
ILLINOIS JOURNAL OF MATHEMATICS
Volume 26, Number 2, Summer 1982

FIBERING COMPLEX MANIFOLDS OVER S3 AND S

BY

STEVEN M. KAHN

1. Introduction

For any closed manifold N, there are obstructions to the smooth fibering
over N, of a stably almost complex manifold M. This paper examines those
obstructions which are given by the Stiefel-Whitney, Pontrjagin and Chern
numbers of M.
A complete solution, for a given base space N, consists of finding a set of

obstructions whose vanishing on a manifold M guarantees the existence of a
fibration over N, with total space complex cobordant to M. Thus, we are trying
to find those cobordism classes co f% which contain a representative fibered
over N. If such a representative exists, we say that the class co fibers over N.
Note that for fixed N, the set of co which fiber over N is an ideal in f, which we
denote by Fibnu(N).

It was shown*in [4, p. 68] that a class co s f fibers over S if and only if the
signature a(co) is zero. Nelson [8, Theorem 3.8] proved that this signature con-
dition is also the only obstruction to fibering a unitary class over S2, while the
general result for any connected surface B2, is the following (see [1]):
A class co f n > 2, fibers over B2 if and only if

0 if (B)> 0
a(co) 0 (mod 4) if z(B) < 0,

where Z denotes the Euler characteristic.
For fiberings over a manifold N ofdimension greater than tw.o, the situation is

quite different. The necessary signature conditions in this case are in general, no
longer sufficient. There is an interplay that surfaces here, between fiber and total
space cohomologies, involving actions ofboth stable and unstable operations on
characteristic classes. The result is a more involved set of obstructions.

This paper completely determines the obstructions to fibering a class
co s f over S3 and S* (the two solutions are precisely the same). As con-
sequences we obtain results for some other 3 and 4-manifolds. We also get a
partial description of the fibering ideal of S2 x S2 and offer a conjecture as to
what the complete answer should be. In addition, since almost all the fibrations
we construct over the spheres actually fiber over CP(3), and since all obstruc-
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tions to fibering over S apply to fiberings over CP(3) as well, we get for free
a considerable amount of information about the fibering ideal of CP(3).
We now state the main results.
Let c(M), w(M) and v(M) denote the i-th Chern, Stiefel-Whitney and Wu

classes ofM respectively. Let tr(M) denote the signature and let sn[M2"] denote
the "s-number" in the Chern classes detecting indecomposables in f. Let

P: H(M; Z2) H21(M; Z,)

denote the Pontrjagin square operation (see [14, 1] for a general description)
and let

Pro: H*(M; Z) H*(M; Zm)

denote reduction mod m.

THEOREM 1. A class co fzn (n >_ 2)fibers over S3 or S4 if and only if

(i) for n 2,
(ii) for n 3
(iii) for n 4
(iv)

c3 (co) 0 (mod 8)
a(co) 0 and s4(co) 0 (mod 3)
tr(co) 0 /f n 2k
W4W2n_4(co 0 and p4cl. p(1)2k)(co "-0 /fn 2k + 1 forn> 5

Remark 1.1. Unlike the results for fiberings over surfaces and S which
involve only the signature, the result here involves a fairly complicated set of
obstructions; seemingly unrelated and perhaps even a bit mysterious. There is,
however, a unifying theme which can be seen clearly in the theorem’s proof (see
Section 4). With the exception of the signature, all obstructions emanate from
one source; the Wu classes. Whether we are dealing with fiberings in
(part (iii) of Theorem 1), where a mod 3 Wu class comes into play, or in the
other dimensions where we work in the usual Z 2 setting, it is the fact that a Wu
class in the cohomology of the total space restricts to zero on the fiber that
leads to the appropriate obstruction(s).
Theorem 1 coupled with the previously known results for S and S2, leads to

2k 2kthe conjecture that Fibau(S Fibtu(S for all k. The analysis of Theorem
1 in terms of the Wu classes supports It. We note that whether a stably almost
complex manifold M2" fibers over S2k or over S2k- a, the same exact Wu classes
(specifically v(M), n k + 1 < < n) restrict to zero on the fiber.

Let M3 be any closed connected 3-manifold.

COROLLARY 1. If a class co flu2. (n >_ 2) satisfies the conditions of
Theorem 1, then co fibers over M3.

COROLLARY2. A classco f4k (k > 3) fibersover M3 if and only if or(co) O.
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The following corollary, although stated in general form, completely deter-
mines the fibering ideals of all Lens spaces L,, for p odd, p :fi 3r.

COROLLARY 3. Let M3 be any closed connected 3-manifold with (M)finite
of odd order k.

(i) If k v 3r, Fibt:(M3) Fibt,(Sa).
(ii) If k 3r, Fibt,(M3) Fibti(S3) ecept possibly in flus
The fibering ideals of certain 4-manifolds including Sa x S are given by the

following:

COROLLARY 4. Let M4 be any closed connected stably almost complex 4-
manifold fibered over a 3-manifold M3 with n(Ma) finite of odd order k.

(i) If k 3r, Fibt(M) Fibu:(S4).
(ii) If k 3r, Fibt*(M4) Fibta(S) except possibly in flus
Before stating the re*sult for fiberihgs over S2 x S2, we give an idea ofthe size

of the fibering ideal of S3 or S by describing the quotient off by Fibt(S3).
Letting G and G5 denote indecomposable classes (to be describel in
Section 3) in f and fo respectively, we have

f/Fibta(S3)
Z generated by CP(1)
Z )Z generated by CP(1)2 and CP(2)
Z4 generated by CP(1)CP(2)
Z )Z3 generated by CP(2)2 and G
Z generated by CP(2)k
Z2 ) Z2 generated by CP(1)CP(2)R
and CP(2)k-2G5

forn= 1
for n= 2
for n= 3
for n= 4
for n 2k _> 6

for n 2k + 1 > 5

THEOREM 2. A class co fn (n 2k _> 2 or n 3) fibers over S2 X S2 if and
only if

(i) c3(co)=0(mo04) forn=3
(ii) or(co) 0 for n 2k >_ 2.

Conjecture. A class co f[n, n 2k + 1 5, fibers over S2 X S2 if and only
if

[204(C2Cn_2) -- P4Cl p(/)2k)]((D)= 0 (1.2)
In Section 2, we briefly discuss the two basic tools we use in the construction

of fibrations. We recall, for reference, some standard facts about projective
bundles and state two so-called "pullback" theorems. In Section 3, we actually
construct manifolds and obtain a series of classes in f fibered over S4. In
Section 4, we prove Theorem 1 and its corollaries and in Section 5, we prove
Theorem 2 and give evidence for the corresponding conjecture.

I would like to express my sincere thanks to James C. Alexander for his help
and encouragement and to Bob Strong who originally suggested this problem
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to me. I would also like to acknowledge the Computer Science Department of
the University of Maryland for the use of their facilities. Finally, I would like to
thank the referee for his suggestions.

2. Preliminaries

Let be an n-dimensional complex vector bundle over a manifold B. The
complex projective bundle CP() is the manifold consisting of all lines in the
fibers of . CP() fibers over B with fiber CP(n 1) and supports a canonical
line bundle 2.

Let b c1(2) H2(Cp()). It is well known [10, p. 62] that H*(CP()) is a
free H*(B) module on generators 1, b,..., b with the relation

b’cn_,()= 0 (2.1)
i=0

Let z(M)denote the tangent bundle of the manifold M. Szczarba [12] shows
that for the fibration p" CP()- B,

z(ce())) 01 p*z(B) (p* (R) -2) (2.2)
where 01 denotes the trivial complex line bundle and denotes the conjugate
bundle of 2. If B is stably almost complex, we get an induced stably almost
complex structure on CP().
For convenience, the "p*" and the words "stably almost" will henceforth

often be suppressed.
Now with actual fibrations in hand, we turn to "pullbacks". The first propo-

sition and its corollary, due to Nelson [8, Lemma 2.1], are the complex
analogues of two of a series of pullback results by Stong [11, Proposition 2.1].
(See also [1, Corollary 1.3] for a more general result). It is the corollary that
gives Fibn,(S") its essential significance in the overall problem of finding
Fibo,(N) for arbitrary.

PROPOSITION 2.3. Iffor N and N’ stably almost complex, there exists a map
f: N’--, N complex bordant to the identity, then

Fibn:(N) c Fibn,,(N’).
COROLLARY 2.4. Fibn,(S") c Fibn,(Nq) for all stably almost complex mani-

folds N with q <_ n.
By pulling back covering spaces we get the following:

PROPOSlXION 2.5. Let " ; B be an n-fold coverin of a closed manifold B.
Then n" Fibn,(B) Fiba,,(/).

Proof. Let co e Fiba,(B) be represented by the fibration f: M B. Then
f*() is an n-fold cover of M and fibers over . A routine check of Chern
numbers shows that f*() represents no e f. |
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3. Constructing fibrations over S

In this section we prove, through a series of lemmas, the following technical
rsult"

PROPOSITION 3. There exist indecomposables G, f"2, which fiber over S4

for all n except n 1, 2, 4 and 5. Furthermore, all possible products of these
indecomposables fiber over S except for the following:

CP(1),
aCP(1)CP(2) where a 0 (mod 4),
aG where a 0 (mod 3),
aCP(2) where a Z,
aCP(1)CP(2) (k >_ 2) where a 0 (mod 2),
aCP(2)G5 where a 0 (mod 2),

To put this result in better perspective, we note that the non-fibering classes
listed above are precisely those classes detected by the set of obstructions given
by Theorem 1.
The following notation will be used throughout this section"
Let 2 denote the canonical line bundle over CP(n). Let r/ and denote

appropriate canonical line bundles over given projective bundles. Let , denote
the quaternionic line bundle over $4= HP(1). (Note that , is a complex
2-bundle over S’). Let 0 denote the trivial n-bundle. Also, let - denote
Fibo.,(S4). We will use no notation to distinguish between a manifold and its
cobordism class. The context should make clear which we mean.

Before we begin construction, we note the following standard fact about
complex bundles" Let g and

be complex bundles whose underlying real bundles are isomorphic. We can
equip a with different complex structures, induced by the realsomorphism, by
conjugating summands of ft. Let fl denote the conjugate complex bundle of ft.

Recall now, that the complex cobordism ring f, is a polynomial algebra
over Z on generators G, of dimension 2n, one for each positive integer n. The
class of a stably almost complex manifold G., may be chosen as the 2n-
dimensional generator (see [10, p. 128])if and only if

J+ p ifn + 1 is a power of the prime p
Sn[Gn] + 1 otherwise,

where s, can be defined as follows" If the total Chern class c, of the complex
bundle E over B is given by

c(E)= (l + t)(l + t2)’" (l + tk) forti_H2(M)
then

s(E) tq + t2 +..’+ t, (3.1)
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and s, is natural. If the stable tangent bundle z, of a manifold M, has a complex
structure, then s,(M)= s(z).

LEMMA 3.2. There exist indecomposables, G, fP2n, which fiber over CP(3)
forn= 3, n=6and n=7.

Proof. (i) n 3. Let G3 CP(3) with the non-standard complex struc-
ture given by

zCP(3) 2 , , , stably.

Then the total Chern class of G3 is given by

c(G3) (1 a)(1 + a)a

where a c(). And so by (3.1), s3(G3)= 2a3. Thus s3[Ga] 2.
(ii) n 6. Let G6 be the projective bundle

CP 03)

CP(3)
with the non-standard structure given by

zCP( 03) 2 22 ( @) 2 stably.

Letting a c().and b c(), we have that

c(G6) (1 + a)2(1 a)2(1 + a b)(1 b)(1 + b)2.
By (3.1), along with (2.1),

$6(G6) 2a6 + 2(--a)6 + (a- b)6 + (-b)6 + 2b6

and $6[G6] -7.
(iii) n 7. Consider the projective bundle

cP(3)
t CP’( 0+) be CP( 0+) with the nou-standard complex structure given
by

cP( 0+) 2 2 ( ) 3 stably.

and let CP"( 0+) be CP( 0+) with the uon-standard structure given by

cP 0+) 2 2 ) stably.

Lt

CP’( 0) CP"( 0+)
(the uegatiou here aud throughout this section is iu the cobordism seuse).
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With a tTl( and b ca(r/) we have that

cCP’(. 04) (1 + a)2(1 a)2(1 + a b)(1 b)(1 + b)a,
while

cCP"(2 04)= (1 + a)2(1 a)2(1 + a b)(m b)2(1 + b)2.

Then, by (3.1) and (2.1), sT[GT] 22 20 2. |

For n > 8, we obtain indecomposables fibered over CP(3) through a general
construction of indecomposables fibered over CP(j). We note that Nelson [8]
constructs such indecomposables G. f. for n "sufficiently large". However,
here we require a precise bound.

LEMMA 3.3. There exist indecomposables, G, f,, which fiber over CP(j)
for all n > 2j + 2.

Proof We first note the following algebraic fact:

g’c’d’{( n+i 1)l</<n-_ 1} {Pl if n + l is a power of the prime

This reduces our problem to that of finding a set of fibering manifolds M’, in
each dimension n > 2j + 2, with

s,[M’] (n + l) forl<i<n-1

Let N be the projective bundle

CP(, 0"-j)

CP (j)

and let a c1(,) and b 1(q), where r/ is the canonical "line bundle over
CP(, @ 0"-). Then

c(/) (1 + aF+ x(1 + a b)(1 b)"-.
So, by (3.1) and (2.1),

s[]=(-1) ()-()+...+ (-1()
Let (1 n- j- 1) be the iterated projective bundle

CP(. . 0"-- i)

cP(X o’)

cP(j)
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and let a cl(), b Cl() and c cl() where is the canonical line bundle
over CP(q 0-- ). Then

c(.) (1 + a}/+ (1 + a b)(1 b)’(1 c + b)(1 c)n-j-’.

So, by (3.1) and (2.1),

Let

Then

M7 (-1)i+n[[i-j- 2[i-j-1 + [i-j-2] for j + 2 < i< n 1.

s,,[MT] +
i- 1

For 2<i<j+l, let M’=M/_. Note that for 2<i<j+l, we have
n-j<n+l-i<n-1 and since n>2j+2, we have j+2<n+l-
< n- 1. Thus M7 is well defined for 2 < < n- 1 and

s[M’]= (n + for2<i<n-1._

All we need now is a fibering manifold M, with s(Mq)= n + 1. Let

r (.__ .__ ).
If n is even, s.[hqr’l]=n+ 1 and we let M]=hqr]. If n is odd, then
s.[hqr]] n- 1 and we let

M] M] + U U
where/ is/ with the non-standard complex structure given’by

zCP(-2) 0"-) (j + 1)2 (2(R) )9 (n -j 1)?7 r/ stably.

Note that s,[/] s,[] + 2. So s,[M]] (n 1)+ 2 n + 1.
This completes the proof of Lemma 3.3. |

At this point we observe that there is the standard fibration f: CP(3)
S4 HP(1). Thus, anything that fibers over CP(3), fibers over S’. And so we
have:

COROLLARY 3.4. There exist indecomposables, G, f,, which fiber over S
for n 3, and n > 6.
We make the following choices of indecomposables for n 1, 2, 4 and 5.

G=CP(1), G2 CP(2) and G4 CP(4)- CP(2)2.
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Consider the iterated projective bundle

CP(rl 03)

CP( 0’)

CP(1).

Let CP’(rl 0) be CP(rl ) 0a) with the non-standard complex structure given
by

zCP rl ) 03 -2 -2 2 (R) l l Ol (R) - - 2 stably

( being the canonical line bundle over CP(rl 0)). Let

Gs CP’(rl 0) 2CP’(5)
where CP’(5) is CP(5) with the non-standard structure given by zCP(5)=
42 q) 22 stably.

That G, G2, and G4 are indecomposables is clear.

LEMMA 3.5.
w4 w6[Gs] 1.

The class Gs, defined above, is an indecomposable in fo with

Proofi Letting a c(), b c(r/)and c c(), we have that

cCP’(rl 03) (1 + a)2(1 a b)(1 b)(1 + b c)(1 c)(1 + c)2

The result now follows by routine computation.

Having dealt with the problem of finding indecomposables which fiber over
S#, we turn to the problem of which products of these indecomposables fiber
over S4.
Nelson [8, Theorem 3.12] determines that the classes CP(1)3 and

4CP(1)CP(2) in t2 contain representatives which fiber over CP(3). The result is
obtained by determining all the possible stably almost complex structures that
can be put on CP(3). (See also [9, p. 19]). For our purpose, we have:

LEMMA 3.6. In fu6, CP(1)3 and 4CP(1)CP(2) e .
From here we move up one dimension at a time, trying to account for all

possible decomposables. Recall that for each free abelian group t2, we have a
basis ’, consisting of G and all products of lower dimensional indecompos-
ables G, < n. By expressing classes known to be in in terms of this basis, we
can hope to get information about the basis classes themselves.
We use this technique in investigating dimensions eight through sixteen.

LEMMA 3.7. In na, CP(1)2CP(2) and 3G,, e .
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Proof. Consider

CP(I O

CP()

S*

where S’ carries the trivial stable complex structure. Calculating by hand, we
find that

CP(, 0)= -5CP(1)" + 5CP(1):CP(2)- 5CP(1).
Since CP(q 0 ), CP(1)
But Lemma 3.6 yields 4CP(1)2CP(2)6. Subtracting, we get that
CP(1)CP(2) ’.
Now consider the complex projective bundle CP( 0) over S*, where S4

carries the trivial stable complex structure. Letting a c2() and b c(r/),
where r/is the canonical line bundle over CP(, 0), we have that

cCn( 0’)= ((1 b)2 + a)(1 b).

Expanding and using Girard’s formula

s4 c 4c c2 + 4cl c3 + 2c 4c4

we find that s,[CP( @ 0)] 15. Then

CP(3’( 01) -3G, + aCP(1)4 + bCP(1)2CP(2) + cCP(1)G + dCP(2)2

where a, b, c, d, e Z. Since the signature a[(CP(; 01 )] 0, we have that d 0.
Then the fact that CP(y 01), CP(1), CP(1)2CP(2)and CP(1)Ga e , gives
the result that 3G,

LEMMA 3.8. In f]o, 2G5, CP(1)G4 and 2CP(1)CP(2)2 .
Proof Consider the complex projective bundle CP(t 02), over CP(3).

Calculating by hand, we find that

cP( 02)= -106cP(1)cP(2)2 25cP(1)G, + 2G + Y

where Y 6 . Let CP’(Yt 02) be CP(Yt 02) with the non-standard complex
structure given by

CP2 02) 42 ) (2 (R) /)@ /) / stably,

where r/is the canonical line bundle over CP(, 02). We find that

CP’2 02)= -214CP(1)CP(2)2 52CP(1)G4 + 4G5 + W
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where W e . Substracting, we get that

-108CP(1)CP(2) 27CP(1)G, + 2G e .
But 4CP(1)CP(2) and 3G, e . So 2G e -.
Then -106CP(1)CP(2) 25CP(1)G, e and so

2CP(1)CP(2) CP(1)G4 e .
Since 3CP(1)G4 e , we get that CP(1)G4 e ’, which in turn gives us that
2CP(1)CP(2) e . |

Moving on to the 12th dimension, we note that f]2 has a basis consisting of
eleven classes. At this stage, calculating by hand becomes just about impossible.
Thus in an effort to maintain our sanity, we prove the next two lemmas by
using a computer to solve our matrix equations.

LEMMA 3.9. In "t2 CP(2)G, and CP(1)Gs e .
Proof. Consider

CP(? 03)

CP(y)

S4

Let CP’(q 03) be CP(q 03) with the non-standard complex structure given
by

r,CP(qO3)= 02 (.y(R)) (r/(R)) 2 stably

where is the canonical line bundle over CP(rl 03). We find, by computer,
that

CP’(rl 03) -5CP(1)Gs + Y

where Ye. So 5CP(1)Gs e:T and thus, since 2Gs e, we get that
CP(1)Gs e .

Let CP’(2 22 0 :) be the complex projective bundle CP( z 0)
over CP(3) CP(1), (where and 2 are the pullbacks of the appropriate
canonical line bundles), with the non-standard structure given by

"cCP(21 22 01) 221 221 22. 22 (21 (R) /) (22 (R) /) r/ stably

where r/is the canonical line bundle over CP(21 22 01). Then we find, by
computer, that

CP’(21 22 01) 2CP(2)G, + W



FIBERING COMPLEX MANIFOLDS OVER S3 AND S4 307

where W e. Then, 2CP(2)G, , and, with
CP(2)G4 . |

LEMMA 3.10. In fUl6 G2 .
3G4, we have

Proof. Consider

CP(rl 02)

CP(( 0a)

S4

Let CP’(I ( 02) be CP(rl ( 02) with the non-standard complex structure given
by

zCP( 02) 02 (@) 2g (@)2 stably.

We find, by computer, that

CP’( 02 35G + Y

where Y 6 . Thus 35G . Since 3G 6 , we have 36G , and so
Ge. I
LEMMA 3.11. In ua, G,, G e ,.
Proof. Since both 3G4 s - and 2G5 e -, we have that both 3G, G5

and 2G4 G5 . The result follows trivially. I
Proceeding to an investigation offo, we .are now faced with a basis consist-

ing of forty-two classes. At this point, with even the computer being driven nuts
by the quantity and size of the numbers involved in our matrix computations,
we turn to a new method for determining the fibering status of G2. Its use in the
next proof will serve to describe it.

LEMMA 3.12. In fo, G2 .
Proof. As usual, we consider the basis ’ of fo, consisting of all appro-

priate products of the indecomposables Gn, constructed earlier. We claim the
following fact" With the possible exception of CP(2)5, G is the only class in ’for which the characteristic number

C4C6 "+" C3C7 -JI- C2 C " C10 "- S10 1 (mod 2).
Letting d denote the above characteristic class, it is clear that for any class X2o
in , containing a factor of CP(1) or Ga, we have d[X2o] 0 (mod 2). This is
because both CP(1) and G3 are unoriented corbordant to zero. The numbers of
the other classes are checked by routine computation.
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Now consider

CP(rl 05)

CP2 02

CP(3).
Let CP’(rl 0s) be CP(rl 05) with the non-standard complex structure given
by

zCP(rl 05) 2) 22 (. (R) r/) r/ (r/(R) () 2( 3 stably,

where is the canonical line bundle over CPO? 05). A direct computation
shows that d[CP’(rl 05)] 1 (mod 2). This, together with the observation
that

yields

{CP(2)5, G2} ,,
CP’(rI 05) (2k + 1)G + aCP(2)5 + Y,

where k, a Z and Y . But since a[CP’(rl 05)] 0, we have a 0, and
consequently (2k + 1)G2 . Since we already know that 2G we have
that G2 e . I

4. Proof of Theorem 1

Proof. We first note that all obstructions are shown to hold for fibrations
over S3, while all sufficient conditions pertain to fibrations over S. Since the
two sets of conditions are identical and since Fibta(S’) c Fibta..(S3) by Cor-
ollary 2.4, it follows that Fibn(S) Fiba(Sa).

(i) () "---,Let p: M S be a fibratlon. S,nce z,(Sa) =.0, we have (see [2])
a(M) a(S3) a(F)= 0. A trivial inspection of the Serre spectral sequence
shows that H2(M4) 0. Then cx(M’)= 0 and so c](M’) 0. Now by the
Hirzebruch Signature Theorem [3], we know that a(M) p[M], where
Pl e H4(M’) is the first Pontrjagin class, and so p l[M’]=0. Since
pa c 2c2, we get that (c] 2c2)[M] 0 and so c2[M’] 0. Thus M is
t2"-corbordant to zero.
() 0 fibres over S4 by merely choosing the empty manifold as a

representative.
(ii) (=) Let p: M6 S3 be a fibration with fiber Fa. Consider the Wang

sequence in Z2-coefficients:
i*

H-l(F3; Z2) H2(M6; Z_) H2(Fa; Z2)--, H(Fa; Z2)"’"
where i" FaM6 is the inclusion. Clearly, i* is a monomorphism on
H2(M6; Z2) and since i*(v2(M6))--- v2(F3) 0, we see that v 2(M6) 0. But by
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the Wu formula and the fact that M is stably almost complex (so all of its odd
Stiefel-Whitney classes vanish), we see that w2(M6)= v2(M6)=0. Hence
c(M6) 2z for some z H2(M6). And so c[M6] 0 (mod 8).
() Nelson [8, Theorem 3.12] proves that c(o) _=_ 0 (mod 8) implies that

o fibers over CP(3). (See also [9, p. 19]). But CP(3)fibers over S.
(iii) (=) Let p" M8 Sa be a fibration with fiber, F. As in part (i),

(M8) 0.
Now, using standard formulas for the s-class s,, and the Pontrjagin classes p:

and P2, in terms of the Chrn classes of M, we proceed follows"

s,[Ms] (c 4c c2 + 4c c3 + 2c 4c,)[MS],
a(Ms) &(7p2 p)[Ms] (by the Hirzebruch Signature Theorem)

&(7( 2c + 2c,)- ( 2c))[M]
4c 14cc3-(c + cz- + 3c + lac,)[Ms]

Since a(Ms) 0, s[Ms] s[Ms] + 45a(MS). Then, by simply adding the two
expressions above, we have

s,[M8] (5c 10c c3 + 10c,)[M8] 5p2[MS].

But a(M8) 0 implies that p2[Ms] p[MS]. Thus

,[M] IMP].
We claim that p[M8] 0 (m 3). For, let

p. H*( ;Z)H*(;Z)
be reduction mod 3. Letting " H(X; Z 3) H+*(X; Z 3) be the Steenrod
3rd power operation, we have a mod 3 Wu-class, f, characterized by the
identity

(x, p) (x w , p) for all x e H"-(X; Z3)

where p denotes the fundamental class of the manifold X. Wu [13] shows that
p3 p(X) (X). Note that ifX F5, we have that (F5) 0 for dimensional
reons. (Ifx e H(F5; Z3), thenx 0). So p3p(F) 0. Now consider the
(mod 3) Wang sequence

j*

H’(e; z)H’(M; Z) H’(e; Z)H(; Z)...
Since i*(p3p(MS))=p3p(FS)=O, we have p3p(MS)=j*(x)for some
x e H(FS; Z3). Then p3p(M8)= [j*(x)]2 =0. Hence p(MS)O (mod 3).
And so s,[M] 0 (mod 3).
() By Lemmas 3.3.12, we know that

Ms aG4 "Jl- bCP(2)2 + y
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where a 0, 1 or 2; b Z, and Y . By definition of G, we have a(G#) 0.
Thus, if (Ma) 0, we get b 0. Furthermore, we’ve just shown that s,[ Y] _=

0 (mod 3). Thus if s[Ms] 0 (mod 3), we get a 0. Given both conditions,
we have Ms= Y.

(iv) (a) Let n 2k.
() Same as in the proofs of parts (i) and (iii).
() By Lemmas 3.3.12, for n 10, we have M#k aCP(2)k + Y, where
aZ and Y. Then a(Mk)=O implies that a=0 which gives
M4k Ye.

(b) Letn=2k+l.
() Let p: M4k+2 S3 be a fibration, with fiber F4k-1. Consider the exact

sequence

H2k(M, F; Z2) H2k(Mk* 2; Z2) H2k(F4k- ; Z2) ’".

Note that

H2k(M, F; Z2) H2k(M, F x D3; Z2) H2k(F x D3, F x $2; Z2),

by excision. So

n*(M, F; Z:)= n2*-a(r; Z2) H3(Da, $2; Z2).
Now, since i*(v2k(M4k* 2))= v2(F4k-,)= 0, we have

V2k(M4k+2)=j*(x a) for some x n:*-a(r; Z) (4.1)
where a Ha(D3, $2; Z2) denotes the generator. By the Wu formula and the
fact that for an orientable manifold, all odd Wu classes vanish,

w_(M) w,_(M) Sq*-:,.
So

w_(M) *(Sq-x ) 0

since 2k- 2 > 2k- 3. Hence w,w2,_,(M)= 0. (We note that for M*k*2

orientable, w W,k- 2(M) 0 automatically).
Returning to (4.1) we have that V2k(M*k*2) j*(x a). Then, applying the

Pont0agin square, we get

p(,(M )) *p( ) 0

by the product formula [14, Theorem 1]. Hence

pc, p(v2k)[Mk* 2] 0.

(We note that, since V2k is a universal class, p(v2,) is the mod 4 reduaion of
some (not unique) characteristic Chern class, and so p,c p(v2k)[M] is indeed
an fl-cobordism invariant.)
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() By Lemmas 3.4-3.12, we know that

M’k+2 a" CP(2)k-2"G5 + b. CP(1)CP(2)k + Y,

where a Z2; b Z2 and Y . Noting that

w4w4-2[CP(2)k-2 G] w,w6[Gs]
we get, by application of Lemma 3.5, w W4k_z[CP(2)k-Z’G] 1.

Turning to CP(1)CP(2)k, we have

v2,(CP(I)" CP(2)*) p2(x, x,)
where xi denotes the generator of H (CP(2))and

n*(
denotes reduction (mod 2). Now p(v2,) p4(x"" x), by the pruet formula
for p and the fact that P(P2 Xi)= P4 X. Furthermore

ca(CP(I)CP(2))= 2z + x + ...+ x,

where z denotes the generator of H2(CP(1)). Then

p4c p(vz)[CP(1)CP(2] 2.

Hence, if WWz,_4(M)= 0 and p4cx" p(Vz,)[M] 0, then a 0 and b 0.
ThenM= Ye.

Remark 4.2. Although the obstruction p4cx’p(Vzk)(w)= 0 is given in
Z-coefficients, it is actually a "Z2 condition" in the sense that for any s.a.c.
manifold M*+ 2,

.,c, p(v,)(M) 0 (mod 2).
Observe that

p24c, p(v2,)](M)= v2 v,(M)= Sq2(v)(M) O.

Similarly, the obstruction to fibering in , c() 0 (mod 8), is actually a

"Z condition" in the sense that for any s.a.c, manifold M6, c][M6]
0 (mod 2). Observe that

o.
Alternatively, we note that p(c)= p(v) H4(M6;Z4), and so we can simply
refer back to the above paragraph.

Remark 4.3. The proof that shows that if M+ fibers over S3, then p(v)
(M) 0, actually holds for manifolds of dimension 4k as well. The re,on it
doesn’t appear as an obstruction in that case is that

p()[’] ,(U’) (moa 4).
For a proof, see [6].
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Remark 4.4. The condition that p cl P(V2k)[Mk+ 2] 0, can be expressed
in terms of the Chern numbers of M. In that obtaining a general expression,
would seem to serve only curiosity, we restrict ourselves to working out the
following example"

P,Cl p(v,)= p,(c, c2 + c + 2cc2).
Note first that v w + w. Then,

p(v,) p(w, + w)= p(w4) + p(w2) + 02(w, w22)
where 02 is the map induced by the inclusion of Z2 into Z. According to Wu
[14], we have

p(w,) P,P2 02(wa)- 02(w2 w6) and p(w2)= p,p 02(w,).

So

p(v4) P4(P2 + P)- 02(wa)- 02(w2 w6)+ 02(w22w4)
p4[(c 2c c3 + 2c, + c 4c2 c2 + 4c)

2C4 2C Ca + 2c2 C2]
p,[c + + ,]

Thus pc p(v)= p(c c22 + c + 2c c2). We can then state Theorem 2, for
fo, as follows"

co fo fibers over S3 or S4 if algl only if
w, w6(co) 0 and ClC22 + c + 2c c2(co) 0 (mod 4).

We turn now to the study of other 3 and 4-dimensional manifolds as base
space. In particular, we prove Corollaries 1-4.

Proof of Corollary 1. Let Ma be an arbitrary closed connected 3-manifold.
Let ]r3 be its orientable double cover. Clearly

Fibn:(/r) Fiba:(M).
It is a standard fact that every compact orientable 3-manifold is parallelizable
[5, p. 148] and thus also s.a.c. Then by Corollary 2.4, we get Fiba,(Sa)
Fibn(/r) and the result follows.

Cc;rollary 2 is simply a consequence of Corollary 1 and the fact that any
manifold fibered over a 3-manifold has signature equal to zero.

ProofofCorollary 3. Let/I:I(M3) be finite of odd order k and let ]r3 be the
k-fold universal cover of M3. An easy argument shows hra to be a homotopy
3-sphere. We now note (simply by checking Chern numbers (see [10, p. 144]))
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that iff: S3 E3 is a homotopy equivalence, thenfis complex bordant to the
identity. Thus by Proposition 2.3,

Fiba:(3) = Fiba,(Sa)
and so Fibta,(a) Fiba(S3). Then by Proposition 2.5,

k. Fibn:(M3) = Fibn:(S3). (4.5)
But all torsion in f,/Fibn,(S3) is either even or 3-torsion (the 3-torsion
occurring in f/Fibng(S3)). hus, (4.5)implies that

Fibn,(M3) = Fibn,(S3)
for all n if k =p 3r and for all n except n 8 if k 3r. This along with
Corollary 1 gives the result. |

Corollary 4 is obtained simply by combining Corollaries 3 and 2.4.

5. Fiberings over S2 X S2

Proofof Theorem 2. (i) (=:,) Let p" M6 - S2 x S2 be a fibration with fiber
F2. Let a and b denote the generators of H2(S2 $2; Z2). Since

i*(v2(M6)) v2(t2) 0

(where i" F2 - M6 is the inclusion and v2 denotes the 2nd Wu class J, we have

v2(M6) rp*a + r2p*b for some r, r2 Z2.
Noting that P2 c(M) v2(M), we see that

cl(M6) i’l p* + i’2p* + 2z

where 1, 2 e Z, and/ are the generators of H2(S2 x S2) and z e HE(M6).
Then c][M6] =_ 0 (mod 4).
() Consider the complex projective bundle CP(2I 22) over S2 x S2

(S2 x S2 carrying the trivial stable complex structure), where 2 is the pullback
of the canonical line bundle over CP(1). Direct computation shows that
c(CP(2 22) 4. Choosing G3 6 as in Section 3, we have

cP(2 @ 2) aCP(1)3 + bCP(1)CP(2) + c63
where a, b, c e Z. Since CP(1 )3, 4CP(1)CP(2) and G 3 all fiber over S4, they fiber
over S2 x S2. Thus

CP(2 22)= bCP(1)CP(2) + Y

where b e Z4 and Y e Fibo:(S2 x $2). But c(CP(1)CP(2)) 2 (mod 4), while
c][Y] =-0 (mod 4). Since

ca(CP(2, 22))= 0 (mod 4),
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we have b 2. Hence 2CP(1)CP(2) Fibn:(S2 x $2). Now for any class M6,
we have

M6 aCP(1)CP(2) + W where a Z2 and W e Fibn,(S2 x $2).

If c3(M6) 0 (mod 4), then a 0 and M6 W, giving

M6 Fibn,(S x S).

(ii) (=)Trivial.
Clearly CP(1) fibers over S x S. Note that

M" aCP(2) + bCP(1)2

where a, b Z. Thus if a(M4) 0, then a 0 and M4 Fibnu(S2 x $2).
In higher dimensions, the result is a consequence of Theore*m 2 and pulling

back. |

The evidence for our conjecture, as to what the complete description of
Fibn(S2 x S2) should be, is two-fold. First consider the iterated projective
bundle

CP(rl 2,2 3 0)

CP(2 0) x S2

S2 x S2

where 2, is the canonical line bundle over S2, and r/and ’’2 are the pullbacks of
the canonical line bundles over CP(2, 0’) and S2 respectively. Let
CP’(I 22 0’) be CP(I 22 0’) with the non-standard.complex structure
given by

zCP(l 22 ) 0’) 02 ) (2, (R) /),/ (r/(R)) (22 (R) -)) stably,

where is the canonical line bundle over CP(I 9 ’2 () 01)" By routine compu-
tations, we note that while

P4 c," p(v4)[CP’(l 22 ) 0’)] + 0

and

W4 w6[CP’(rl 22 ) 0’)] 0

we do have

(2p4(cc3) + p,c, p(v4))[CP’(rl 2z 0’)] O.
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Furthermore, for G5 as in Section 2, we have

CP’(rI 2 0) G5 + CP(1)CP(2) + Y

where Y e Fibta,(S2 x $2). Thus 6 + CP(1)CP(2)2 e Fib,,(S2 x $2). This,
together with *the fact obtained by direct computat*ion), that, for
n=2k+ 1>5,

(2p(c2c,_2) + pcl P(V2R)[CP(2)R-2G5 + CP(1)CP(2)k] 2, (5.1)
yields the following:

If the condition (1.2) is necessary for a class to e fk+ 2 to fiber over S2 x S2,
then it is also sufficient.

Simply note that (by pulling back fibrations over S4)
co aCP(2)R-2G + bCP(1)CP(2) + r

where a, b e Z2 and Y e Fiba:(S2 x $2). Then, assuming that (1.2) holds for
Y, and using (5.1), we get

[2p(C2C2R-) + pC P(V2R)](tO)= 0= a + b O,

which gives that 09 e Fiba](S2 x $2).
The second piece of evidence in support of the conjecture is a proof of the

necessity of (1.2) in the case of very "nice" fibrations over S2 x S2. Specifically,
let

p: M’k+2 - S2 x S2

be a fibration with fiber F, with the following property:

(5.2) The fact that V2k(M pulls back to zero on the fiber implies that

V2k(M ra" x + r2a" x2 + raab y

where rie Z2; a and b generate H2(S2 x $2; Z2);

x, x2 e H2R-2(M; Z2) and y e H2R-’(M; Z2).

(In particular, if the Serre spectral sequence of the fibration has no non-zero
differentials, (e.g., any iterated projective bundle), property (5.2) holds.)
Then applying the Pontrjagin square p, and using its properties we get

p(v2k)(M) 02(rlr2abx x2)
where 02 is the map induced by the inclusion of Z2 into Z,,. Since p 2 1(M)
rE(M), where/92 is reduction mod 2, we have that

p, c P(V2R)(M) 02(rxr2 v2 ab xxx2) 02[rr2 ab Sq2(xxx2)] (5.3)
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Now,

Thus

w.W,,k_2(M} V2RSq2V2R(M)

rlaxl + r2 bx2 + r3 aby)(rla. Sq2xl

+ r2b" Sq2x2 + raab" Sq2y)

r r2abx SqEx2 + r r2abx2Sq2x

rl r2abSqE(xl x2).

2p4(c2 C2k- 02[r r2 abSq2(xlx2)].
Adding (5.3)and (5.4), we have

(5.4)

REFERENCES

1. J. C. ALEXANDER and S. M. KAHN, Characteristic number obstructions tofibering oriented and
complex manifolds over surfaces, Topology, vol. 19 (1980), pp. 265-282.

2. S. S. CHERN, F. HIRZEBRUCH and J. P. SERRE, On the index of afibered manifold, Proc. Amer.
Math. Soc., vol. 8 (1957), pp. 587-596.

3. F. HIRZEaRUCH, Topological methods in algebraic geometry, Springer-Verlag, New York, 1972.
4. U. KARRAS, M. KRECK, W. D. NEUMANN and E. OSSA, Cutting and pasting of manifolds,

SK-Groups, Publish or Perish, 1973.
5. J. W. MILNOR and J. D. STASHEFF, Characteristic classes, Princeton University Press,

Princeton, New Jersey, 1974.
6. S. MORITA, On the Pontrjagin square and the signature, J. Fac. Sci. Univ. Tokyo Sect. IA Math,

vol. 18 (1971), pp. 405-414.
7. R. E. MOSHER and M. C. TANGORA, Cohomology operations and applications in homotopy

theory, Harper and Row, New York, 1968.
8. H. B. NELSON, Fiberings ofcomplex cobordism classes, dissertation, University of Virginia, 1974.
9. N. RAY, R. SWITZER and L. TAYLOR, Normal structures and bordism theory, with applications to

MSv,, Mem. Amer. Math. Soc., No. 193, 1977.
10. R. E. STONG, Notes on cobordism theory, Princeton University Press, Princeton, New Jersy,

1968.
11. ----, Onfibering of cobordism classes, Trans. Amer. Math. Sot., vol. 178 (1973), pp. 431-447.
12. R. H. SZCZARBA, On tangent bundles offiber spaces and quotient spaces, Amer. J. Math., vol. 86

(1964), pp. 685-697.
13. W. T. Wu, On Pontrjagin classes, II, Scientia Sinica, vol. 4 (1955), pp. 455-490.
14.------, On pontrjagin classes, IIl, Tr. Amer. Math. Soc. Translations, Ser. 2, vol. 11,

pp. 155-172.

LOUISIANA STATE UNIVERSITY
BATON ROUGE, LOUISIANA


