FORMAL FUNCTIONS OVER GRASSMANNIANS

BY
Ari Babakhanian and Heisuke Hironaka

Introduction

This work contains the theorem: The field of formal-rational functions \hat{K} along a connected closed subscheme X of positive dimension in a Grassmannian Grass (n, r) is exactly the field of rational functions on Grass (n, r).

The study of formal-rational functions (or holomorphic functions) was first begun by Zariski [5], and was later extended to the theory of formal functions and formal schemes by Grothendieck [1]. Our study here is based on the aforementioned works and is a continuation of investigations made by Hironaka [3], Hironaka-Matsumura [4], and Hartshorne [2]. Our results are dependent on the determination of the fields of formal-rational functions in the special cases of formal functions along \mathbf{P}^{1} in \mathbf{P}^{n}, and along \mathbf{P}^{n} in Grass (n, r). In [4], among other results, the field of formal-rational functions \hat{K} along a closed algebraic variety of positive dimension in a projective space \mathbf{P}^{n} was determined to be exactly the field of rational functions on \mathbf{P}^{n}. The proof of this theorem was based upon a crucial lemma (Hironaka-Matsumura, Lemma (3.1), [4]) in which the same conclusion was reached in the case of formal functions along \mathbf{P}^{1} in \mathbf{P}^{n}. Our Lemma (3.2) shows that this result holds in the case of formal functions along P^{n} in Grass (n, r). Summarizing, we have shown that the field of formal-rational functions along the subvariety of the ambient space in each of the cases considered is equal to the field of rational functions over the ambient space.

Notations. The rings involved here are polynomial rings over a field k. When R is a ring, we shall denote the total ring of fractions by $[R]_{0}$. A point of Grass (n, r), $n<r$ is represented by an $n \times r$ matrix ($\kappa_{i j}$) of rank n, and two such matrices $\left(\kappa_{i j}\right),\left(\eta_{i j}\right)$ represent the same point if there is a nonsingular $n \times n$ matrix σ such that $\sigma\left(\kappa_{i j}\right)=\left(\eta_{i j}\right)$; i.e., Grass (n, r) is the quotient modulo the action of $G L(n, k)$ on the Stiefel manifold $\operatorname{St}(n, r)$ of n frames in \mathbf{A}^{r}. We define the structure sheaf of rings $\mathcal{O}_{\text {Grass(n,r) }}$ via the Plücker imbedding

$$
\pi: \text { Grass }(n, r) \rightarrow \mathbf{P}^{(r)-1} .
$$

Let $\left(\kappa_{i j}\right)$ be the $n \times r$ matrix representing a point x of Grass (n, r), then $\kappa_{i_{1} \cdots i_{n}}$ is the $\left(i_{1}, \ldots, i_{n}\right)$-th Plücker coördinate of $x . \quad \mathscr{U}_{i_{1} \cdots i_{n}}$ is the open affine in Grass (n, r) such that any point in it can be represented by a matrix $\left(t_{i j}\right)$ where the matrix of the columns i_{1}, \ldots, i_{n} is the identity matrix.

1. The blow-up $B_{P}($ Grass $(n, r))$

Consider the set P of points

$$
x=\left(\begin{array}{ccc}
\kappa_{11} & \cdots & \kappa_{1 r} \\
\vdots & & \vdots \\
\kappa_{n 1} & \cdots & \kappa_{n r}
\end{array}\right)
$$

in Grass (n, r) described as follows: $x \in P$ if whenever the rank of the columns i_{1}, \ldots, i_{n} in x is n, then $n+1$ is one of i_{1}, \ldots, i_{n}. We define the projection p_{n+1} with center at P,

$$
p_{n+1}: \text { Grass }(n, r)-P \rightarrow \text { Grass }(n, r-1),
$$

by

$$
p_{n+1}\left(\begin{array}{ccc}
\kappa_{1,1} & \cdots & \kappa_{1, r} \\
\vdots & & \vdots \\
\kappa_{n, 1} & & \kappa_{n, r}
\end{array}\right)=\left(\begin{array}{cccccc}
\kappa_{1,1} & \cdots & \kappa_{1, n} & \kappa_{1, n+2} & \cdots & \kappa_{1 r} \\
\vdots & & \vdots & \vdots & & \vdots \\
\kappa_{n 1} & \cdots & \kappa_{n n} & \kappa_{n, n+2} & \cdots & \kappa_{n r}
\end{array}\right) ;
$$

and extend p_{n+1} to a correspondence

$$
Z \subset \text { Grass }(n, r) \times \operatorname{Grass}(n, r-1)
$$

where

$$
Z=V\left(\ldots, \kappa_{i_{1} \cdots i_{n}} \eta_{j_{1} \cdots j_{n}}-\kappa_{j_{1} \cdots j_{n}} \eta_{i_{1} \cdots i_{n}}, \ldots\right)
$$

with $\kappa_{i_{1} \cdots i_{n}}$ the $\left(i_{1}, \ldots, i_{n}\right)$-th Plücker coördinate of x in $\mathbf{P}^{(\hbar)-1}$, and $\eta_{j_{1} \cdots j_{n}}$ the $\left(j_{1}, \ldots, j_{n}\right)$-th Plücker coördinate of

$$
\left(\begin{array}{cccccc}
\eta_{1,1} & \cdots & \eta_{1, n} & \eta_{1, n+2} & \cdots & \eta_{1, r} \\
\vdots & & \vdots & \vdots & & \vdots \\
\eta_{n, 1} & \cdots & \eta_{n, n} & \eta_{n, n+2} & \cdots & \eta_{n r}
\end{array}\right)
$$

in the imbedding

$$
\text { Grass }(n, r-1) \rightarrow \mathbf{P}^{\left(r_{n}^{1}\right)-1}
$$

and where $n+1$ does not occur among $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$.
Thus the center P is blown up by Z to the whole of $P \times \operatorname{Grass}(n, r-1)$. Moreover Z is irreducible, hence a variety itself. We denote Z by $B_{P}($ Grass $(n, r))$ and call it the blow-up of Grass (n, r) at P. (We remark that in the case $n=1, B_{P}(\operatorname{Grass}(1, r))$ is the usual blow-up of \mathbf{P}^{r-1} at one point.) We can cover $B_{P}(\operatorname{Grass}(n, r))$ by $\left.\binom{r-1}{n}\left[\begin{array}{c}r-1 \\ n-1\end{array}\right)+1\right]$ open affines as follows:
(i) $\binom{r-1}{n}$ open affines

$$
\begin{aligned}
U_{i_{1} \cdots i_{n}}= & B_{P}(\text { Grass }(n, r)) \cap\left\{\operatorname{Grass}(n, r)-V\left(\kappa_{i_{1} \cdots i_{n}}\right)\right\} \\
& \times\left\{\operatorname{Grass}(n, r-1)-V\left(\eta_{i_{1} \cdots i_{n}}\right)\right\}
\end{aligned}
$$

where $n+1$ does not occur among i_{1}, \ldots, i_{n}.
(ii) $\binom{r-1}{n-1}\left(\begin{array}{r}\left(r_{n}^{-1}\right)\end{array}\right)$ open affines

$$
\begin{aligned}
V_{i_{1} \cdots i_{n} ; j_{1} \cdots j_{n}}= & B_{P}(\text { Grass }(n, r)) \cap\left\{\operatorname{Grass}(n, r)-V\left(\kappa_{i_{1} \cdots i_{n}}\right)\right\} \\
& \times\left\{\operatorname{Grass}(n, r-1)-V\left(\eta_{j_{1} \cdots j_{n}}\right)\right\}
\end{aligned}
$$

where $n+1$ occurs among i_{1}, \ldots, i_{n} and does not occur among j_{1}, \ldots, j_{n}.
(I) Under the first projection $\pi_{1}: B_{P}($ Grass $(n, r)) \rightarrow$ Grass $(n, r), U_{i_{1} \ldots i_{n}}$ goes isomorphically to the affine Grass $(n, r)-V\left(\kappa_{i_{1} \cdots i_{n}}\right)$. Moreover

$$
\bigcup_{\substack{i_{1} \cdots i_{n}, i_{\alpha} \neq n+1}} U_{i_{1} \cdots i_{n}}
$$

covers that part of $B_{P}($ Grass $(n, r))$ which is isomorphic to Grass $(n, r)-P$.
(II) Affine coordinates in the ambient space containing $V_{i_{1} \ldots i_{n} ; j_{1} \ldots j_{n}}$ are

$$
z_{k_{1} \cdots k_{n}}=\kappa_{i_{1} \cdots i_{n}}^{-1} \kappa_{k_{1} \cdots k_{n}}
$$

where $\left(k_{1}, \ldots, k_{n}\right) \neq\left(i_{1}, \ldots, i_{n}\right)$, and $n+1$ occurs among i_{1}, \ldots, i_{n}; and

$$
W_{k_{1} \cdots k_{n}}=\eta_{j_{1} \cdots j_{n}}^{-1} \eta_{k_{1} \cdots k_{n}}
$$

where $n+1$ does not occur among j_{1}, \ldots, j_{n}.

2. Covering of $\mathbf{P}^{n} \subset$ Grass (n, r) in the blow-up

The projective space $\mathbf{P}^{n} \subset$ Grass (n, r) consisting of all the points in Grass (n, r) represented by the $n \times r$ matrices $\left(\kappa_{i j}\right)$ of rank n with $\kappa_{i j}=0$ for $j \geq n+2$ can be covered by the $n+1$ affines A_{1}, \ldots, A_{n+1} where A_{i} consists of the points which can be represented by matrices $\left(\kappa_{i j}\right)$ with $\kappa_{i j}=0$ for $j \geq n+2$, and the columns $1,2, \ldots, \hat{i}, \ldots, n+1$ form the identity matrix. A point $x \in A_{i} \cap A_{n+1}$ is represented by

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & v_{1, i}^{(i)} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
\vdots & & 1 & \vdots & 0 & & \vdots \\
\vdots & & 0 & \vdots & 1 & & \vdots \\
0 & \cdots & 0 & v_{n, i}^{(i)} & 0 & \cdots & 1
\end{array}\right] 0
$$

in A_{i}, and by

$$
\left(\begin{array}{cccc}
1 & \cdots & 0 & t_{1, n+1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & t_{n, n+1}
\end{array} \square 0\right.
$$

in A_{n+1}, and the v 's and the t 's are related by

$$
t_{\alpha, n+1}=-\frac{v_{\alpha, i}^{(i)}}{v_{n, i}^{(i)}} \text { for } \alpha=1, \ldots, i-1
$$

$$
\begin{align*}
& t_{i, n+1}=\frac{1}{v_{n, i}^{(i)}} \tag{I}\\
& t_{\beta, n+1}=-\frac{v_{\beta-1, i}^{(i)}}{v_{n, i}^{(i)}} \quad \text { for } \beta=i+1, \ldots, n .
\end{align*}
$$

Lemma (2.1). For $r>n+1$, the subset

$$
U_{1, \ldots, n} \cup \bigcup_{i=1}^{n} V_{1, \ldots, i, \ldots, n, n+1 ; 1, \ldots, n}
$$

of $B_{P}($ Grass $(n, r))$ is isomorphic to $\mathbf{P}^{n} \times S^{n(r-n-1)}$, and is a covering of \mathbf{P}^{n} under the projection map

$$
\pi_{1}: B_{P}(\text { Grass }(n, r)) \rightarrow \text { Grass }(n, r),
$$

where $S^{n(r-n-1)}$ is the affine space

$$
\operatorname{Spec}\left(k\left[\left\{t_{i, n+j}\right\}_{i=1, \ldots, n, j=2, \ldots, r-n}\right]\right) .
$$

Proof. The affine coordinates $z_{k_{1} \cdots k_{n}}$ and $W_{k_{1} \cdots k_{n}}$ in the ambient space containing $V_{1, \ldots, i, \ldots, n+1 ; 1, \ldots, n}$ are:
(i) $v_{1, i}^{(i)}, \ldots, v_{n, i}^{(i)}, v_{1, n+2}, \ldots, v_{n, r}^{(i)}$, and certain homogeneous polynomials in these where

$$
z_{1, \ldots, \hat{\alpha}, \ldots, n, n+j}=\kappa_{1, \ldots, i, \ldots, n+1}^{-1} \kappa_{1, \ldots, \hat{\alpha}, \ldots, n, n+j}=v_{\alpha, n+j}^{(i)}
$$

and the $v_{\alpha, i}^{(i)}$ are the affine coordinates of the cover A_{i} of $\mathbf{P}^{n} \subset \operatorname{Grass}(n, r)$.

$$
\begin{equation*}
\left\{v_{\alpha, n+j}^{(i)}-\frac{v_{\alpha, i}^{(i)} v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}}\right\}_{\substack{\alpha=1, \ldots, n-1 ; \\ j=2, \ldots, r-n}},\left\{\frac{v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}}\right\}_{j=2, \ldots, r-n} \tag{ii}
\end{equation*}
$$

and certain homogeneous polynomials in these, where

$$
\begin{gathered}
W_{1, \ldots, \hat{\alpha}, \ldots, i, \ldots, n, n+j}=\eta_{1, \ldots, n}^{-1} \eta_{1, \ldots, \hat{\alpha}, \ldots, i, \ldots, n+n+j}=v_{\alpha, n+j}^{(i)}-\frac{v_{\alpha, i}^{(i)} v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}} \text { for } \alpha<i, \\
W_{1, \ldots, i, \ldots, n, n+j}=\eta_{1, \ldots, n}^{-1} \eta_{1, \ldots, i, \ldots, n, n+j}=\frac{v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}} \\
W_{1, \ldots, i, \ldots, \hat{\alpha}, \ldots, n, n+j}=v_{\alpha-1, n+j}^{(i)}-\frac{v_{\alpha-1, i}^{(i)} v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}} \text { for } i<\alpha .
\end{gathered}
$$

Thus $V_{1, \ldots, i, \ldots, n+1 ; 1, \ldots, n}$ is isomorphic to the affine space $S^{n(r-n)}$ with coordinates

$$
\left(v_{1, i}^{(i)}, \ldots, v_{n, i}^{(i)},\left\{v_{\alpha, n+j}^{(i)}-\frac{v_{\alpha, i}^{(i)} v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}}\right\}_{\alpha=1, \ldots, n-1 ; j-2, \ldots, r-n},\left\{\frac{v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}}\right\}_{j=2, \ldots, r-n}\right)
$$

where the first n entries are the affine coordinates of the open cover A_{i} of $\mathbf{P}^{n} \subset$ Grass (n, r). Finally $U_{1, \ldots, n}$ is isomorphic to the affine space with affine coordinates $\left(t_{1, n+1}, \ldots, t_{n, n+1}, t_{1, n+2}, \ldots, t_{n, r}\right)$ where the first n entries are the affine coordinates of the open cover A_{n+1} of $\mathbf{P}^{n} \subset$ Grass (n, r). The relationships between the t 's and the v 's on the intersection

$$
U_{1, \ldots, n} \cap V_{1, \ldots, i, \ldots, n+1 ; 1, \ldots, n}
$$

are those given in (I) together with

$$
\begin{align*}
& t_{\alpha, n+j}=v_{\alpha, n+j}^{(i)}-\frac{v_{\alpha, i}^{(i)} v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}}, \quad \alpha=1, \ldots, i-1, \\
& t_{i, n+j}=\frac{v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}} \tag{II}\\
& t_{\beta, n+j}=v_{\beta-1, n+j}^{(i)}-\frac{v_{\beta-1, i}^{(i)} v_{n, n+j}^{(i)}}{v_{n, i}^{(i)}}, \quad \beta=i+1, \ldots, n .
\end{align*}
$$

Thus $U_{1, \ldots, n} \cup \bigcup_{i=1}^{n} V_{1, \ldots, i, \ldots, n+1 ; 1, \ldots, n} \cong \mathbf{P}^{n} \times S^{n(r-n-1)}$.

3. Formal functions over Grass (n, r)

In this section we will need the following algebraic lemma.
Lemma (3.1). Let Φ and L be fields, $\Phi \subset L$, and let v_{1}, \ldots, v_{n} be indeterminates over L. Then

$$
\Phi\left(\left(v_{1}, \ldots, v_{n}\right)\right) \cap L\left(v_{1}, \ldots, v_{n}\right)=\Phi\left(v_{1}, \ldots, v_{n}\right)
$$

Proof. Let $v=\left(v_{1}, \ldots, v_{n}\right), v_{i}$ non-negative integers and let $\operatorname{deg} v=\sum_{i=1}^{n} v_{i}$. Let

$$
\xi \in \Phi\left(\left(v_{1}, \ldots, v_{n}\right)\right) \cap L\left(v_{1}, \ldots, v_{n}\right), \quad \xi \neq 0
$$

As an element of $\Phi\left(\left(v_{1}, \ldots, v_{n}\right)\right), \xi$ can be written as

$$
\xi=\frac{\sum_{\operatorname{deg} v=0}^{\infty} c_{v} v^{v}}{\sum_{\operatorname{deg} v=0}^{\infty} d_{v} v^{v}} \text { where } v^{v}=v_{1}^{v_{1}} \cdot \ldots \cdot v_{n}^{v_{n}}, c_{v}, d_{v} \in \Phi
$$

On the other hand, as an element of $L\left(v_{1}, \ldots, v_{n}\right)$,

$$
\xi=\frac{\sum_{\operatorname{deg} i=0}^{m} a_{i} v^{i}}{\sum_{\operatorname{deg} i=0}^{l} b_{i} v^{i}} \text { with } a_{i}, b_{i} \in L
$$

Thus

$$
\sum_{\operatorname{deg} i+\operatorname{deg}}^{\infty} b_{v=0} c_{v} v^{i+v}=\sum_{\operatorname{deg}} \sum_{i+\operatorname{deg} v=0}^{\infty} a_{i} d_{v} v^{i+v}
$$

where $i+v=\left(i_{1}+v_{1}, \ldots, i_{n}+v_{n}\right)$. Therefore for each fixed $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, $\mu_{\alpha} \geq 0$, we have

$$
\sum_{i+v=\mu} b_{i} c_{v}=\sum_{i+v=\mu} a_{i} d_{v}
$$

Let $\left(w_{\lambda}\right)$ be a linear basis of L over Φ and write

$$
a_{i}=\sum f_{i \lambda} w_{\lambda}, b_{i}=\sum g_{i \lambda} w_{\lambda} \quad \text { with } f_{i \lambda}, g_{i \lambda} \in \Phi
$$

So for a fixed w_{λ} which is involved in $b_{i}=\Sigma g_{i \lambda} w_{\lambda}$ for some i,

$$
\sum_{i+v=\mu} g_{i \lambda} c_{v}=\sum_{i+v=\mu} f_{i \lambda} d_{v}
$$

and so

$$
\sum_{\operatorname{deg} \mu=0}^{\infty} \sum_{i+v=\mu} g_{i \lambda} c_{v} v_{1}^{\mu_{1}} \cdot \ldots \cdot v_{n}^{\mu_{n}}=\sum_{\operatorname{deg} \mu=0}^{\infty} \sum_{i+v=\mu} f_{i \lambda} d_{v} v_{1}^{\mu_{1}} \cdot \ldots \cdot v_{n}^{\mu_{n}}
$$

This identity can be written as

$$
\left(\sum_{\operatorname{deg} v=0}^{\infty} c_{v} v^{v}\right)\left(\sum_{\operatorname{deg} i}^{l} g_{i \lambda} v^{i}\right)=\left(\sum_{\operatorname{deg} v=0}^{\infty} d_{v} v^{v}\right)\left(\sum_{\operatorname{deg} i=0}^{m} f_{i \lambda} v^{i}\right) .
$$

Thus,

$$
\xi=\frac{\sum_{\operatorname{deg} v=0}^{\infty} c_{v} v^{v}}{\sum_{\operatorname{deg} v=0}^{\infty} d_{v} v^{v}}=\frac{\sum_{\operatorname{deg} i=0}^{m} f_{i \lambda} v^{i}}{\sum_{\operatorname{deg} i=0}^{l} g_{i \lambda} v^{i}} \in \Phi\left(v_{1}, \ldots, v_{n}\right)
$$

We will need the following two results from Hironaka-Matsumura [4] in the proof of the next lemma. The first is the theorem on birational invariance of the field of formal rational functions (Theorem 2.6 in [4]) which states that if $f: Z^{\prime} \rightarrow Z$ is a proper birational morphism of schemes and X is a closed subset of $Z, X^{\prime}=f^{-1}(X)$ then $\hat{f}: \hat{Z}^{\prime} \rightarrow \hat{Z}$ induces an isomorphism $K(\hat{Z}) \rightrightarrows K\left(\hat{Z}^{\prime}\right)$, where \hat{Z} (resp. \hat{Z}^{\prime}) is the completion of Z (resp. Z^{\prime}) along X (resp. X^{\prime}). The next result we need (Theorem (2.7) in [4]) is that, with the notations above, and
under the assumptions of the next lemma, there is a canonical isomorphism (2.7.3 in [4])

$$
\left[K\left(Z^{\prime}\right) \otimes_{K(Z)} K(\hat{Z})\right]_{0} \simeq K\left(\hat{Z}^{\prime}\right) .
$$

Lemma (3.2). The field of formal-rational functions $K\left(\operatorname{Grass}^{\wedge}(n, r)\right)$ of Grass (n, r) along the projective subspace \mathbf{P}^{n} is exactly the field of rational functions on Grass (n, r).

Proof. Let Q be the set of points Q_{1}, \ldots, Q_{n} in Grass (n, r) such that Q_{i} is represented by the $n \times r$ matrix ($\kappa_{i j}$) where the columns $1, \ldots, \hat{i}, \ldots, n+1$ form the identity matrix and all the remaining columns are zero. Let

$$
\pi_{1}: B_{P}(\text { Grass }(n, r)) \rightarrow \text { Grass }(n, r)
$$

be the first projection as in (I) of Section 1. Let $E=\pi_{1}^{-1}(Q)$ and let G be the strict transform of \mathbf{P}^{n} in $B_{P}($ Grass $(n, r))$. Thus

$$
\pi_{1}^{-1}\left(\mathbf{P}^{n}\right)=E \cup G .
$$

Let $B_{P}\left(\operatorname{Grass}^{\wedge}(n, r)\right)\left(\right.$ resp. $\left.\hat{B}_{1}, \ldots, \hat{B}_{n}, \hat{G}_{G}\right)$ be the completion of $B_{P}($ Grass $(n, r))$ along $E \cup G$ (resp. along $\left.\pi_{1}^{-1}\left(Q_{1}\right), \ldots, \pi_{1}^{-1}\left(Q_{n}\right), G\right)$. By the birational invariance theorem of Hironaka-Matsumura (2.6 in [4]), quoted above, it is enough to show

$$
K\left(B _ { P } (\operatorname { G r a s s } ^ { \wedge } (n , r)) \leftrightharpoons K \left(B_{P}(\text { Grass }(n, r)) .\right.\right.
$$

Since G is covered by the $n+1$ affines

$$
U_{1, \ldots, n}\left\{V_{1, \ldots, \ldots, \ldots, n+1 ; 1, \ldots, n\}_{i=1, \ldots, \ldots},}\right.
$$

by Lemma (2.1), $G \approx \mathbf{P}^{n} \times S^{n(r-n-1)}$. Therefore by the Hironaka-Matsumura Theorem 2.7 [4] quoted above.

$$
K\left(\hat{B}_{G}\right)=\left[k\left[\left[\left\{t_{i, n+j}\right\}_{i=1, \ldots, n ; j=2, \ldots, r-n}\right]\right]\right]_{0}\left(t_{1 n}, \ldots, \hat{i}_{i n}, \ldots, t_{n n}, v_{n i}^{(i)}\right) .
$$

(Note. From here on we will abbreviate the indices. Unless otherwise specified, in the sequel, α runs through the set $\{1, \ldots, n\}$ and j runs through the set $\{1, \ldots, r-n\}$. For example, $\left\{t_{\alpha, n+j}\right\}_{\alpha \neq i}$ will stand for $\left\{t_{\alpha, n+j}\right\}_{\alpha=1, \ldots, n ; \neq \neq i ; j=1, \ldots, r-n}$.) On the other hand, by the identies (I) and (II) in Section 2,

$$
\begin{aligned}
K\left(\hat{B}_{i}\right)= & {\left[k\left[\left[v_{1 i}^{(i)}, \ldots, v_{n i}^{(i)},\left\{v_{i, n+j}^{(i)}\right\}_{i=1, \ldots, n}\right]\right]\right]_{0} } \\
= & {\left[k \left[\left[t_{1, n+1} v_{n i}^{(i)}, \ldots, t_{i, n+1} v_{n i}^{(i)}, \ldots, t_{n, n+1} v_{n i}^{(i)}, v_{n, i}^{(i)},\right.\right.\right.} \\
& \left.\left.\left.\left\{t_{\alpha, n+j}-t_{\alpha, n+1} t_{i, n+j} v_{n i}^{(i)}\right\},\left\{t_{i, n+j} v_{n i}^{(i)}\right\}\right]\right]\right]_{0} \\
\subset & {\left[k\left[\left[\left\{t_{\alpha, n+j}\right\}_{\alpha \neq i}\right]\right]\left[\left\{t_{\alpha, n}\right\}_{\alpha \neq i},\left\{t_{i, n+j}\right\}\right]\right]_{0}\left(\left(v_{n i}^{(i)}\right)\right) . }
\end{aligned}
$$

So by the Hironaka-Matsumura Lemma 3.2 in [4], or Lemma (3.1) in the case $n=1$, and the identity $t_{i, n+1}=1 / v_{n}^{(i)}$,

$$
K\left(\hat{B}_{i}\right) \cap K\left(\hat{B}_{G}\right) \subset\left[k\left[\left[\left\{t_{\alpha, n+j}\right\}_{\alpha \neq i}\right]\right]\left[\left\{t_{\alpha, n}\right\},\left\{t_{i, n+j}\right\}\right]\right]_{0} .
$$

Similarly, for $l \neq i$,

$$
\begin{aligned}
K\left(\hat{B}_{l}\right) & =\left[k\left[\left[\left\{t_{\alpha, n+j}\right\}_{\alpha} \neq 1\right]\right]\left[\left\{t_{\alpha, n}\right\}_{\alpha \neq l},\left\{t_{l, n+j}\right\}\right]\right]_{0}\left(\left(v_{n l}^{(l)}\right)\right) \\
& \subset \Phi\left(\left\{\left\{t_{i, n}+j\right\}, v_{n, l}^{(l)}\right)\right)
\end{aligned}
$$

where

$$
\left.\Phi=\left[k\left[\left[\left\{t_{\alpha, n+j}\right\}_{\alpha \neq l, i,}\right]\right]\left[t_{\alpha, n}\right\}_{\alpha \neq l},\left\{t_{l, n+j}\right\}\right]\right]_{0} .
$$

Let $L=\left[k\left[\left[\left\{t_{\alpha, n+j}\right\}\right]\right]\left[\left\{t_{\alpha, n}\right\}_{\alpha} \neq l\right]\right]_{0}$. Then $\Phi \subset L$, and, by Lemma (3.1) and the identity $t_{n l}=1 / v_{n}^{l l}$,

$$
\begin{aligned}
K\left(\hat{B}_{l}\right) \cap K\left(\hat{B}_{i}\right) \cap K\left(\hat{B}_{G}\right) \subset \Phi\left(\left\{\left\{t_{i, n+j}\right\},\right.\right. & \left.\left., v_{n}^{(l)}\right)\right) \\
& =L\left(\left\{\left[t_{, n+j}\right\}, v_{n l}^{(l)}\right)\right. \\
& {\left.\left[k\left[\left\{t_{\alpha, n+j}\right\}_{\alpha \neq t, i, j]}\right]\left\{t_{\alpha, n}\right\},\left\{t_{i, n+j}\right\},\left\{t_{l, n+j}\right\}\right]\right]_{0} . }
\end{aligned}
$$

It is now clear that by induction we can show
$K\left(B_{P}(\operatorname{Grass}(n, r))=k\left(t_{\alpha \beta}\right) \subset K\left(B_{P}\left(\operatorname{Grass}^{\wedge}(n, r)\right) \subset \bigcap_{i=1}^{n} K\left(\hat{B}_{i}\right) \cap K\left(\hat{B}_{G}\right) \subset k\left(t_{\alpha \beta}\right)\right.\right.$.
In the next lemma let $\mathbf{P}^{1} \subset \operatorname{Grass}(n, r)$ be given by the two affines l_{0}, l_{1} where l_{0} is the subset of Grass (n, r) consisting of all the points which can be represented by the $n \times r$ matrices $\left(v_{i j}\right)$ where the columns $1, \ldots, n$ form the identity matrix and the entries $v_{1, n+1}, \ldots, v_{n-1, n+1}, v_{i, j}, i=1, \ldots, n, j=n+2$ \ldots, r are zeros, and l_{1} is the set of all points $\left(t_{i j}\right)$ where the columns $1, \ldots, n-1$, $n+1$ form the identity matrix and the entries $t_{1, n}, \ldots, t_{n-1, n}, t_{i j}, i=1, \ldots, n$, $j=n+2, \ldots, r$ are zeros, and where the relation between $t_{n, n}$ and $v_{n, n+1}$ over $l_{0} \cap l_{1}$ is $t_{n, n}=1 / v_{n, n+1}$.

Lemma (3.3). The field of formal-rational functions \hat{K} of $\operatorname{Grass}(n, r)$ along the projective subspace \mathbf{P}^{1} is exactly the field of rational functions on Grass (n, r).

Proof. The field of formal-rational functions along the subspace \mathbf{P}^{1} is

$$
\hat{K}=k\left(v_{n, n+1}\right)\left(\left(\left\{v_{i, n+1}\right\}_{i=1, \ldots, n-1},\left\{v_{i j}\right\}_{i=1, \ldots, \ldots ; j=n+2, \ldots, r}\right)\right) .
$$

Then $\xi \in \hat{K}$ can be written $\xi=f / g$ where f and g are elements of

$$
k\left(v_{n, n+1}\right)\left[\left[\left\{v_{i, n+1}\right\}_{i=1, \ldots, n-1},\left\{v_{i, j}\right\}_{i=1, \ldots, n ; j=n+2, \ldots, r}\right]\right] .
$$

We can rewrite f / g in the form

$$
\xi=\sum c \prod_{\substack{i=1, \ldots, n_{i} \\ j=2, \ldots, n}} v_{i, n}^{v(i, j) j} / \sum d \prod_{\substack{i=1, \ldots, n_{i} \\ j=2, \ldots, r-n}} v_{i, n+j}^{v(i, j)}
$$

where $\prod v_{i, n+j}^{v(i, j)}$ is a product in powers $v(i, j) \geq 0$ of the variables

$$
\left\{v_{i, n+j}\right\}_{i=1, \ldots, n ; j=2, \ldots, r-n}
$$

and

$$
c, d \in k\left(v_{n, n+1}\right)\left[\left[v_{1, n+1}, \ldots, v_{n-1, n+1}\right]\right] \subset k\left(v_{n, n+1}\right)\left(\left(v_{1, n+1}, \ldots, v_{n-1, n+1}\right)\right) .
$$

By the Hironaka-Matsumura Lemma (3.1) in [4], \mathbf{P}^{1} is universally G_{3} in \mathbf{P}^{n}, that is,

$$
k\left(v_{n, n+1}\right)\left(\left(v_{1, n+1}, \ldots, v_{n-1, n+1}\right)\right)=K\left(v_{1, n+1}, \ldots, v_{n, n+1}\right) .
$$

Thus

$$
\xi \in k\left(v_{1, n+1}, \ldots, v_{n, n+1}\right)\left(\left(v_{i, n+j, i=1, \ldots, n ; j=2, \ldots, r-n}\right)\right) .
$$

It now follows by our Lemma (3.2) that ξ is a rational function over Grass (n, r).

Theorem (3.4). Let X be a connected closed subscheme of dimension greater than or equal to 1 in Grass (n, r). Then the field of formal-rational functions of Grass (n, r) along X is exactly the field of rational functions on Grass (n, r).

Proof. We proceed as in the proof of Theorem (3.3) in HironakaMatsumura [4] using Lemma (3.3) above. Let Grass ${ }^{\wedge}(n, r)$ be the completion of Grass (n, r) along X. Let C be an irreducible reduced curve contained in X. Since X is connected, $K\left(\operatorname{Grass}^{\wedge}(n, r)\right)$ is contained in $K\left(\operatorname{Grass}(n, r)_{\mid C}\right)$, where Grass $(n, r)_{\mid C}$ is the completion of Grass (n, r) along C. Therefore it is enough to assume $X=C$. Recalling that Grass (n, r) is the Grassmannian of n-planes E in k^{r}, then $C=\left\{E_{t}\right\}_{t \in C} \subset$ Grass (n, r). Given an $r-n-1$-plane $S \in \operatorname{Grass}(r-n-1, r)$, consider the Schubert cycle

$$
\Sigma_{S}=\{E \in \operatorname{Grass}(n, r), \operatorname{dim}(E \cap S) \geq 1\}
$$

By choosing S generically, we may assume that $C \cap \Sigma_{S}=\phi$. For this S, set $Q=k^{r} / S$, and let \bar{E} be projection to Q of $E \in \operatorname{Grass}(n, r)-\Sigma_{s}$. Then $\operatorname{dim} Q=$ $n+1, \operatorname{dim} \bar{E}=n$, and $\bar{C}=\left\{\bar{E}_{t}\right\}_{t \in C}$ is the image of C in Grass $(n, n+1)$. Consider the projection

$$
\operatorname{Grass}(n, r)-\Sigma_{S} \xrightarrow{\pi_{1}} \operatorname{Grass}(n, n+1) .
$$

Let $\quad \mathbf{P}^{1} \subset$ Grass $(n, n+1)$ and $L^{n-2} \subset \operatorname{Grass}(n, n+1)$ be such that $L \cap \mathbf{P}^{1}=\phi$ and $L \cap \bar{C}=\phi$, and let

$$
\text { Grass }(n, n+1)-L \xrightarrow{\bar{\pi}_{1}} \mathbf{P}^{1}
$$

be the projection with center L. By Hironaka's Lemma (2.2) in [3], Grass $(n, n+1)-L$ can be given a unique structure of vector bundle such that the inclusion $s: \mathbf{P}^{1} \subset$ Grass $(n, n+1)$ is the zero section. Let

$$
B_{L}(\text { Grass }(n, n+1)) \xrightarrow{\beta} \operatorname{Grass}(n, n+1)
$$

be the blowing up of Grass $(n, n+1)$ with center L. Then, by Hironaka, Section 2 in [3], there is a morphism

$$
B_{L}(\text { Grass }(n, n+1)) \xrightarrow{p} \mathbf{P}^{1}
$$

Consider the diagram

where V is the fibred product of Grass $(n, r)-\Sigma_{S}$ with $B_{L}($ Grass $(n, n+1))$ over Grass $(n, n+1)$. We know Grass $(n, r)-\Sigma_{S}$ has a structure of vector bundle over Grass $(n, n+1)$ so π inherits a structure of vector bundle which induces the structure of a vector bundle on $p \circ \pi$ whose zero section is the inclusion $\mathbf{P}^{1} \subset V$. Next consider the fibred product

where λ is the restriction of $p \circ \pi$ to C. As π^{\prime} inherits a vector bundle structure, let C_{1} be the zero section of π^{\prime} which is equal to $\gamma^{-1}\left(\mathbf{P}^{1}\right)$. We have another section C_{2} of π^{\prime} which induces the inclusion $C \subset V$. Then there is an automorphism σ of W such that $\sigma\left(C_{1}\right)=C_{2}$. Let $\hat{W}_{i}(i=1,2)$ be the completion of W along C_{i}. Then σ extends to an isomorphism

$$
\hat{W}_{1} \simeq \hat{W}_{2}
$$

which induces an isomorphism

$$
K\left(\hat{W}_{2}\right) \rightrightarrows K\left(\hat{W}_{1}\right)
$$

and $K(W)$ is mapped onto itself under this isomorphism. By our Lemma (3.3) and Theorem (2.7) in [4], we have $K\left(\hat{W}_{1}\right)=K(W)$. So $K\left(\hat{W}_{2}\right)=K(W)$. Since $\gamma\left(C_{2}\right)=C$ we have a map $\varphi: W_{2} \rightarrow \operatorname{Grass}^{\wedge}(n, r)$ which induces a monomorphism

$$
K\left(\operatorname{Grass}^{\wedge}(n, r)\right) \longrightarrow K\left(\hat{W}_{2}\right)=K(W)
$$

Since $K(W)$ is a finite algebraic extension of $K($ Grass (n, r)), we have $K\left(\operatorname{Grass}^{\wedge}(n, r)\right)$ is finite algebraic over $K($ Grass $\left.n, r)\right)$, and its branch locus in Grass (n, r) is contained in that of $K(W)$ over $K(\operatorname{Grass}(n, r))$. By the purity of branch locus $K\left(\operatorname{Grass}^{\wedge}(n, r)\right)$ is unramified over $K(\operatorname{Grass}(n, r))$. Since Grass (n, r) is simply connected, we conclude that $K\left(\operatorname{Grass}^{\wedge}(n, r)\right)=$ K (Grass (n, r)).

Bibliography

1. A. Grothendieck, Élements de Géométrie Algébrique, Publ. Math. IHES, France, No. 4, 1960.
2. R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math., vol. 88 (1968), pp. 403-450.
3. H. Hironaka, On some formal imbeddings, Illinois J. Math., vol. 12 (1968), pp. 587-602.
4. H. Hironaka and H. Matsumura, Formal functions and formal imbeddings, J. Math. Soc. Japan, vol. 20 (1968), pp. 52-82.
5. O. Zariski, Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Mem. Amer. Math. Soc., No. 5, 1951.

University of Illinois
Urbana, Illinois
Harvard University
Cambridge, Massachusetts

