ax
Rm
in & (#™; A) if xo > 0+. Analogously,

j B(X)A,(t, x)e~"t1%0 dx

Rm

converges to

J d(x)A.(t, x) dx
Rm
in & (#"; o) if xo > 0+. Hence, as E(t, x)(t) = B,(t, x) — A,(t, x),

lim j P(XNLT(x + x0) — LT(x — x0)) dx

x0—0+
= <T, o(t) L H(X)E(t, X) dx> =(FT, ¢> 1
Now we state the converse of Theorem 9.

THEOREM 10. Let fe M (#™* '\R™; o) be such that there exists R > 0 for
which, given any 0 <e<R, k, re A, C,>0 may be found such that, in
Rt l\gm’

| f(x |0<C(1+ i ll) (1 + |x[?)yet=Rolxol,
Xo

Then there exists T € ¥ {y)(R™; o) such that T =0 in B, R) and f= LT.
Proof. As

| £( |0<C(1+ k)(1+ [x]?y for xo€]-1,0[ L 10, 1[,

f admits an ¥{,)(#™; o/ )-boundary value for x,—0+ (see [11]). Hence
f(x+ x0) —f(x — xo) tends to F T for a certain T € L (R™; ). We prove



HYPERCOMPLEX FOURIER AND LAPLACE TRANSFORMS I 349

that Tgo, gy =0. Choose a testfunction ¢ with support in 3‘(0, R) and
take ¢>0 sufficiently small such that supp ¢ < B0, R —2). As
OF ~' € Z (m; o), there exists C > 0 such that

(1+ [xPY*™+19F ~Y(x)]o < CeR3/20Nxl,

Hence

(T, ¢y = lim | §F )(f(x+x0) = f(x = xo)) dx.

x0—0+

and in view of the given estimate and Cauchy’s theorem (see [7]), for any é > 0,

Lmrbf"‘(X)f(x + Xo) dx| =

< C,(J’ 1+ |x +4 lz)' dx)e' 1/28(x0+9)
2

J OF “1(x + ) f(x + xo + 6) dx
Rm 0

w (L+ [x +6[7y*m+1
Consequently, letting 6 — oo, for any x, > 0,

[ #7710 f(xo +x) dx =0,
Rm
Analogously, for any x, > 0,

| 87 1)1 (x = x0) dx =0
Rm
so that T = 0 in B(0, R).

Consider £ T; then as #T and f have the same distributional boundary
value, T —f is left monogenic in #™*! (see [11]). Furthermore, as
ZT — feSLy(R™; ), it is a polynomial (see [11]) and, as both #T and f
satisfy an estimate of the given form, ZT(x + x,) —f(x + xo) >0 if
|xo | = oo. Hence f= £T. |

Now, let
Te SyR"; ), R>0,0<e<R
be given. Then T = T, + T, where Ty € ¥(,(®"; ), T, = 0in B(0, R — ¢)and
T, € &,(#R™; o) has its support in B(0, R — &/2).

As we know from the foregoing, # T, is the &’-boundary value of a certain
fe M(#™'\R™; o) satisfying

| /( X)Io<C(1 T !,)(1 + [ x [P+ Rxol,

and & T,(x) is the #'-boundary value of g € M,(#™*\#™; o/ ) defined by

FT(x) ifxen*?

9lx) = —$FTy(x) ifxe R+



350 F. SOMMEN

and which satisfies
[g(x)|o < C(1 + |x[?)reRIxl,

Hence # T is the boundary value of £ T = f + g satisfying an inequality of the
form

1
(*) | £ T(x)]o < C(l + |—x—|,)(1 + | x [Pkl

0
Conversely when he M (#™*\#™; /) satisfies an estimate of the type (x),
then the boundary value of h exists in &’ and hence equals # T for some
T € F4)(#™; ) (see [11]). In view of [11] one easily shows that h — £ T is an
entire monogenic function satisfying

(%) |h— LT(x)]o < C(1 + |x[2)eRixl.

Now let R > 0 be given and call M { (%™ '\#™; o) the space of monogenic
functions in #™* 1\#™ satisfying (), and M, g(#™*!; o/) the space of entire
monogenic functions satisfying (**). Then, in view of the above considerations
and [11], one obtains the following theorem.

THEOREM 11. (a) F(R™; ) and My g(B"* "\ R™; o )/M 1 (B, )
are isomorphic right <f -modules.

(b) The boundary value mapping from M | g(R"*'\R™; ) to Lo R™; A )
is bounded and open.

Remarks. The previous theory leads to the following decomposition.
Let R> 0 and let T € &,(#™; &), T =0 in B(0, R). Then we define

_JLT(x) ifxe RL!
2L+ Tx)= {o if x € ™Y,
and
0 if xe gmt!
LT ifxeRm+L
As both ¥, T and .Z _ T satisfy the estimate of Theorem 10, there exist unique
P, T and P_T in &{,(#"; <), being equal to zero in B(0, R), such that
L . T=%P, T and ¥ _T=¥P_T.
Furthermore PAT=P, T, PAT=P_T,(P,+P_)T=Tand P,P_T=
P_ P, T=0. We illustrate the decomposition of such a T in the cases where
m=1and m=2,
If m = 1, then one may easily check that

£ _T(x)=

1 t
Pz ()

Note that P is the restriction operator to £ .



HYPERCOMPLEX FOURIER AND LAPLACE TRANSFORMS I 351

For m=2, let t = (t,, t,) € #* and let 0 be the angle between the positive
t,-axis and the oriented half line joining the origin with t. Then one obtains

.0
Pz T = (1 £ cos O)Ty,,, ., £ sin 7 l-tyn

In complex analysis one can define the Laplace transform as follows. Let fbe a
continuous function of polynomial growth in %2 for example, and let

P:tl,:tlf=f

fte #2: Ft1>0, F12>0}
Then for (¢4, 6,) € {1, —1}* one can define

ydl,dz f(zl’ ZZ) = jgze_i(t121+t222)Pal,dz f(t) dt’

which is a holomorphic function in {(z,, z,) € *: sgn y; = ¢}. So the Laplace
transform, which is defined by
Lf (21, 22) = ZLsy,0, [(21, 22) ifsgny; =0,
is holomorphic in (¢\2)* and can be divided in four parts,
Lf=LPi [+ &P 1\ f+ &P [+ PP 1 ],

which correspond to the Laplace transforms of the restriction of f to the
“octants”. (Hence one could say that this Laplace transform is of “Carthesian
nature”.) In hypercomplex function theory, the Laplace transform always con-
sists of two parts,

Lf=LP, f+ ZLP_{

where P, are the above introduced “orientation operators” in the Euclidean
space, which have a rather “spherical nature”. Only in the case where m = 1 do
both ways of thinking coincide.
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