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A WEAK INVARIANCE PRINCIPLE FOR HILBERT SPACE
VALUED MARTINGALES

BY

G. J. MORROW

1. Introduction

We start with a probability space (fl, 9, P) and a real separable Hilbert
space (H, (., .)) with Ix[2 (x, x). Let {xn, n; n > 1} be an adapted
sequence of H-valued random variables on fl. We denote by En(.) the
conditional expectation operator E(. 9_) and assume that E[x[2 is well-
define for each n > 1. We are concerned primarily with martingale dif-
ferences, i.e., random vectors {xn} with Ex 0 a.s., n > 1. A useful
clock for the partial sums of such vectors is the sequence

(1.1) V. Eklxkl2, n > 1.
k=l

We assume that

(1.2) lim V a.s.

and consider the process

(1.3) M,, xk l (Vk < n ), n > 1.
kl

Let Cn[0, 1] denote the space of continuous H-valued mappings, sr, on
the unit interval, [0, 1], endowed with the supremum norm:

IIll max I(t)l.
Otl

Recalling (1.3), we define for each n > 1 a random element X of
Ca[O, 11:

n-1/EM for t k/n,k O,...,n,

(1.4) [linear interpolation in over
n

k 1, n.

Given a non-negative random variable w on l’l and a sub-r-field d C 9, the conditional
expectation E(w d) is well-defined if the measure v(A) fAW dP, A d, is tr-finite.
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The summands {x} are said to satisfy the central limit theorem (CLT)
if the sequence {n-/2M}l converges in distribution to a mean zero Gaussian
law, y, and more generally, the (weak) invariance principle if the random
elements {X}>l converge weakly to the corresponding (induced) Wiener
easure, Wv, on Cn[O, 1]. For a large class of independent real valued
summands the Lindeberg-Feller condition is necessary and sufficient for
the CLT (and therefore also for the invariance principle).
The basic result here is a weak invariance principle for H-valued martingale

differences, {Xn}. The formulation of this result rests on the principle that
the behavior of

-/2
Xk" l(Vk n)

kl

for large n is determined by that of n -1/2 Xka Xtk l(Vk <<. n), where x, is
a truncated version of x. One may note the usefulness of this approach
by looking at an example provided by McLeish [9]. This example amounts
to letting, for n > 1, independent random variables z, take the values
_+ 2"/2 each with probability 2 and the value zero otherwise, and letting
{fin} be independent mean zero variables taking the values _+ 1 independent
of the sequence {z}. Then, with x z + n and S X= Xk, S is a
sum of independent random variables each having mean 0 and variance 2,
but Sn/X//2n --., N(O, 1). In fact, the Lindeberg-Feller condition fails. Yet
Sn/X/n N(0, 1) (cf. Theorem 1).
Our motivation is to formulate an invariance principle that unifies several

known theorems for real valued martingales (cf. [2], [4], [9]) and generalizes
those results to the case of values in Hilbert space. By using the truncation
method we avoid Lindeberg-type conditions. We give an example to illustrate
some interesting martingale behavior in our theorem. (See the example in
Section 3.)
We mention that the case of values in Banach space has been considered

for sums of independent random vectors with identical distributions by
Kuelbs [8] and without the assumption of identical distributions by Garling
[6]. Also for the Banach space setting Rosinski 11] has studied martingales.
Garling and Rosinski employ Lindeberg-type conditions for their results.
Kuelbs obtains the invariance principle from the CLT and a very mild
condition. This approach has been extended to 9-mixing arrays by Eberlein
[5].
We state and prove our invariance principle for sequences {x} and later

(in Section 3) state the corresponding result for dependent arrays.

THEOREM 1. Let {x,, ; n > 1} be an adapted sequence of H-valued
random variables such that V, in (I.1) is well-defined and satisfies (1.2).
Suppose that there is a non-decreasing function R/ --> R/ satisfying

(1.5) limX(u) and limX(u)/u 0
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such that, upon defining

(1.6)

one has2

(1.7) Plim n-12 Ek(h, x,)2" l(Vk < n) o(h)
n--. k;

with some number v(h) for each element h H.
Suppose further that

(1.8) lim sup n -1 E((f, x’)2 l(Vk < n)) -- 0 as N --->
n...oo k> iN

where {f/}i>l denotes a complete orthonormal basis for H. Then there is a
mean zero Gaussian measure T on H with fn (h, x)2/(dx) v(h), h H,
such that, upon defining

(1.9) M, R.H.S. of(1.3) with X’k in place ofxk,

X’ R.H.S. of(1.4) with M’ in place ofM,
one obtains

(1.10)

with the Wiener measure

p (X’)-’ -">w W
on Cn[O, 1] induced by T. In particular, if

Iyi (xj-- x )" Vk <n O(1.11) Plim n- 1/2max
n.-.oo kn

then

(1.12) P oX,

with Xn defined by (1.4).

Remarks (i) Whenever the sequence {M’n//n}nl, as defined by (1.6)
and (1.9), converges in law to a Gaussian measure, condition (1.8) must
hold. This assertion is proved at the very end of Section 2.

(ii) When {Xn} is an H-valued martingale difference sequence one observes
by Doob’s submartingale maximal inequality and Lemma 2 of Brown [2]
that the classical Lindeberg condition implies (1.11) whenever

Our Theorem 1 thus generalizes Theorem 3 in [2].
(iii) Finally, we give a series condition that implies (1.11) for the case

of martingale differences, namely,

(1.13) h(V)-’/2lE(x l(Ixl > V’x(v)))I < a.s.
nl

Plim denotes limit in probability.
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For, observe that

IE(x.. l([x.I > Vh(v)))I
X/x(v.)

so that by (1.13) and L6vy’s generalization of the Borel-Cantelli lemma,

(1.14) Ixl > /X(V,) only finitely often with probability one.

Further,

-/:max Ej(x+. l<lxl < %/h(v/))) I(Vj < k)n
k<n jl

< h<n)-’/ZlEj% l<lxjl .h<Vj)))l 1(. n).
jl

Now, using E,x, 0 in (1.13) and Kronecker’s lemma one verifies that
this last sum tends to zero in probability. This together with (1.14) yields
(1.11).

2. Proofs

For future reference we recall by (1.6) that

(2.1) Ix,l < 2/h(v,) a.s., n > 1.

To establish (1.10) we proceed in the usual way. That is, first we find a
Gaussian measure 3’ so that in accordance with (1.10) the finite dimensional
distributions of the sequence {X,} converge properly. Secondly, we dem-
onstrate that this sequence is tight in CI.I[O, 1]. We summarize these points
in Propositions 1 and 2, below.
To prove Proposition 1 we need the following lemma whose proof parallels

the lines of Brown [2].

LEMMA. Let 0 to < t < < t
v> 1. Then

and let hi, hv Hfor some

(2.2) limEexp{i (h,X’n(t,)-X,(t,_l))}n-.-,oe
/z

( )exp -’ (t. t_,)v(h)
/=1

where, for each h H, v(h) is the limit appearing in (1.7).

Proof. We define for all k, n > 1,
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(2.3) y y() n-/2 (h,, x’)" l([nt,_] < Vk < [nt,,l)

with x and V defined by (1.6) and (1.1) respectively. Our first task is to
show that the lemma follows upon proving that

(2.4)

To accomplish this observe that

(2.5) An (h,, X’(t,) X’(t,_)) y(k)= Ak,
/z= k>l k>l

with

and

v-I

Ak, n- l/2(nt [nt,])(h,, k /Ok,

<’) l([nt,] < Vk < [nt,] + 1).k,n

Since the sums xv= A,, N > 1, form a martingale, which, as we shall
now see is L2 bounded we have by (1 l) the definition of t" and (2 1)

E n -1 E E(h., x) Ok,
=1 kl

o(1) as n .
Thus, by (2.5), (2.6) and the inequality

Eexp(ia) exp(ib)l El/(a b),
valid for real random variables a and b, it suNces to establish (2.4). We
use the method of Brown to do this. For the sake of completeness we
include the proof.

Put
N N

(2.7) ms= yl, Rs= Eky2,
k=l k=l

and

t_ )v(h).
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We estimate (while suppressing the dependence on n) that

1Eexp(imoo)-exp(- o"2)
E 1 exp (R o") exp(im)

+1
I + II (say).

By (2.3), (2.7), (1.7) and (1.1), IR o’1 is bounded almost surely by a
constant and tends to zero in probability as n . Hence

(2.9) lira I 0.

To estimate II we break the expectation term therein into a telescoping
sum, as follows. Let

Then

E E(Z)
k=l

Here the last equality is justified since the partial sums

Z= 1 exp im+-R N>I,
kl

are uniformly bounded.
Next, employing the expansions

2
(2.12) eia 1 + ia - + O(ot3), a --> O, and

e 1 u + O(u2), U " 0,

one calculates, by (2.1), (2.3), (2.10) and (2.12), that

Ek(Zk) exp imk-, +- Rk X 0 /k(n Eky2k.

Thus, by (1.1), (2.3) and (1.5),
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o(1) asn --->o.

Finally, by (2.8), (2.9), (2.11) and (2.13) we have (2.4). Whence the lemma
is proved.

We are now ready to show that the finite dimensional distributions associated
with the sequence {X,}n.l converge properly. To formulate this result we
use the multiple evaluation functional, et, tk" Cn[O, 1] --> Hk, defined by

"-> ((t), (tk)).

PROPOSITION 1. There exists a mean zero Gaussian measure / on H with

fn (h, x)2/(dx) v(h), h H,

such that for any 0 < t < < tk < 1 and k > 1,
-1p (et tk Xn) --’>w W,F ett tk as n ---> oo.

Proof. By the lemma, it suffices to show that the sequence of measures

p o (et,
n>l

is tight. Moreover, since a set of probability measures on H is tight if and
only if each of the k sets of marginals is, we need only verify that the
sequence

{P (et

is tight for any fixed t [0, 1].
To do this it is enough to have for any positive numbers e and finitely

many balls Ai of radius r/in B such that,

(2.14) P(X’(t) LI Ai) > 1 e for all n > 1.

(For, in a metric space, a set A has compact closure A if and only if A is
totally bounded and is complete.) To verify condition (2.14) we introduce
the projection maps ,rs H H, defined for each N > 1 by zrx)
X=I (f, x)f. Here {f},l is the complete orthonormal basis for H appearing
in (1.8). But, since

IxL(t) rux;,(t)l-< 3n-/2 max IMp,
l<k<n
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from the submartingale maximal inequality and (1.8) we get

ElX’n(t) "trNSn(t)[2 < 4.9ELM’, rlvM’,l2

36" n-’E E, x’). (V < n))
i>N k

< e(N),

for n > n(N), where e(N) ---> 0 as N ---> oo. Therefore, since the lemma
implies that

{P (zrvo et X’,)-’}n,
is tight for any finite No, by a standard argument one obtains finitely many
balls Ai of radius r such that P(X’n(t) tO Ai) > 1 e/2, for all n >
n(No). Finally, by the separability of H one can augment this collection of
balls {A} by finitely many balls of radius so, that (2.14) holds.

We now provide the only remaining ingredient needed to establish (1.10).

PROPOSITION 2.
Cn[O, 1].

The sequence of random elements {X,,}n>t is tight in

Proof.
e>O,

By Proposition 1 (and its proof) it is sufficient to have, for each

(2.15) lim lim sup P( sup IX;,(t) X,(s)l > ) 0.
h’O n..-oo Is tl<h

In turn, for (2.15), it is enough to show that for any h > 0 and s
[0, 1 h],

(2.16) E max [X(t) X,(s)l4 < C(h. h(n)/n + h2),
s<t<s + h

with some absolute constant C. But, since

max Ig;,(t) X’(s)l < 3 max n-’/21M’ Mt’, l,
s<t<s + h [sn]<k[(s + h)n] +

(2.16) will follow from (1.5) and Burkholder’s square function inequality
[3, Theorem 3.2] with p 4, upon proving that

< C(hn h(n) + h2n2)

with ) l([sn] < V < [(s + h)n] + 1) and an absolute constant C.
Finally, by (1.1) and (2.1),
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< C(hn X(n) + hZn2).

Since Propositions 1 and 2 imply (1.10), to finish the proof of Theorem
1 we need only verify that the condition M’,,/X//n --- y’, for some Gaussian
measure ’ on H, implies (1.8). But we just saw in the proof of Proposition
2 that

sup E(IM’,,//nl4) < oo,
nl

so that the sequence {[M’,,/X//n[2},,, is uniformly integrable. Thus, as
n ...-> oo

E[(I ,rN)M’/V’nlz --, fn (I ZrN)2(x)y’ (dx)

and this last limit must tend to zero as N ---> oo. Whence, (1.8) holds.

3. Dependent Arrays

For the sake of reference we reformulate Theorem 1 now for a doubly
infinite array

{Xj,n;j> 1, n > 1}

of H-valued random variables. Afterwards we present an example to illustrate
this theorem.
We denote the conditional expectation operator E(. Ix,,, xj_,,) by

E.)(.). We then put
k

g(k") , e)")(lxj,.lZ), k > 1, n > 1,
j=l

and assume that V") is well defined for all k and n and that

lim V()> a.s., n> 1.

We set

(3.1) M() xj,. I(Vjg) < k/n), k O, n,
jl

and define, for each n, a random element X, Cn[0, 1] by the R.H.S. of
(1.4) with n-/2Mk replaced by Mk).
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THEOREM

(3.2)

one has

(3.3)

Xj,

Suppose there exists h, 0 such that with

Plim E(")(h, 2 (V()x,,.) 1 < t) v(h, t)
n--* k

with some number v(h, t)for all h H and t [0, 11.
Assume that

(3.4) lim sup E((f, 2X,,n) I(VC,n)<l))0 asNo
n-.oo k iN

where {f.} denotes a complete orthonormal basis for H.
Then there exists a family {Tt}t[o,l of mean zero Gaussian measures on

H with

fl (h, x)2yt(dx) v(h, t), h H, t [0, 11.

Let us denote by F the Gaussian measure on C/[0, 1] whose realization is
an H-valued separable process {(t); t [0, 1]} with independent increments
and one dimensional distributions P o (t)-1

yt. Then, defining
by the R.H.S. of (3.1) with xj,, in place of xj,, and X’n by the R.H.S. of
(1.4) with Me,)’ in place of n-I/2M,, we have

(3.5) P (X;,)- "*w F as n o.

In particular, if

(3.6) Plim max I (x,.- xj,.). I(V. < k/n) 0
n--.oo k j

then

(3.7) p (X.)- ---w F as n o.

Remarks. (i) In case E")x,. 0 for all j > and n > 1, the condition

Plim IEj(xj,." l(Ixj,.I > h))l 0, > 0,
n--oo jl

implies (3.6). This is seen by using Lemma (3,5) of Dvoretsky [4] in place
of L6vy’s Borel Cantelli lemma in the argument that (1.13) implies (1.11).

(ii) Theorem 1’ generalizes Corollary (3.8) of [9] and improves Theorem
C of [7].

Example. Let xj,. be defined for j 1, 2, n and n > 1 as follows.
For j 2k, 2k+ 1 and k > 0, define Ij,. -1 + j2-, rj,. Ij,. +
2-(1 (k + 1)2-") and put
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Zj,,, (log n)- 2/3(1 + j2- n)( 1)U/21 I(lj,,,, r,,,)
-2n(1og n)-2/a(1 + j2-n)( 1)0’/21(1 (k + 1)2-n) I(rj,n, rj, + 2-n-k),

where I(a, b) denotes the indicator function for a subinterval (a, b) of the
Lebesgue unit interval and [c] denotes the integer part of a real number c.
Also, for each n, take independent variables {/3,}.n with/3,n taking each
of the values _+ 1/’k/- with probability 1/2 and independent of the {Z,n}. Let
x, z, + ,. Then the array {x,} satisfies the hypotheses of Theorem
1’ and also (3.6) with h (log n) -/2 in (3.2), so (3.7) holds. But,

IEx,n" l(Ix,l C,n)l "-
j=l

in probability for any constants {c,} bounded strictly away from 0 and .
Thus, Theorem 1’ is not contained in Theorem (3.6) of [9] even when

2 v(n)norming by Y Xj, is equivalent to norming by _,
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