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POLYNOMIAL GROUP LAWS OVER VALUATION RINGS

BY

WILLIAM C. WATERHOUSE

Let A be a discrete valuation ring with fraction field K and residue field k.
Let R be a finitely generated flat A-algebra, and suppose that R (R) K and R (R) k
are polynomial rings. Must R be a polynomial ring? Proofs of this have been
given only for one variable (Danilov, unpublished; Kambayashi-Miyanishi [5])
and for two variables if k is algebraically closed of characteristic zero (Kambay-
ashi [4]). The situation is better, however, when R is the ring of functions A[G]
on an affine group scheme G. This was indeed the context in which Weisfeiler
and Dolgachev [7] first raised the question, since, when char (k) 0, the result
for A[G] is easily established by Lie theory. They were able to establish it also
when char (K) p and k is perfect and the generic fiber Gr is G. The theorem
was later proved [8] for all commutative G. In this paper it is proved for group
schemes without restriction"

THEOREM. Let G be a flat affine #roup scheme offinite type over a discrete
valuation rin# A. Assume the twofibers are represented by polynomial rin#s. Then
A[G] is a polynomial rin#.
As in [8] and [4], the proof is in outline an induction using N6ron blow-ups.

Some new results on the structure of polynomial groups over fields are needed
for the argument and will be established first.

1. Review of N6ron blow-ups

Let G Spec A[G] be a flat affine scheme of finite type over the discrete
valuation ring A. Tensoring with the fraction field, we can by flatness identify
A[G] with a subalgebra of K[G] A[G] (R) a K. Let X be a closed subscheme of
the special fiber Gk, so X is defined by some ideal J (r, fx, f,), where r is
the uniformizer. The subalgebra

A[z- xJ] A[G][rr- xfa, -represents a scheme Gx which one says is obtained by blowino up X in G. We
will need the following properties, of which (b) is the crucial one (cf. [9,
Theorem 1.4]).

(a) Let G’ be any other such flat affine scheme. Any map G’ G sending G,
into X factors through Gx.
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(b) Assume also that G’ is of finite type and G’ --, G is an isomorphism on
generic fibers. Let X be the smallest closed subscheme containing the image of
G,. Then G’ maps to Gx, and we can repeat the process. After finitely many such
blow-up steps the map from G’ will be an isomorphism.

(c) If G has a group scheme structure and X is a subgroup of Gk, then Gx is
a group scheme.

(d) If in addition G has smooth connected fibers and X is a smooth con-
nected subgroup, then (GX)k maps onto X and the kernel is a vector group.

2. Polynomial groups over fields

The basic theorems are gathered together in [3, IV, Section 4]. We will need a
few refinements, which are presented here. An affine group scheme U over a
field k will be called polynomial if k[U] is a (finitely generated) polynomial ring.
This holds if U is smooth, connected, unipotent, and k-solvable. Any quotient
of U inherits these properties and hence is again polynomial.

If U is a nontrivial polynomial group, it is known to contain a nontrivial
central subgroup isomorphic to G for some r. Using this, we can prove a
nonlinear version of the defining property of unipotence.

PROPOSITION. Let V be isomorphic to G. Let G be a polynomial [lroup actin#
as algebraic #roup automorphisms of V (not necessarily linear). Then there is a
sub#roup of V isomorphic to Ga on which G acts trivially.

Proof. Suppose first G - Ga. Let U be the semi-direct product of V and G, a
polynomial group. It has then a central subgroup C isomorphic to Ga. If the
projection of C to G is trivial, then C is

_
V and has the desired property. If the

projection is nontrivial, it is all of G. But C, being central, acts trivially on V by
conjugation, so the G-action is trivial and the result is obvious.
Now in general let H be a central subgroup ofG isomorphic to Ga. There are

then subgroups of Visomorphic to G on which H acts trivially. The composite
W of all such is a polynomial group isomorphic to some G,. Since G centralizes
H, it maps W to itself, and the action on W factors through the quotient G/H.
This quotient is polynomial, and the proposition follows by induction on
dim (G).

COROLLARY. Let G be a polynomial #roup and F a nontrivial normal polyno-
mial sub[troup. Then F contains a subgroup isomorphic to G and central in G.

Proof.
to G.

Let V be the composite of all subgroups central in F and isomorphic

DEFINITION. A system of coordinates x , x on a polynomial group is
called primitive if each x,(gh)- x,(g)- x,(h) depends only on the first r- 1
coordinates of g and h, and the identity e is the origin.
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COROLLARY. Let G be a polynomial 9roup and F a normal polynomial
subgroup. Then there is a primitive coordinate system in which F is 9iven by

=Xr=O.

Proof Assuming F is nontrivial, take a C - G central in G and contained
in F. (If F is trivial, take C central in G and replace F by C.) By induction we
have primitive coordinates on G/C in which F/C is given by x x, 0.
The central extension 1 -, C --, G G/C - 1 is known to have a scheme-
theoretic section, so we can write G as (G/C) x C with

(h, x)" (h’, x’)= (hh’, x + x’ +f(h, h’))

for some cocycle f. The coordinates on G/C followed by the additive coordinate
on C are a primitive system with the desired property.

If x l, x, are primitive coordinates, the subgroup C defined by
x x,_ 0 is central, because for 9 in G and c in C we have

xi(gc)- xi(g)- xi(c xi(ge xi(g xi(e)
0 x,(eo)- xi(e)-

By induction, the subgroups x x, 0 form a central series. In particu-
lar they are all normal, and thus an arbitrary polynomial subgroup E cannot be
of that form. This is essentially why the proof in [8] required G to be commuta-
tive. The next section will show how to push through the proof in general using
the following weaker result.

COROLLARY. Let G be a polynomial #roup and E a proper polynomial
subgroup. Then there are coordinate systems x 1, x, and y 1, Y, on G such
that x1,..., x, is primitive, Y xl, and E is defined by Y Y, 0.

Proof We first need a basic result"

LEMMA. There is a polynomial subgroup one dimension larger than E and
normalizin9 E.

Proof Induction gives us a chain of normal polynomial subgroups

l=Co<CI<’’’<Cn=G
with C/C_ - Go central in G/C_ 1. If C_ is the largest one contained in E,
then C normalizes E. Hence CE is a group and normalizes E. As a scheme it is
a quotient of C x E; this makes it connected and reduced over k-(hence
smooth) and k-split, so it is polynomial. Clearly dim CE 1 + dim E.
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Now to prove the corollary, take a chain E E,< E,+ < ...- E. G with
E polynomial of dimension i. We have then extensions 1E
E/ G 1 which we know must split as schemes. Start with coordinates on
E and extend step by step, taking a coordinate system y,_+ :, y. on E and
extending it to a system y,_ , y, on E/: with y,_ the projection ofE/ to
G. These will not in general be primitive coordinates on E/ . But at the last
stage E,_ is normal in G, and the previous corollary gives primitive coordin-
ates x, x. with x 0 defining E,_ . Now, xand y: are homomorphisms
of G onto G with the same kernel, so they are constant multiples ofeach other,
and we can change x: to equal y.

3. Proof of the theorem

Let us say for the moment that a group scheme H Spec R over A has 9ood
coordinates ifR can be written as a polynomial ring A[X , X] where theX
are in the augmentation ideal and reduce to primitive coordinates on the
special fiber Hk.

Let H be a group with good coordinates, and let E be a proper polynomial
subgroup of Hk. Choose coordinates y, y on Hk so that E is given by
Yx Y, 0 and y is additive. Let F be ker(yx), and let Yx xa, X2, X

be a primitive coordinate system. By [8, Theorem 1], a change from one primi-
tive coordinate system to another arises by a sequence of changes, each of
which either multiplies some x by a constant or adds to x some polynomial in
the other variables. All such changes obviously lift to changes of variable over
A. Thus we may assume that the coordinates X , X, reduce to x a, x,.
Then

A[Hv] A[H][n-XXx] A[X2, X,,, n-xXa].
Simple computation as in [8, Theorem 2] shows that X2, X., n-X (in
this order) are good coordinates on Hr

Now A[H] A[G][n-X, n- Y2, n-2 Y,], where the Y(X)are polyno-
mials reducing to y. The kernel of the map (He)k (HV)k has ring of functions

A[H][r-aXe, t-a Y2,..., n-x y,]/(n, X2,..., X,, n-aXx).
This is generated by the images of n- Y2, n-a y,, and thus the kernel has
dimension at most r 1. By flatness (HV’)k has dimension n, so its image in (HV)k
has dimension at least n (r 1) 1 + dim (E). Since (H)k is an extension of
E by a vector group, it is polynomial, and hence its image D in (HV)k is
polynomial. Clearly H (HF), as we have natural maps both ways. We can
now replace H and E by HF and D and iterate the construction. Since the image
dimension is increasing, we get a surjeetion on the special fibers after
dim (H) dim (E) steps. By [9, 1.3], the map from He is then an isomorphism.
Since there are good coordinates at each stage, we have shown that He has
good coordinates.
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Now take any G as in the theorem. Choose primitive coordinates X t, X,
on the generic fiber G. By proper scaling of them as in [8, Theorem 3] we may
assume that they are in A[G], and

AXi =- Xi (R) 1 + 1 (R) X mod nA[X, Xn].
In particular they are good coordinates on H Spec A[X,..., X,]. There is
an obvious map G -* H, and the image E ofG is a polynomial subgroup ofH.
Then HE again has good coordinates, and G maps to HE. After finitely many
such steps we reach G itself. Thus G has good coordinates, and in particular
A[G] is a polynomial ring.

In the theorem we do not really need to assume G affine, since that follows
from the other hypotheses [1]. We can also easily extend to the number-
theoretic case:

COROLLARY. Let B be a Dedekind domain with generic characteristic zero
and perfect residue fields. Let G be an affine group scheme offinite type over B. If
G is smooth with unipotent connectedfibers, then BIG] is the symmetric algebra of
a projective B-module (and conversely).

Proof If B is a valuation ring, this follows from the theorem, since smooth
connected unipotent groups over perfect fields are automatically k-solvable
and hence polynomial. The globalization then is a general result of commuta-
tive algebra [2, 6].
COROLLARY. A smooth affine 9roup of finite type over Z with connected

unipotent fibers can be nothin9 but a 9roup law on affine n-space.
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