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Introduction

In this paper we study holomorphic families of Riemann surfaces defined by
subgroups of the Teichmtiller modular group. These families have as parameter
space the fixed point set, in Teichmtiller space, of the defining group H. The
fibers are Riemann surfaces which admit an automorphism group isomorphic
to H. Such families have been considered by several authors (Kuribayashi [17],
Earle [7], Harvey [14], Earle and Kra [9]).

In the first section we give background information and set up our notation.
For further details we refer to Bers [5], [6] and Earle and Kra [8], [9]. In the
second section we look at equivalence of families. It is easily shown that an
equivalence class of families corresponds (in general) to a conjugacy class of
subgroups of the modular group. However, it is seen that there are some
exceptional cases; most of the section is concerned with the classification of
these exceptional cases. In Section 3 we introduce two types of invariants for
our families. One type of invariant is given by the geometric nature of the
action of the automorphisms near the fixed points (rotation constants). The
other invariants are the characters of the representations of the automorphism
groups on the spaces of holomorphic differentials and holomorphic quadratic
differentials. The main result in this section is that these two sets of invariants
determine each other. Finally in Section 4 we interpret, in the context of this
paper, some results of Harvey [14] and Gilman [12]. The conclusion is that, in
some special cases, the invariants defined in Section 3 determine the family (up
to equivalence).

1. Preliminaries

Let F be a Fuchsian group acting on the upper half plane U. It will be
assumed that U/F is compact. Denote by Q(F) the group of all quasiconformal
homeomorphisms co of U such that coFco-l= F. The set of Beltrami
coefficients M(F), with respect to the Fuchsian group F, is defined as the unit
ball in the Banach space of all # L(U, C) such that
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Given/ M(F) there is a unique homeomorphism w z Q(F), normalized by
the conditions w,(0)=0, o)u(1)= 1 and o)u(oo)=oo, whose Beltrami
coefficient is/. Also there is a unique quasiconformal automorphism w of
C w {o}, normalized by the same conditions, which has Beltrami coefficient #
on U and it is conformal on the lower half plane.
We say that p is equivalent to v if and only ifwu won R. The Teichmller

space T(F) is the set of all equivalence classes in M(F). We denote by (I) the
natural projection ofM(F) onto T(F). It is well known that T(F) has a complex
structure and the map (I) is holomorphic (see Bers [5]). If F has type (#, n),
dim T(F)= 3#- 3 + n and T(F) is biholomorphically equivalent to an open
domain in Ca- 3+. (see Bers [5]).
The Bers fiber space is defined by

F(F) (((I)(), z) T(F) x C I e M(F), z w"(U));
we recall that wu(U) depends only on the equivalence class (I)(/) of/. The group
F acts on F(F) as a discontinuous group ofbiholomorphic mappings (Bers [6])
by

z)=
where # M(r)and , w"o ,o (w") ’. The quotient space v(r) T(r)/r is
a complex manifold and the natural projection V(F) T(F) is holomorphic
(Earle and Kra [9]). The inverse image of (I)(/) under this projection is the
Riemann surface w(U)/F where F wF(w") . Thus a holomorphic family
of Riemann surfaces, in the sense of Kodaira and Spencer (see Morrow and
Kodaira [19], p. 18), is defined.
The extended modular group mod (F) is defined as the set of equivalence

classes [(o], (o Q(F), with 09 equivalent to (o’ if and only if 09 o9’ on R. There
is a well defined action of mod (F) on F(F):

z)= (oo

Here v is the Beltrami coefficient of w, 09-x.
The relation [(o]((1)(p))= (1)(v), with v defined as above, gives an action of

mod (F) on T(F). The group F can be identified with a subgroup of mod (F)
via --, []. One verifies easily that F, as a subgroup ofmod (F), acts trivially on
T(F). The modular group Mod (F) of F is defined as the factor group
mod (F)/F. Thus we have an action ofMod (F) on T(F) which lifts to an action
on V(F). We will denote by ((o) the class of 09 Q(F)in Mod (F).
Now we assume that F uniformizes a closed Riemann surface of genus 0 > 2,

i.e. F has type (g, 0) with 0 > 2. Let H be a subgroup of Mod (F) and let
(p) T(F) be fixed by H. If h (09) H then (co)((p))= (/t) therefore

(1)(Beltrami coefficient of w, (o- ) (I)(#).
This is equivalent to

O,u Wu (1)-1 W/ on R,
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for some M6bius transformation : U U. The mapf w w is a con-
formal bijection from U onto #’(U). Let =f f- , this map induces a
conformal automorphism h of the Riemann surface #’(U)/F’ by Fz F0z.
It is easy to see that the induced automorphism h depends only on h (09).
The correspondence h h establishes an isomorphism of H onto a subgroup
H of the group Aut (#’(U)/F’) of conformal automorphisms of #’(U)/F’.
Note that h is precisely the restriction of h (acting on V(F)) to the fiber over

The fixed point set of H will be denoted by T(F)n and the inverse image of
T(F)n under the projection V(F) T(F) will be denoted by V(F)n. Thus for
dim T(F)n :p 0 we have a holomorphic family of Riemann surfaces V(F)n
T(F)n, with each fiber admitting a group of conformal automorphisms isomor-
phic to H. Obviously if T(F)n q: b, n must be a finite group.
The map f: U wv(U) induces a conformal bijection U/F

Corresponding to

we have

H
_
Aut (w(U)/F)

H
_
Aut (U/F)

(h is determined by as h was determined by cz). Define

F’ {g" U- U Ig is the lift of h H}.

F is a Fuchsian group and we have an exact sequence

{1) --, r --, r’ --, H --, {1}

(see Kra [15], p. 48). In this context we say that F’ is the lift of n, to U.
There is a natural biholomorphic map between T(F) and T(F,). Under this

map T(F)n corresponds precisely to T(F’)_ T(F)(Kravetz [16]). Thus, with-
out loss of generality, it may be assumed that (/) (0) and T(F)n T(F’).

2. Equivalence of families

Two holomorphic families of Riemann surfaces, V B and V’ B’ are
called equivalent if there are biholomorphic maps f: B B’ and F" V-, V’
such that the following diagram commutes"

V V’

B B’.
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In this section we consider two families determined by subgroups H and H’
of Mod (F) (see Section 1). We will show that these families are equivalent if
and only if H and H’ are conjugate, except in some special cases.

Suppose n’ fHf- forfe Mod (F). The action offon T(F)can be lifted to
V(F); denote by F the lifted map. Sincef: T(F)n T(F)n’, F: V(F)n V(F)n’.

Conversely, suppose the families

V(F)n ; T(F)n and V(F)n’ T(F)n’

are equivalent. Let F and f be the maps realizing the equivalence. For
T(r),

F[ r-’() - n- (f())

is holomorphic. Further, since the maps F I- ’()depend smoothly on z they are
homotopic. It follows that there is h Mod(F) such that h(z)=f() for all
z e T(F)n (For an interpretation of the basic definitions in Section I in terms of
homotopy see Ahlfors [2], Chapter V). Now, let H"= hH’h-, clearly
T(F)n’ T(F)n’’. We wish to investigate the relationship between H’ and H".
We let K to be the subgroup of Mod (F) generated by H’ and H". Then

T(F)r T(F)n’ T(F)n’’. We can assume, without loss ofgenerality, that (0)
belongs to the common fixed set. Let X be the Riemann surface U/F. Aut (X)
has subgroups isomorphic to H’ and H" (and therefore a subgroup isomorphic
to K); denote these groups with the same letters H’, H" and K. Let F’, F" and G
be the lifts of H’, H" and K to U. Then we have F’

_
G, F"

_
G and T(F’)

T(F") T(G). Now we break our analysis into two cases:
(1) F’, F" and G have the same type. In this case, using the Riemann-

Hurwitz relation for the coverings X X/H’ and X --, X/K, it is easy to verify
that H’= K. Similarly one verifies that H"= K.

(2) The type of G as different from the type of say F’. By a theorem of
Patterson [20] the types of G and F’ are either (0, 6) and (2, 0) or (0, 5) and
(2, 1) or (0, 4) and (1, 1) respectively. F" must have the same type as F’ or G.
Case (2) now breaks into two subcases:

(a) The type of F" is the same as the type of G. Again, an argument based
on the Riemann-Hurwitz relation shows that H"= K. Thus H’_ H" and
H’#H".

PROPOSITION. H’ is of index two in H".

Proof. Let N’ and N" be the orders of H’ and H" respectively and consider
the diagram

X
"’"x/n’

X/H" ,c"
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We observe that if p X/H" and there is no branching over -(p) then
N"/v" kN’, where v" is the ramification number of p and k the cardinality of
the fiber n-l(p). In particular if N"/N’ is prime, v"= N"/N’. Now we use the
Riemann-Hurwitz relation for the coverings X --. X/H’ and X X/H" in the
three different cases"

(i) Types (2, 0)and (0, 6).

Here and in the sequel we will denote by v’[ (resp. v’) the branch numbers of
X X/I-I" (resp. X --. X/IT). Observing that ’[ > 2 we obtain N" _< N’. 2 or
N"/N’ _< 2, thus N"/N’ 2.

(ii) Types (1, 2)and (0, 5).

Since v’ > 2 and v < N’ we obtain

< 2- or -7<4 N"
thus N"/N’ <.3. If N"/N’= 3 we see that v’’ 3 for at least three values of i.
Relation (.) leads to a contradiction. Thus N"/N’= 2.

(iii) Types (1, 1)and (0, 4).In this case we first note that for at least one value
of i, v’> 4. The argument then is almost identical to (ii). Again we obtain
N"/N’= 2.

(b) The type of 1" is the same as the type of G. Now, by the proof of the
proposition, we see that H’ and H" are subgroups of index two in G.

Suppose that H’4: H". Since H’ and H" are normal in G we see that
G H’H" and H’ H" is normal in G, H’ and H". A standard result of
elementary group theory says that H’H"/H" - H’/H’ c H". We conclude that
H’ H" has index two in H’ (and H"). Thus we have the following diagram of
double covers:

X/H’ H"

g’ X/H’ X/H" g"

x/n’n"
We have indicated in the diagram the notation for the genera of the Riemann
surfaces involved. The covering X/H’ H" X/H’H" is a four-sheeted cover-
ing, the group of the covering is the noncyclic group of order four
(H’H"/H’ H"). This group admits a partition into three subgroups of order 2
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(two of them are H’/H’ c H" and H"/H’ H"). In this situation a theorem of
Accola [1] applies and gives the relation

g + 2go g’ + g" + g’".

Here 9’" is the genus of the Riemann surface determined by the third subgroup
of order 2. We now examine the three different cases:

(i) Types (2, 0) and (0, 6). In this case the covering X/H’ H" X/H’ is
unbranched and hence 9 3. Also 9’ 9" 2 and 9o 0, this is impossible.

(ii) Types (1, 1) and (0, 4). Now we have n: X/H’ H" X/H’ and n is
branched at most at one point. If n is branched at exactly one point, the
Riemann-Hurwitz relation gives 29- 2 1 which is impossible. So n is un-
branched and = 1. Since O’=g"= 1 and Oo=0 again we reach a
contradiction.

(iii) Types (1, 2)and (0, 5). Here we see that : X/H’ H" X/H is
branched at two points, hence 9 2. A similar analysis does not lead to a
contradiction in this case. In fact, this situation may occur. Let
S X/H’ c H", T: S --. S an involution with 2 fixed points and J the hyperel-
liptic involution. The covering group is {1, J, T, JT}.

THEOREM. Suppose two holomorphic families defined by subgroups H and H’
of the modular group are isomorphic then either:

(1) H is conjugate to H’.
(2) H is conjugate to a subgroup ofindex two in H’ (or vice versa). This case

may occur only if the types ofH and H’ are (2, 0)and (0, 6)or (1, 2)and (0, 5)or
(1, 1)and (0, 4) respectively.

(3) H has a subgroup K of index two which is conjugate to a subgroup K’ of
index two in H’. This case may occur only ifH and H’ are oftype (1, 2), K and K’
will be of type (2, 0).
By the type of a subgroup of the modular group is meant the type of the

Fuchsian lift of the automorphism group corresponding to each fixed point.

3. Invariants

In this section we will study invariants of a family defined by a group
H

___
Mod (F). We will assume that O(0) T(F)n and thus T(F)n T(F’)=

{tl)(/) p M(F’)}, where F’ is the lift of n (when regarded as a subgroup of
Aut (U/F)).

Let h H and F’ be a lift of h. Suppose h has a fixed point represented by
the orbit Fzo. This means that h(Fzo)= Fzo Fzo or Zo (ya)Zo for some
(unique) y F. But is also a lift of h, therefore we can always choose a lift
with a fixed point. Now we denote by cta lift of h with Zo Zo. Let k be the
order of h, then 0k F, but since F is fixed point free, 0k= 1. Thus is an
elliptic transformation of order k; its multiplier is a primitive kth root of 1, and
it will be denoted by e. Note that e depends only on the orbit Fz o. The rotation
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constant of h at the fixed point will be by definition l/e, thus locally
h- x: z --) (1/e)z.

Let (I)(#) T(F)n; then , w, a w- is conformal and therefore it is an
elliptic transformation of order k fixing w,(zo). It is not hard to verify that a,is
a lift of h, 6 Aut(U/F,).
LEMMA. The multiplier of does not depend on #.

* 1, thisProof. The function /--)e, is continuous (see Bers [3]). But e,=
clearly implies that e, is constant.
We conclude that for every h 6 H of order k we can define 2(h) (ha, nz,

n,_ ) where nj is the number of fixed points of h, with rotation constant
exp (2rij/k).
Another set of invariants is obtained by considering representations of the

automorphism groups in spaces of holomorphic differentials. We denote by
A(F) T(F), q _> 1, the vector bundle ofholomorphic q-differentials. The fiber
over ,(/t) can be identified with the space of holomorphic automorphic forms
A(w(U), F) of weight (- 2q) (aers [4], Kra [15]). Let A(F)n be the preimage
of T(F)n under the projection A(F)---) T(I"). There is a natural action of the
group H on A(F)n. If h 6 H and (I)(#)6 T(F)n the conformal map
: w(U)--) w(U) induces a linear map

p(h): A(wu(U), Fu) A(wu(U),
(recall that uFu(u)-a Fu and (0) T(F)u). One can consider the maps p
as a family of representations of the finite group H.

THEOREm. The representations {p] (#) T(F)n} are all equivalent.

Proof It follows immediately from Eichler trace formulas (Eichler [10],
Guerrero [13]) that the characters ; of p depend only on the rotation con-
stants. A standard result of group representation theory says that representa-
tions are equivalent if and only if they have the same character.
For q > 2 a stronger result is true"

THEOREM. If q >_ 2 there exists holomorphic framesfor A(F)n such that the
matrices of p(h), h H, are constant.

Proof Again we assume that (0) T(F)n. Bers [4] has constructed
isomorphisms

L: a(V, r) - a(wu(V), r,).
It is sufficient to show that L , 0 L for every F’ (the lift of H),
where , and are the induced maps on automorphic forms. Explicitly L is
given by

t’ (2Y)2- 2()wzU(z) dx dy
t)
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where L is the lower half plane and z x + iy (see [4]). Therefore for every
A(U, F) we have to show that

L[O(o(z))o’(z)’](t) (Lk)(u(t))(u)’(t).
The left hand side is

IL (2y)2q-2k(())’(z)wU(z) dx dy
(w(z)- t)

We set z 0t-l(s) and observe that

(1)
(2)
(3)

dx dy (or-)’(s)12 du dv, s u + iv
y= I(-’)’(s)l u,
w(-())(- ),() (()- ),(w.())w();

the last equation follows from wUo Uo wu (recall that F’ and
M(F’)). We obtain

f (2u)2- 2(3)w(s)((o’)- )’(w’(s)) du dv

(w"(e-X(s)) 02’

Finally we note that

w"(e-(s)) t (")-’(w"(s)) (z)-(e"(t))
(w.(s) .(t))[((.)- ’)’(w.(s))((.)- ’)’(.(t))] ’/:.

Substitution in the above integrals completes the proof.
We have seen that associated to H we have characters Z, q 1. These

characters are determined if the function 2 is known (i.e. if rotation constants
are known). The converse also holds"

THEOREM. , is determined by Z and 2.

COROLLARY. Z1 and )(,2 determine Z, q > 2.

Proofi First we remark that the character ;t determines the spectrum of
p(h), h H. In fact if we restrict the representation p to the cyclic group (h)
we see that

k

;t(h) mjgt(h), k order of h, g(h)= exp (2rij/k).
j=l

This is the canonical decomposition of the character as a linear combination
of irreducible characters. The multiplicities mj are given by the inner product of
characters

m <Z, Z>
(see e.g. Ledermann [18]).
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Next consider h H. We want to determine 2(h). Let k be the order of h; p
and q will denote the multiplicity of the eigenvalue exp (2nij/k) for p (h) and
pz(h) respectively. The following formulas can be found in Guerrero [13]"

1 x
1

qo 3#’- 3 + xt
lk

1 x
q 30’-3 + 2 x,- l’.

Now, we proceed to explain the notation in these formulas. Let Xbe the set of
points fixed by h which are not fixed points of h’, r < I. Then x is the cardinal
number of the projection of X on (U/F)/(h). The rotation constants of h are
denoted r/a, s 1, 2, x. Note that for each s, h has fixed points (on the
same orbit) with rotation constant r/a. Also note that X b if is not a divisor
of k. Now, j) and "r)

-a -a are defined as follows

By the symbol l[k is meant summation over all l[ k with < k. Finally, 9’
denotes the genus of the factor surface (U/F)/(h).
Denote by m the number of points in X with rotation constant #o then we

see that

1
q- P qo Po + 1

ilk - mt.

In these equations, the multiplicities p, q, j 0, k- 1 are known. To
determine 2(h) it is sufficient to find mx, j 1, k 1. The equations above
can be written

1

llk - mjl= bj, j= 1, k 1.

It is easy to see that mt ma if s j (mod k/l) and that mt 0 for (j, k/l) 4: 1.
Therefore the unknowns reduce to mt, 1 <j < k/l, (j, k/l)= 1. Hence the
number of unknowns is

ok(k/l)= k- 1,
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where b is Euler’s function (see any introductory number theory book). Thus
we have to solve a system of k- 1 linear equations with k- 1 unknowns.
Unfortunately this system is often singular; in order to uniquely determine a
solution we will need extra conditions.
We will see now that reordering the equations and unknowns we obtain a

system of linear equations whose matrix of coefficients is quite simple. The
unknowns are ordered as follows: mj is after msa if either < d or d and
j < s. We order the equations according to the rule" equationj is after equation
s if (j, k)< (s, k) or if (j, k)= (s, k)= and [j] < Is] (In] denotes the residue
modulo k/l). If (j, k)= (s, k)and [j] Is] choose an arbitrary order.

In matrix form, the system of linear equations obtained will be written

We will show that the matrix A is lower triangular.
The set {1, 2, k-1} can be partitioned into subsets Sa, d.lk,

Sa {j](j, k) d}. This partition induces a block partition of A. First we will
prove that A is block triangular. Consider the equation

1
mj= b

and assume that (j, k) d. We have to show that m 0 for < d. Ifm =fi 0
then (j, k/l) 1, therefore (jl, k) I. Since (j, k) d it follows that _> d. Now
we examine the blocks along the main diagonal. Each of these blocks corre-
sponds to a set Sd, we claim that such a block is either 0 or (1/d)I. Again we
look at the equation

1- m bj with (j, k) d.

Corresponding to d we have the unknowns msd, 1 < s <_ k/d, (s, k/d)= 1. At
most one of these can appear in the equation, namely m,a with r --j (mod k/d).
We have to check whether (r, k/d) I or not. Clearly (r, k/d) 1 if and only if
(j, k/d)= 1. Since (j, k)= d, (j, k/d)= 1 if and only if (d, k/d)= 1. Therefore
the block corresponding to Sd is zero unless (d, k/d)= 1. In this case the rule
given above determines a unique order for those equations corresponding to
Sa (j, k)= (s, k)= d and [j] [s] implies j s). It is easily seen that then the
block is (1/d)I.

If the condition (d, k/d)= 1 is satisfied for every d lk then A is non-singular
and we have a unique solution for Am b. This occurs if and only if k is square
free (i.e. product of distinct primes). If A is singular we have to introduce
additional information.

Let n be the number offixed points of h with rotation constant/. We have

dll
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where the second summation runs over all s such that 1 < s < kid, (s, kid) 1
and s j (mod k/l). In matrix form we write

n=Cm.

Using the same ordering of the variables as before, we see that C is upper
triangular with ones along the main diagonal. Therefore C has an inverse B
which is also upper triangular. Using the new variables n, we write

ABn b.

We will show that from these equations we can compute n in terms of
with > 1. To calculate n we apply the same procedure to h. If the order of h
is square free then n will be uniquely determined. Otherwise we continue
recursively. This process will end after finitely many steps.

Since we are interested in variables n, we partition our matrices into four
blocks corresponding to the partition of {1, k 1} into S and its comple-
ment. It is not hard to see that

where I is a p x p identity matrix (p is the cardinal number of S ). From this,
using the fact that B is non-singular, it is easy to verify that the last p columns of
AB are linearly independent. This proves the claim that the unknowns n can
be expressed in terms of n{s with > 1. This completes the proof.

Consider now a group H’= fHf- conjugate to H in Mod (F). Let
(I)(.) T(r)H and O(v) T(r)"’, iff (b) and h (o) H we have

xow,oco-=w,onR, ow oboo)-ob-=w,onR
for M6bius transformations a, fl" U--, U. As before, and induce
automorphisms

h Aut (U/F) and (fhf-) Aut (U/F).
The quasiconformal map z w b w satisfies z z- fl on R and

zF z- F. By Teichmtiller theorem we can find z o satisfying the same con-
ditions and such that its maximal dilation is a minimum. By uniqueness of z o,- is conformal. ButZo t c Zo for a conformal map c, i.e. Z o Z o
Zo zff= fl on R, therefore Zo zt= fl everywhere. Since Zo is an
orientation preserving homeomorphism, the elliptic transformations and
must have the same multiplier. We conclude that 2(h)= 2(fhf-x). We have
shown that 2 is an invariant of the eonjugacy class of H in Mod (F).

4. Cyclic group case

Results in this section are essentially contained in Harvey [14] and Gilman
[12]. It seems convenient to include a formulation of these results in the context
of this paper.
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Let H and H’ be subgroups of Mod (F). We have seen that if H and H’ are
conjugate then corresponding elements have the same rotation constants.
Clearly the Fuehsian lifts ofH and H’ have the same signature (’, v , v 2,..., v).

THEOREM. Suppose that H, H’
_
Mod (F) are cyclic subgroups of order k.

Assume that the Fuchsian lifts have the same signature

and that k/v 1 or 2, with v lcm (v1,..., v). If H and H’ have generators h
and h’ with 2(h’) 2((h’)’) s 1,..., k, then H and H’ are conjugate on Mod (F).

In the previous section we saw that if H’ fHf- and Riemann surfaces X
and X’ correspond to fixed points of H and H’ then there is a quasiconformal
homeomorphism X -o X’ which conjugates the induced automorphism groups.
In Other words the coverings X -o X/H and X’ -o X’/H’ are topologically equi-
valent (we denote with the same symbols H and H’ the automorphism groups).
It is not hard to verify that the converse holds.

Suppose we have two coverings : X --, X/H and ’: X’ -o X’/H’. We want
to find a homeomorphism (quasiconformal)f: X/H X’/H’ which lifts. It is
sufficient (see Fulton [11]) to look at the regular coverings n: Y-o Y/H and
n’: Y’ Y’/H’. Here Y and Y’ are obtained from X and X’ respectively by
removing the branch points. From elementary covering space theory, a neces-
sary and sufficient condition for the existence of a lift is that

yo))= withf(n(yo))=

Now, assume that the coverings are cyclic of order k. Then

n,(FII(Y, Yo)) and ,(n,(r, y))

are given by Ker b and Ker b’ for surjective homomorphisms

,1,: rI(Y/n, r(y0))--, Z, n,(r’/n’,

LEMMA. f,(Ker b)= Ker b’/f and only if dp’ f, rd? with (r, k)= 1.

Proof. Iff,(Ker if)= Ker th’ then tk’ f, b on Ker b. But since

H1(Y/H, n(yo))/Ker - Zk,

the values of ’ f, and th will be determined by the values on a generator.
Therefore ’ f, r with (r, k)= 1.

If we can find generators al, aa,, b 1, ba,, xl, x for rI 1(Y/H, r(yo))
and a’, a’a,, b’, b’a,, x’, x; for n,(r/n’,  ’(y ))such that

rdp(a) rip’(a;), rdp(b)= ’(b;) and rdp(x)= dp’(x’)

then a homcomorphism fwith f,(a,)= a;, f,(b)= b; and f,(x))= xj will lift.
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Proof of the theorem. Harvey [14] has shown that one can always find
generators a:, a,, b:, b,, xt, x with tk(a3=0, i= 1, ’;
$(b) 0, 2, ’ and $(b) equal to a generator of Z/. Next, one verifies
that ;t(h’), s 1, k, for some generator h, determines the cardinal number of

{x, Ick(x,) j, j 1,..., k 1}.
Let h H be the generator corresponding to 1 under the isomorphism

n
_

1-1t(Y/n, zr(yo))/n,(rlt(Y, y0))- z
(the last isomorphism is the canonical isomorphism induced by $). Now, con-

v,= 1), x corresponds to a fixed point of hk/v’sider a generator x (recall that x
Let c be a small loop about the branch point corresponding to x. If
$(x) k/v (mod k), 1 _< r _< v- 1, then hk/v’ takes the initial point of a lift of
rc to its endpoint. That is h-k/v, must be locally a rotation z exp (2nir/v)z. So,
if the rotation constant of hk/vi at a fixed point (corresponding to x) is
exp (2nir/v,)then (x,)= sk/v, with rs 1 (mod v,).

Therefore if there are generator h and h’ for the groups H and H’ with
2(hs) ,((h’)) s 1,..., k, we can find generators satisfying the conditions in
the paragraph after the lemma. The coverings X --, X/H and X’ X’/H’ will be
topologically equivalent.
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