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RESPECT TO STRATEGIC MEASURES
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Abstract

Extending the result of Prikry and Sudderth that a reverse strategic
product measure on N N with diffuse marginal measures is singular to
all strategic measures (i.e. purely non-strategic) we show in Section 1 that
any reverse strategic product measure an X x Y (where X and Y are
arbitrary sets) is purely non-strategic if it has purely finitely additive marginal
measures. If there are no real-valued measurable cardinals so all countably
additive measures are discrete the converse is true. In Section 2, we introduce
the language of split faces of probability measures as a convenient tool for
discussing decompositions of probability measures. In this section we char-
acterize which nearly strategic measures are absolutely continuous with
respect to a given strategic measure. In Section 3, atomicity and non-
atomicity of strategic measures are characterized. In Section 4, we deal
with r-additivity of strategic measures for an infinite cardinal r. In Section
5, r-uniformity of strategic measures is discussed. In Section 6, we give
examples of reverse strategic product measures with diffuse marginals, one
of which is countably additive, which are strategic. We also examine when
a reverse strategic product measure with diffuse marginals, one of which
is countably additive, may be purely non-strategic.

1. Introduction

Gambling Theory has as a central notion the concept of a strategy, [15].
A strategy o- is, essentially, a finitely additive Markov process on a discrete
space F which is termed thefortune space (although state space is occasionally
used in analogy with the terminology of the countably additive theory of
Markov processes where F would be a locally compact Hausdorff space
with a countable base.) The strategy o- describes the random movement of
a particle (or player) through F in time. There is an initial distribution ro(df)
after one step from a given fortune f0. r0 is an element of P(F) the finitely
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additive probability measures defined on all subsets of F. There is, conditional
on being at f after step 1, a distribution tr(f, df) of fortunes after step
2. Thus, tr is a Markov kernel and is a function from F into P(F). The
pair (tr0, o-) give rise to a probability distribution 0-2 in F x F describing
the distribution of fortunes occurring in the first two steps of the Markov
process. If s is a bounded function on F x F then

In general one is interested not just in the distribution of the first two steps
of the Markov process but rather in the distribution of all possible sequences
or histories h (f, f2, f, ...) of fortunes. For this, one needs, for
any n and any (f, fn) F, a conditional distribution tr(f, f,
df+ ) of f+ given that the first n fortunes occurring were (f, f).
Thus, o- maps F into P(F) and (tr0, o’, try) gives rise to a probability
distribution on F+ given by the inductively defined integration formula

f s(fl, fn, fn+ 1)O’n+ l(dfl, dfn, dfn+ 1)

The entire sequence (o-,, o-, ...) is termed a strategy and is denoted
by o-. The strategy o- gives rise to a probability distribution defined on the
clopen algebra of the history space

H {h (f, fn, ...): f F all i} F.
The details appear in Dubins and Savage [15]. The measure on H is called
the strategic measure on H associated with the strategy tr and is also
denoted by
Of central importance to the construction of strategic measures on H is

the situation where one has two discrete spaces X and Y. One has an initial
distribution tro P(X), which may be thought of as the distribution, of the
initial step in X of a finitely additive Markov process. Conditional on x
X one has a probability distribution try(x, dy) P() which may be thought
of as the distribution of the second step in Y. As before the pair tr

(tr0, o’) gives rise to a probability distribution on X again denoted by
tr. We call the pair cr a strategy (actually a two step strategy) and the
measure tr a strategic measure on X x Y. Let g denote the set of all
strategic measures on X x . An example is X F and Y F. Here
tr0 describes the distribution of the first n-steps of a finitely additive Markov
process and trl describes the distribution of the (n + 1)-st step conditional
on the first n steps. More generally, Y could be F and tr would describe
the distribution of steps n + 1 through n / m conditional on steps 1
through n.

It is natural to ask which measures in P(X Y) arise as strategic measures.
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If we were dealing with countably additive Markov processes and with X
and Y locally compact Hansdorff spaces with countable bases we would
have the result that all probability Radon measures on X x Y are strategic
measures corresponding to strategies (tr0, trl) where tr0 is a probability
Radon measure on X and tr is a (suitably measurable) Markov kernel from
X to (Y), the probability Radon measures on Y. This is a standard
consequence of the theory of disintegration of measures [16], [29].

In contrast to the situation for Radon measures it is almost never the
case that P(X x Y) 5;. In fact, Dubins found in [15] that if X and Y are
countably infinite there exists a measure y P(X x Y) so that
that is, y is singular to all strategic measures. Such measures will be called
purely non-strategic and we will denote their totality by X. It was shown
by Armstrong and Sudderth in [9] that every measure y P(X .x Y) may
be expressed uniquely as a convex combination h3t + (1 h)y2 where y
(unique if X 0) is in and 2 (unique if X 1) is in the closure of
X for the variation norm. Elements of are called nearly strategic measures.
Thus, it follows that X. It is also shown in [9] that need not be
convex hence need not equal X.

Decompositions of finitely additive probabilities similar to the decomposition
into purely non-strategic and nearly strategic measures are the Hewitt-
Yosida 19] decomposition (y ol’)tca + [’)tpf where Yca is countably additive
and ypr is purely finitely additive in that ’lpf is singular to all countably
additive probabilities); the Sobczyk-Hammer decomposition [26] (3’ Z3ta, +
/3y where "}tat is atomic so it is a countable convex combination of {0, 1}-
valued measures and / is non-atomic in that for all e > 0 there is a finite
partition into sets of measure at most e); the diffuse-discrete decomposition
(Y a’)/diff "" ’)/dis where ’)/diff is diffuse in that y assigns 0 measure to
singletons and )tdise is discrete in that it is a countable convex combination
of point masses); and the Lebesque decomposition [10]
where y, +/-/Zo and y,, <</Zo where/z0 is a fixed measure). We shall discuss
these types of decompositions at length in Section 2 as split face
decompositions.
One type of strategic measure tr (tr0, o’) is of special importance.

This is the strategic product measure where tro a P(X).and for all
(or a almost all) x X, trl(x, ") /3 where fl is a fixed element of P(Y).
This measure tr has the property that tr(A x B) a(A)fl(B) if A C X and
B C y. This measure tr will be denoted by tr(a, fl) and is an extension of
the product measure a () fl from the product algebra 2x @ 2r to 2xr.
When the roles ofX and Yare interchanged, one obtains reverse strategies

z 0"o, ’) where o P(Y) and, for y Y, zl(y, ") P(X). Corresponding
to a reverse strategy z is a reverse strategic measure, also denoted by
in P(X x Y) defined by the integration formula

f(x,y)d’r= f[ff(x,y)’r,(y, dx)}’ro(dy).
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Corresponding to an (a, /3) P(X) P(Y) there is a reverse strategic
product measure z(t, ) (Zo, z) with z0 /3 and z(y, dx) a for all
yY.

If/x is an element of P(X x Y) then the X-margin of tx, tXx P(X) is
defined by Izx(A) tz(A x Y) for A C X and the Y-margin ix

r P(Y) is
defined by txr(B) Ix(X B) for B C X. Thus, strategic and reverse
strategic product measures o’(a, /3) and z(a, ) are uniquely specified by
their X-margins ct and their Y-margins . Dubins established in [14] that if
Y is finite then P(X x Y) consists entirely of reverse strategic measures.
Prikry and Sudderth noted in [25] that, in this case P(X x Y) Y. From
this it follows that if X and Y are arbitrary and if y P(X Y) either has
a discrete X-margin or a discrete Y-margin then y is both nearly strategic
and nearly reverse strategic (so is approximable in variation norm by reverse
strategic measures).

In [14], Dubins established that if X Y N and if a and/3 are diffuse
{0, 1}-valued elements of P(X) and P(Y) respectively then z(a, ) E+/-.
This was the first example of a purely non-strategic measure.

In [25], Prikry and Sudderth showed that reverse strategic product measure
z associated with arbitrary diffuse a and/3 on X N Y belongs to Z1.
This is the present state of the question of existence of elements of Z’. Of
course, when X and Y are countable it is immediate that a reverse strategic
product measure z(a, ) is in only if both a and/3 are diffuse. If this
weren’t the case and ct hctdiff + (1 h)Odis with h < 1 then- M- + (1 )k)7"2 where - Z(adisc, /3)

is nearly strategic. This reasoning works for general X and Y and allows
us to consider only -(a,/3) where a and/3 are diffuse.
We are interested in extending the known results to the cases where X

and Y are uncountable. For instance, X Y [0, 1] is a case of interest
to many probabilists and statisticians. Our first result is nearly a corollary
of the result of Prikry and Sudderth.
We recall from [6] that a p P(X) is strongly finitely additive if there

is a countable partition {X n to} of X so that p(X,,) 0 for all n
to. We also recall that p P(X) is purely finitely additive if it can be
written as a countable convex combination E=h.p. where each p. is
strongly finitely additive. (Actually, in [6], a bounded positive p was shown
to be purely finitely additive if it could be written as a countable sum of
strongly finitely positive measures.) Furthermore one may choose for any
e > 0 such a countable convex combination with h > e.

THEOREM 1.1. Let a P(X) and fl P(Y) be purely finitely additive.
Then z(a, fl) .
Proof. If it is shown that when a and/3 are strongly finitely additive

then z(a,/3) E+/- the theorem will follow in general. To see this, write
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a (1 X)a + ,a2 and

where 0 < X < and where both a and fl are strongly finitely additive.
We have

(1 X)2 + [1 (1

where (a, ) and 2 is some other element of P(X x Y). Since
z E and e > 0 is arbitrary it follows that z is in the norm closure of
E which is E.
For the remainder of the proof we assume that both a and are strongly

finitely additive. We first note that Prikry and Sudderth in the proof of the
Theorem of [25] actually give a proof that when Y N and X is arbitrary
then z(a, fl) E. The only modification necessary in their proof is in the
demonstration that ff g (g0, g) is a strategic measure with g(x, .)
diffuse for all X then z(a, fl) g. To establish this use the strong finite
additivity of a to find a decreasing sequence {Xn: n N} of subsets of X
with empty intersection with a(Xn) 1 for all n N. Set

S (X, x {n})CX x N.

Note that for all x X, S is finite so g(S) 0 by diffusivity of g and
that z(a, )(S) 1. Thus, g L (a, ).

It only remains to establish the result when Y is uncountable. Since
is strongly finitely additive there is a Y N so that the image ’ of

under (defined by fl’(A) (-(A)) for a C N or equivalently by
fN f d’ f f((y))(dy) for bounded f on N), is diffuse. Define

:X x YX x N

by (x, y) (x, (y)). If g (g0, g) is a strategic measure on X x Y
the image g’ of g under is the strategic measure (g0, g’) on X x N
where g(x, .) is the image of g(x, .) on N for all x X. To see this,
calculate as follows for a bounded f on X x N:

A similar verification shows that the image of (, ) under is the reverse
strategic product measure (, B’) on X x N where
under . Since and ’ are strongly finitely additive (, B’) is purely non-
strategic on X x N. If is a strategic measure on X x Y let ’ be the
image of on X x N under . For any > 0 there is an A; C X x N so
that

’(A;) < and z(a, ’)(A;) > l
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If A z (A) then cr(A) < and z(ct,/3)(A) > 1 e. Since e and tr

are arbitrary z is purely non-strategic.

COROLLARY 1.1.1. Let (c, fl) P(X) x P(Y) be such that (a, [3) q
,+/-. One of a or fl fails to be purely finitely additive.

In effect, the question now facing us is whether (a,/3) may be in g+/- if
c or/3 is countably additive and diffuse. The existence of such an a or fl
is equivalent to the cardinality of X or Y being real-valued measurable. It
is consistent with the axioms, ZFC, of set theory that no real-valued mea-
surable cardinals exist and it is consistent that 2s c card[0, 1] be
real-valued measurable [6], [28]. If real-valued measurable cardinals don’t
exist then (a,/3) is in if a and/3 are diffuse. Further investigations of
the question will, of necessity, be more set theoretic and be based in large
part upon material in [6]. Although only partial results will be obtained
these give considerable insight into the problem.
To facilitate discussion in later sections we introduce in the next section

the notion of split faces of the simplex of probability measures on a set.
This notion deals with convex direct sum decompositions. In particular the
notation 2+/-, which should denote the ideal in the Banach lattice of finitely
additive signed measures of bounded variation on 2x r which are singular
to elements of , will be replaced by 2’ 2 tq P(X x Y), the split face
of P(X x Y) complementary to the split face 2.

2. Split faces of

A subset A of a convex set F is said to be a split face [1] of F if A is
convex and there exists another convex set B so that F is the convex direct
sum A 0) B so everyf F is representable uniquely as a convex combination
hfA + (1 h)fn with fA A and fn B. Here, h is unique, fA is unique
if h 5/: 0 and fn is unique if 1 h 0. If A is a split face of F it is a face
[1], so that if {f, f2} C F and 0 < X < is such that hf + (1 h)f2
A then {f, f2} C F. If A is a split face of F then B consists of those points
f F so that if f’ F and 0 < X < 1 is such that f ha + (1 h)f’
for some a A then h 0 and f’ f. B is uniquely determined by the
requirement that F A @ B and is a split face ofF called the complementary
split face to A and is denoted by A’. When A is a split face then A
(A’)’. The intersection of two split faces of F is again a split face of F as
is the convex hull of the union of two split faces or a split face of a split
face of F. Split faces form a Boolean algebra with F as supremum, and
as infimum. The infimum of a finite family of split faces is their intersection
and the supremum the convex hull of their union, [1].

In the simplex P(X) of finitely additive probabilities on X (or for Choquet
simplexes, or K-simplexes as in [2], [5], in general) the Boolean algebra of
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split faces is a complete Boolean algebra. The infimum of an arbitrary family
of split faces is a split face and the supremum of an arbitrary family is the
o--convex hull, o- conv(E), of the union E where for a r-convex hull one
allows countable convex combinations [2], [5], [18]. Given any E C P(X),
there is a smallest split face of P(X) containing E which will be denoted
by sface(E). If E is the singleton {/z} then sface(E) will be denoted by
sface(/x). One has

sface(tz) {v P(X) v <<

and

[sface(/x)]’ {, P(X) v _t_/z} {/x}z (q P(X) [2], [5], [10], [18], [24].

For any E C P(X),

sface(E) tO {sface(/x) /z r conv(E)} .and [sface(E)]’ E" fq P(X).

If E C P(X) we will denote [sface(E)]’ by E’.
There are several characterizations of which convex sets A C P(X) are

split faces due to Lima [24], and Goodearl [18]. If A is a face then is a
split face iff it is o--convex [18], iff it is norm closed [18]. A convex set
A C P(X) is a face if v A whenever v < hi, for some/, A and h
(0, 1.
A face F of P(X) is split iff its linear span S in BA(X) (the signed finitely

additive measures of bounded variation on 2x) is a norm-closed ideal in the
Banach lattice BA(X). In this case F’ has linear span F" S+/- and
S+/-+/- S so F F-- P(X). Furthermore, BA(X) is the /-direct sum
S ) S so that if/, S and/zr S+/- then

IIF + F’II IIll + IIrll [ll, [21, [3], [51.

Most decomposition theorems for measures are split face decompositions
in that they assert the existence of complementary pairs of split faces of
the simplex P(X). The Lebesque decomposition is the prime example. The
Hewitt-Yosida decomposition states that purely finitely additive probability
measures form a split face complementary to the countably additive probability
measures. The Sobczyk-Hammer decomposition theorem says that atomic
and non-atomic probability measures form complementary split faces. The
diffuse and discrete probability measures form complementary split faces.
The main content of [9] is that the nearly strategic measures E form a

split face of P(X Y) whose complementary split face is the purely non-
strategic measures ’ (= E fq P(X)). It is of interest to see how split
faces of P(X) and P(Y) give rise to split faces of E (hence of P(X x Y)).

LEMMA 2.1. Let o" (r0, rl) be a strategy, and, for each x X, let

O’I(X ") )k(X)O’ll(X ") -F" (1 h(x))r2(x, ")
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be a convex combination of probabilities. Let

X f X(x)tro(dx),

fl(x) X(x)X-l,trol f(x)o’o,

f2(x) [1 h(x)](1 X)-, o’02 f2(x)tro,

(r be the strategy ((rol, (rli) and (r
2 be the strategy (fro2, try2). As strategic

measures, o" htr + (1 h)tr2.

Proof. For any bounded g(x, y) we calculate as follows.

y)oq(x, dy )]tro(dx)
y )oq l(x, dy )] h(x)tro(dx )

+ [.Ig(x,Y)Cr,:z(x, dy)][1-(x)]cro(dx)
hf[fg(x,y)cr,,(x, dy)].f(x)cro(dx)

Remark (1) Strictly speaking Lemma 2.1 is valid only if 0 < h < 1.
(2) This lemma will be used extensively not only in this section but

throughout.
(3) If we were dealing with countably additive Markov kernels on a

measurable space care would have to be taken in this lemma to ensure the
measurability of x h(x) and x o-(x, .). See [21].

PROPOSITION 2.2. Let Sx be a split face of P(X), and, for all x X, let
St(x) be a split face of P(Y). Let g be all strategic measures tr with the
strategy tr (tro, trl) satisfying tro Sx, and trl(x, ") St(x)for all x
X. The norm closure of g is a split face of X.

Proof. It is necessary to show that if v <</z " then v . It may
be assumed that/x . To see this let {/x" n to} C converge to
For n to, let v be the part of v absolutely continuous with respect to
/x. It is easily seen that {Vn" n to} converges to v. If it is known that
{v" n to} C then it follows that v .
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Since v <</z it follows that v . Let {v’ n to} C E converge
to v. If, for n to, v is the part of v absolutely continuous with respect
to/x then {v": n to} converges to v. For n to, let (vg, v]’) be a strategy
with strategic measure v. Decompose v(, .) as

x.()v;,(x, .) + (] X.(x)).? (x, ")

with v(x, .) Sv(x) and b’?2(X ") t S(X) for all n. If h, fh,(x) vg(dx)
1 for infinitely many n then v is the limit of a subsequence of (vg, vT).

If this is not the case, h 1 if n is large. We assume that hn - 1 for all
n. Write v as hn(Vg, v) + (1 h)(vg2, v2), using Lemma 2.1. Let (/zo,
/z) be a strategy corresponding to/z with/o Sx and/z(x, .) St(x) for
allx. For eachxwithh,(x) 1, n to and e >0,1etA(n, e, x) C
Y have/x(x, A(n, e, x)) < e and v’2(x, A(n, , x)). If

then

A(n,e) U {x} xA(n,e,x)

/z(A(n, e)) < e and (v’d, v’)(A(n, e)) > 1 e.

Letting e > 0 vary it follows that/z (v02, v). Thus,

v lim (vg, v’).

A similar argument using the decomposition of vg into a part vg3 in Sx and
a part in Sic shows that

v lim (g3, v’) .
COROLLARY 2.2.1. If tr (tro, try), set tro= ytro + (1 y)tro2 where

trOl Sx and o’02 S. For all x X, set

with

oh(x, ") h(x)o’(x, ") + [1 h(x)]tr12(x, ")

O’ll(X ") Sy(x) and

Then o" g’ iff 7" f h(x)tro(x)dx O.

Proof.

O’12(X ") l Sy(X).

Set

o" (O-o, trl), tr
2 (tr0, o’2), tr

2 (O’o2, tr) and

0-22 (0"02 O"12 ).

If h f h(x)tro(x)dx then

tr yho" + y(l’ )k)O"12 -I- (1 ’)/))kO"21 q" (1 y)(1 k)O"22.
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Since {0"12, 0"21 0"22} are all in ’ and 0"11 { , it follows that tr , ’ iff
0 )’ f .(X)O’ol(dX). |

COROLLARY 2.2.2. Let g’x be the split face which is the norm closure of
those strategic measures tr with tro S’x and let g’r be the split face which
is the norm closure of those strategic measures with try(x, .) S’r(x) for
all x X. Then ’ is the convex hull of g’x U g’r.

Remark. The split faces of X which arise in Proposition 2.2 are ubiquitous
but not all encompassing. If tr (tr0, trl) is a strategic measure, the smallest
split face of with tr " of the form described in Proposition 2.2 has

Sx sface(tr0) and St(x) sface(rl(x, .))

for all x X, yet it will be seen that the resulting split face of X may
contain measures in {tr} so # sface(tr).

If is a property of measures in P(Y) we say that a strategy tr

(tr0, trl) is conditionally iff try(x, .) has property for all x X. If
trl(X, ") has property except on a g0-negligible set then tr is essentially
conditionally . Usually will be the property that a measure lies in a
certain face or split face of P(Y). For instance we will use the terms
conditionally diffuse, conditionally discrete, conditionally countably additive,
and conditionally non-atomic. We will say tr is marginally where is
a property on P(X) to denote the fact that tr0 has property . This terminology
extends to the strategic measures induced by the strategies. It is important
to note that a strategic measure is conditionally iff it is essentially con-
ditionally .
COROLLARY 2.2.3. Let Sx be a split face of P(X) and Sr be a split face

ofP( Y). The norm closure ofthose strategic measures which are marginally
Sx and conditionally Sr form a split face of . The complementary split
face is the convex hull of the split faces generated in a like manner by
(a) the marginally S’x strategic measures and (b) the conditionally S’r strategic
measures.

Remark. Although it is true that if 3/is a limit in norm of marginally
Sx strategic measures then yx Sx it is not to be expected that if 3/is a
limit of conditionally Sr measures then yr St. In fact, even if y is a
conditionally Sr strategic measure, yr need not be in St. For instance one
may readily construct conditionally discrete strategic measures whose Y-
margin is diffuse and in fact non-atomic.

COROLLARY 2.2.4. Let / P(X x Y) have X marginal 7x.
(a) 3/is nearly strategic ifffor all e > 0 there is a strategy (tr0, crl)
with cro )’x and [Icr 3/[I < e.
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(b) 3/ is purely non-strategic iff for any strategy r (fro, trl) with
O’o Yx one has y _k or.

Proof. (b) If 3’ is singular with respect to all strategic measures tr with
tro Yx then y is singular with respect to all strategic measures with
tro f(x)yx with f a simple function with f f(x)dyx 1. To see this let
b max(f) and write

1 b- lb-f(x)-axTx +
b b 1

yx yx.

For any choice of cry(x, .), as strategic measures,

(Yx, o"1) -(f(x)yx, o"1) +
b Yx, o"1

so y_l_(f(x)yx, o’1). If tro << Yx there exists a sequence {f} of simple
functions so that limn-.,oollf(x)yx r011 O. It is easily checked that

limll(f,(X)yx, o-) (tro, oq)ll O.

Since y +/- (f(x)yx, o’) it follows that y +/- (tr0, try). Since (tro, o’) is an
arbitrary strategy marginally absolutely continuous with respect to yx and,
since y must be singular with respect to any strategy marginally singular
with respect to yx, y is purely non-strategic.

(a) There is a sequence of strategic measures r (try, try) so that

limn_ollo’g yxlJ 0

hence the part /z of tr absolutely continuous with respect to yx must
satisfy limn--,ooll/- Yxll 0. As a result, if

O"

then limoll yll 0. Thus, it may be assumed that tr << Yx for all
n. Furthermore, use of Bochner’s finitely additive Radon-Nikodym Theorem
allows us to suppose that tr fn(x)yx for a simple function fn. From the
fact that

limn--,llf(x)yx- Yxll 0

it follows that we may replace fn(X)yx by 7x which establishes (a). |

COROLLARY 2.2.5. If y there is, for e > 0, a strategy tr (tro, trl)
with Yx tro, y << tr and Iltr yll < e.

Proof. Find strategies o-" (Yx, cry’) so that [Io’" Yll < e 2". Let

Yx, 2"-"o’’
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It is immediate that, as strategic measures, o- 2_- 2-cr so liar yll <
e. Since limn__,ootr "y in variation norm it is well known that 3/<< =2-nn. I

Let cr (or0, O’1) be a strategy. Let v (Vo, v) be another strategy
with Vo << tro and v(x, .) << try(x, .) for x X. For r [0, o) let

v’(x, .) [rtr(x, .)]/ v(x, .) and (x, .) v(x, .) v’(x, .).

Define {v’, r} C P(X X Y) by setting, for bounded f,

and

ff(x,y)dt"= f[ff(x,y)vr(x, dy)]vo(dx)
ff(x,y)d’= f[ff(x,y)(x, dy)]vo(dx).

For each r, v < r(,o, try) where (v0, try) is considered as a strategic measure.
Since (Vo, cry) << tr, v" << tr. As r , v" increases to v < v and
t, << o’.

PROPOSITION 2.3. V is the part of v absolutely continuous with respect
to cr and v v is the part of v singular to

Proof. It is only necessary to show that (v v
It is convenient to work in the Stonian setting. 2r is considered as the

clopen algebra of flY. For any/x BA(2r), denotes the corresponding
Radon measure on/3Y. For each x X let h(x, .) be a Radon-Nikodym
derivative of l(X, ") with respect to ff(x, .). For any r [0, ),

r(x, ") [h(x, ")/ r]ffl(X, ") and

’(x, .) [h(x, .) h(x, .)/ r],(x, .).

For r [0, o) let

A(x, r) {z e flY" h(x, z) < r}.

Since r(x, AC(x, r)) < (x, AC(x, r)) < 1,

(x, A(x, r))> 1 r-.
Also,

g’(x, At(x, r)) IIzgll for x X.

For e > 0 find A(x, r, e) C Y so that, considered as a clopen set in flY,

(x, A(x, r, e)AA(x, r)) < e and ’(x, AC(x, r, e)AAC(x, r)) < e.

SetA(r, e) C X Y equal to t.J{{x} A(x, r, e) x X}. We have
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r(a(r, ))

We also have

cr(x, A(x, r, e))tro(dx)

[try(x, A(x, r)) eltro(dx)

[1 r- eltro(dx) 1 r-1- e.

tl,r(Ac(r, e)) J tZrl(X, A(x, r, e))vo(dx)

> l-(llll- e)vo(dx) IItll- ,
Select r so that r -1 < e and so that II/z (v v)l[ < e. Then,

(A(r, )) 1 2 and

(v v)(AC(r, e)) gr(ac(r, e)) e [rll 2e v vll 2e.

Since e is arbitrary (v v) & .
Let v and o- be as above. For any r let fr(X) IIVI(X, ")11, The norm of
is f f(x)vo(dx). If r > 0 then f(x) > 0 for all r and x. If v _1_ tr then

f(x)dx 0 for all r.

LEMMA 2.4. I P(X) is strongly finitely additive iff there is a strictly
positive f on X such that f f(x)tx(dx) O.

Proof. Let such an f exist. If

>f> for nN =oo
n-1

then {An n N} is a partition of X into/x-negligible sets so/z is strongly
finitely additive. Conversely, if/z is strongly finitely additive and {An n
N} is a partition of X into/z-negligible sets one may set f 1In on A to
obtain a strictly positive f with f f(x)dx 0.|

COROLLARY 2.3.1. (a) If, in Proposition 2.3, v +/- tr then Vo is strongly
finitely additive

(b) If tro is countably additive then v <<

Proof. (a) f is strictly positive for r > 0 and f f(x)vo(dx) O.
(b) If tr0 is countably additive so is v0. As a result, since limr-,fr 1

the monotone convergence theorem implies that IIvll 1 so v v. |

We call a/x P(X) molecular iff it is a finite convex combination of
{0, 1}-valued measures. A/z P(X) fails to be molecular iff it has an
infinite range iff inf{/x(A) /z(A) > 0} 0 [18].
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COROLLARY 2.3.2. Ifcro is strongly finitely additive and tr is conditionally
non-molecular there is a v (tro, v) conditionally absolutely continuous
with respect to ty so that v +/-

Proof. Let f be a function strictly positive on x so that

f f(x)tro(dx) O.

For each x let A(x) C Y satisfy 0 < trl(X, A(x)) <<- f(x). Let

A LI {{x} x A(x):x X}

so 0 < or(A) f try(x, a(x))tro(dx) < f f(x)tro(dx) 0. Let

vl(x, ") XAx)[oh(x, a(x))l-tr(x, ") << o’s(x, ").

Then v(A) f v(x, a(x))tro(dx) f 1 tro(dx) 1. Thus, v +/- tr. |

COROLLARY 2.3.3. If ro isn’t countably additive and tr is conditionally
non-molecular there is a v (Vo, v) marginally absolutely continuous with
respect to tro and conditionally absolutely continuous with respect to tr so
that v +/-

Proof. There is a Vo << tr0 which is strongly finitely additive. Apply
Corollary 2.3.2 to (Vo, try). |

If ty isn’t conditionally non-molecular there is a set A C X so that
Cro(A) > 0 and o’l(x, .) is molecular for all x A. Let

f(x) inf{o-(x, E) o-(x, E) > 0} if x A

and set f(x) 0 otherwise. Let

>f> fqA
n 1

so {An n N} partitions A.

COROLLARY 2.3.4. Suppose that tro is purely finitely additive.
I tro(An) < ro(A) then there is a v (v0, Vl) marginally absolutely(a) .fXn=

continuous with respect to tro and conditionally absolutely continuous with
respect to tr with v +/-

(b) IfX= 10"o(an) O’o(a) 1 then any v (Vo, v) marginally absolutely
continuous with respect to tro and conditionally absolutely continuous with
respect to tr satisfies v << or.

Proof. (a) Let/z X=(Xo’0) and let L62 XAO’O L61 Since/2(Ac)
0 and /x2(A) # 0 we may normalize /z2 to get Vo /z2 [/x2(A)]-P(X). Since /z2(An) 0 for all n it follows that f f(x)dvo 0. Since
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oh(x, ") is molecular for x A there exists an A(x) C Y with oh(x, A(x))
f(x) > O. Let

A tO {{x} x A(x) x U_A}

and let v(x, .) XA(x)[f(x)]-lO’l(X, "). As in the proof of Corollary 2.3.2,
tr(A) 0 and v(A) 1 if v (v0, v).

(b) Let x A and let v(x, .) << try(x, ’). Write try(x, .) as
where each is an ultrafilter and > k2 k f(x). Then Vl(X, ")
is the convex combination 5; YX,. If E is in 0// but in no other a// then

v(x, E) /i 1 <<- nob(x, E).

As a consequence, v(x, F) < no’(x, F) for any F C Y. As a result, if
B C A, Ythen v(B) no’(B). That is, onA, Y, v << tr, hence,
on (I,.Jnm=l An) X Y, v << o’. Fix e > 0. Pick m so that v(Xl,3nm=An) < e,.

Pick < em- so that 5o(E) < implies v0(E) < e. Let B C X Y with
o-(B) < . We have

SO

We also have

<m<e.

’(B(n__ An X Y)) < (gn__ An)
Thus v(B) < e + e 2e. That is, v << tr. |

Remark. If v (v0, v) is a strategy marginally absolutely continuous
with respect to the strategy cr (tr0, try) it is possible that as strategic
measures v << tr with v(x, .) not absolutely continuous with respect to
try(x, .) for any x. If v(x, .) is the part of v(x, .) singular to try(x, ") we
must have, in this case, f live(x, ")llv0(dx) 0,

3. Atomic and non-atomic elements of

In Corollary 2.2.5 it was shown that any y is absolutely continuous
with respect to some tr (tro, cry) with tro yx. When yx is molecular
we show that y is strategic in Corollary 3.4.2. In fact if 5 is any {0, 1}-
valued element of P(X Y) either is strategic or it is purely non-strategic
(Corollary 3.4.1). These results have been obtained for X N by Schervish,
Seidenfeld and Kadane [22]. Along the way we characterize which cr
(tr0, try) are non-atomic.
The results of this section dealing with strategic measures tr which are
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conditionally {0, 1}-valued and marginally {0, 1}-valued are essentially dealing
with the construction of ultrafilters on the product X Yfrom an ultrafilter
on X and a family of ultrafilters on Y, hence is closely related to certain
constructions in Comfort and Negrepontis [12]. These constructions may
be of some interest to logical model theorists in the study of ultrapowers
or others whose main interests are ultrafilters rather than measures.

PROPOSITION 3.1. If tr (tro, try) is a marginally non-atomic strategic
measure or is a conditionally non-atomic strategic measure, then tr is a
non-atomic measure.

Proof. We only establish the proposition in the harder case where tr is
conditionally non-atomic. Fix e > 0. It is easy to see that if n > 2/e and
/x is non-atomic there is a partition {A(x), A(x)} of Y so that
try(x, Aj(x)) < e for all j and each x. Set Aj C X x Y equal to t.J {{x}
A2(x), x X} for all j. It is easily verified that tr(A2) < e for all j. Since
s > 0 is arbitrary, tr is non.atomic. |

Via Lemma 2.1, any strategic measure decomposes into a marginally
non-atomic part, a marginally atomic and conditionally non-atomic part,
and a marginally atomic and conditionally atomic part. Can the marginally
atomic and conditionally atomic part be a non-atomic measure? The answer
is yes. We let tr (o’0, try) be such a measure and let oh(x, ") E=
h(x)tr(x, .) where each try(x, .) is a {0, 1}-valued measure, h(x) > >
h(x) > 0, and = X(x) 1.

PROPOSITION 3.2.
iff tr is non-atomic.

Let tr (fro, try) be as above. Then f h(x)tro(dx) 0

Proof. Suppose that f h(x)ro(dx) 0. For any n, o’0{x h(x) w
l/n} 0. Fix n and suppose that X(x) < 1In for all x.
For each j, let m(x) be the last m, possibly oo, so that Em_- h(x) < j/n.

As a result,

J-" {X,(x) 1 < < m(x)} > J-"

and

1
"4- ki(X ) E {,ifX) m:(x) + 1 < < m+,(x)}

n

1
>--h(x) forallxX.

n

Pick a partition {A(x), ..,., A(x)} so that

try(x, Ay(x)) 1 if m_(x) < < mj(x)
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and

We have

o-(x, A(x)) 0 if m(-x)
l--1 <i<ml(x) and j l<n

o-(x, Aj(x)) {h,(x) my_(x) < < mi(x)}

+ X {i(X)O’(X’ Aj(X)) m,,(x) < j}

-+X(x) +X(x)

3
o

Set A Ux {x} x A(x) for j 1, n. We have o-(A) 3/n. Since n
is arbitrary, o" is non-atomic.

Conversely, if )t f It(x)o-(dx) > 0 let v be the strategy (v, v) with
v(x, .) o’l(x, ") for all x and v hi-h(x)o-. By Lemma 2.1, o-

Xv + (1 )t)T for some strategic measure T. v is conditionally {0, 1}-
valued and v is atomic since o- is atomic. Since v, is a countable convex
combination of {0, 1}-valued measures, so is v. Thus, if f h(x)o’(dx) # 0
then o" is not non-atomic.

If a strategic measure, r ((r0, O"1) is to be atomic then, by Lemma 2.1
and Proposition 3.1, it may be taken to be conditionally and marginally
atomic. In this case, write

O’I(X’ ") E hi(x)’(x, ")
i=1

where each o-(x, .) is {0, 1}-valued and {Xi(x)} is a decreasing sequence in
[0, 1] summing to 1. Write X f X(x)o’o(dx) and X X__l X and, if

-l X(x)ro, r). Each r is atomic and wehi :P O, let o- be the strategy
may write

O" E Xi O’i "JI- (1 h)o"
-lXi(X)O’O ro if X O. Iffor some o" X. If O’o is {0, 1}-valued then h

h 1 then o- is atomic.

PROPOSITION 3.3. Let cr (r0, o"1) be a marginally atomic, marginally
countably additive and conditionally atomic strategic measure. Then cr is
atomic and equal to X.--1 hi(ri.

Proof. Since Xi% hi(X) 1, the monotone convergence theorem guar-
antees that h 1.

PROPOSITION 3.4. Let or, (o’0, o"1) be a conditionally atomic and marginally
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atomic strategic measure. Then ,i1 hiO’i is the atomic part of tr and
(1 h)tr is the non-atomic part.

Proof. Assume that ro is {0, 1}-valued. We need to show that tr is non-
atomic. If h 1 the assertion is vacuous. If h < 1 choose an integer m
and an e > 0 so that e < 1/2m and e < (1 X)/m. Choose an integer n
so that n-Eg__ hg > h e and, as a result, h < e. Since tro is {0, 1}-valued,

i=n+l

Xi(x)> 1 (Xl + + Xn)>l h

and hj(x) < e for O’o-almost all x and all j > n. We will suppose this holds
for all x.
For each x let m(l, x) be the first integer k with

Then

j=n+ m i=n+

ki(X).

m(l,x)

j=n+ m i=n+

and 2{h:(x) m(l 1, x) < j < re(l, x)} is between

L X(x)- Xn(X) and 1. X(x)
m i--n+ m i=n+

Since tn(X) < , < (1 h)/m it follows that

(h(x) m(l 1, x) < j < m(l,x)} > 0.

Let tot(x, .) E{h(x)o-(x, .) m(l 1, x) < j < m(l, x)} so

Ilto/(x, ")11 :(X(x) m(l 1, x) < j < m(l, x)}.
Set v(x, .) tot(x, .)llto/(x, .)11- and let Pl be the strategy (tro, v). Set

tot f IIo(x, ")llr0(dx).
We have

1 -h -h
e tot "" e for all I.

m m

We write tr as ni= hiO’i "" )= totlgl and note that (1 h)tr < E__ tOlVl.
For any x let

{A(x), An(x), B(x), Bin(x)}
be a partition of Y such that

i(x, Ai(x)) 1 for all and v(x, Bl(X)) > 1 e for all I.
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SetA t_Jx{X} x Ai(x) for all and Bt Ux{X} x Bl(X) for all 1. Consequently,
vt(A) < e for all and d(Bj) < e if j I. We have, for any i,

(1 k)o’(ai) E tolll(Ai ) -" E ll I, < 1

l=t l= 2m

We have, for any j,
m

(1 X)ty(nj) < E tolvl(nj) < E tOll?" q" tOjl"J(nj)
/ffil lCj

1 2
=2e +--<--.

rn rn

Since m is arbitrary, tr is non-atomic.
If fro is not {0, 1}-valued, let it be the countable convex combination

Xj%O/jO’o of the {0, 1}-valued {trio}. Let tr
j (trio, trl) and tr

ji

(trio, trl) for all i, j. Write

E o’JOr hr + 1
i=l

where tr is the non-atomic part of tr and

h f X(x)o’Jo(dx) for all andj.

We have h X%l /h for all i. The atomic part of tr is

E ")tj E kj’’ji
j=l i=1

and the non-atomic part is

1 t.-- hji O’jO"

The norm of the non-atomic part is

i--1 jffil i--I

1 ")tjhji

=l--Ehi.
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The norm of the atomic part of cr is E h. Since E= hcr has norm__
h and is atomic, it is the atomic part of tr, and tr is the non-atomic

part. |

COROLLARY 3.4.1. If y is a {0, 1}-valued element of E it is strategic.

Proof. If 3’ is not in E it is absolutely continuous with respect to a
strategic measure (o’0, o-) which, by Lemma 2.1 and Proposition 3.1, may
be taken to be marginally and conditionally atomic, for y is singular to all
non-atomic measures. Writing (tr0, o’) E hiO’i -" (1 h)cr, as in Proposition
3.4, it follows that Y << O’i for some i, hence 3’ cr for some i. |

COROLLARY 3.4.2. Let y be an atomic element of E such that 3x is
molecular. Then ), is strategic.

Proof. Suppose that Yx is {0, 1}-valued. Write y as E hiy where each
Yi is {0, 1}-valued. We have (yi)x yx for all i. Each Ti hence is
strategic, corresponding to a strategy (Yx, Y’). Y is the strategic measure
for the strategy (Yx,

If Yx ET-- X,,yv, where each y is a distinct {0, 1}-valued measure, find
a partition {A, An} of X so that T(A,.) 1. On A x Y, h-T is a
nearly strategic measure with (h-y)x Yv. It is, in fact, strategic and
corresponds to a strategy (Yr, Y) on Ai x Y. Let y(x, ") y(x, ’) if
x Ai. Y is the strategic measure on X x Y for the strategy (3’x, Y). |

COROLLARY 3.4.3. If there is a partition of X into atoms for Yx (for
instance if ),x is countably additive and atomic) then y is strategic.

Proof. The proof of Corollary 3.4.2 only required the existence of a
partition {A} so that if Yx E__ X,yr where each )’r was {0, 1}-valued
then T(A) 1 for all n.

COROLLARY 3.4.4. /f (fro, Oh) is a conditionally discrete and marginally
atomic strategic measure then there exist a sequence {fn} offunctions from
X to Y and a decreasing sequence offunctions {hn(’)} offunctions from X
to [0, ) so that if f hn(x)tro(dx) then the atomic part of tr is given
by E= h,o- where

f g(x, g)dtrn= f g(x, fn(X)))tro(dx) for allg.

X, is defined as before and fn(X) is the y in Y with o-(x, .)

COROLLARY 3.4.5. Iftr =(tro, o’1) is a conditionally discrete and marginally
countably additive strategic measure then tr = hicr where o"i
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(Xi(x)X/-tr0, o’), where each hi f ki(X)O’o(dX). Each (r gives measure 1
to the graph of some function f X ---> Y.

4. -additivity of strategic measures

We start this section with a characterization of which strategic measures
are countably additive and which are purely finitely additive.

PROPOSITION 4.1. Let o" (o’0, try) belong to .
(a) (r is countably additive iff it is marginally countably additive and

conditionally countably additive.
(b) (r is purely (strongly)finitely additive if it is either marginally purely

(strongly)finitely additive or conditionally purely (strongly)finitely additive.

Proof. (a) is nearly immediate.
(b) Suppose that (r is conditionally strongly finitely additive. For each

x X let {A(x)} be a countable partition of Y’ into o-(x, .)-negligible sets.
If A t3x{X} x A(x) for n N then {A} is a partition of X Y into
(r-negligible sets, so o- is strongly finitely additive.

If each try(x, .) is purely finitely additive let e > 0 be given and let

try(x, .) h(x)o’(x, .) + [1 )k(x)]o’12(x ")

where O’II(X ") is strongly finitely additive and h(x) > 1 e. As in Lemma
2.1, write o- htr + (1 h)o"2 where (r (h(x)tro, O’l), o-2 ((1
X(x))o’0, 0"2) and X f h(x)dtr0. 0- is strongly additive and II(r (rill <
e. Since e is arbitrary, o- is purely finitely additive. This establishes the
hardest parts of (b). The rest of the assertions are easily verified. 1

If r is an infinite cardinal number and/z is a finite positive measure then
/z is said to be r-additive iff X{/x(A,) a F} /z(t.J{A, (x F}) for
any disjoint family {A, cz F} with II’l -< . The r-additive elements of
P(X) form a split face of P(X) [6]. The elements of the complementary split
face are called purely non-r-additive probabilities [6]. If there is a partition
of X into r or fewer/z-negligible sets then the-positive measure/z is called
strongly non-r-additive and is purely non-r-additive.
A cardinal r is said to be Ulam real valued measurable (URVM) iff there

is a countably additive diffuse probability/z on a set of cardinality r. If/z
is {0, 1}-valued then r is said to be Ulam measurable (UM). If/z is a diffuse
probability on r which is r-complete then r is said to be real valued
measurable (RVM), and if/z is {0, 1}-valued then r is said to be measurable.
The first URVM is RVM and the first UM is measurable. Any cardinal
larger than a URVM (UM) is again a URVM (UM). It is consistent with
ZFC that no URVM exists. It is also consistent that 20 be a RVM. How-
ever, no RVM can be a successor cardinal so this violates the continuum
hypothesis. Any measurable cardinal r is inaccessible in that if h < then
2 < . In fact must.be preceeded by an inaccessible number of inaccessible
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cardinals. A measurable ideal cardinal (MIC) is a r so that there is a set
X with Isl admitting a diffuse probability/z with , a r-complete ideal
hence, if/z is countably additive, with/z r-complete. Any RVM is an MIC
and any MIC larger than 2s is a measurable ideal cardinal. Solovay [28]
shows that if existence of MIC’s is consistent then so is the existence of
measurable cardinals. Baumgartner, in unpublished notes, shows that if it
is consistent that an MIC exist then it is also consistent that they exist yet
no RVM exists. Solovay [28] shows that it is consistent that an RVM exist
yet no measurable cardinal exists.

In [6] it is shown that hp(/) is a countable sum of RVM’s or is 016]. A
positive finite measure/x is purely non-r-additive iff it is a sum of countably
many strongly non-r-additive positive measures iff it is a countable convex
combination of strongly non-r-additive measures iff for all e > 0 there is
a strongly non--additive v, a h > 1 e, a v0 with/z hv + (1 h)Vo
[6]. Weaker than r-additivity is r-completeness. If/x is a finite positive
measure then/x is r-complete iff it is h-additive for all cardinals h <
Any finitely additive measure is N0-complete. Countably additive measures
are the Nl-complete measures. In general, if r + denotes the successor to
r then/x is r /complete iff it is r-additive. The r-complete/z in P(X) form
a split face of P(X) which is the (decreasing) intersection of the split faces
of h-additive probabilities for h < r. The complementary split face of purely
non-r-complete probabilities is the tr-convex hull of the face which is the
union of the purely non-h-additive probabilities as h ranges over the cardinals
less than r. Here, purely non-h-additive probabilities may be replaced by
strongly non-h-additive probabilities since a it-convex hull is involved.
For diffuse measures/x there is a least cardinal h,(/z) so that/x is strongly-

non-h,(/x)-additive. This is the least cardinal number of a partition ofX into
/x-negligible sets [6]. There is a least cardinal h,(/x) so that/x is purely non-
hp(/z)-additive [6]. h,(/z) < h(/x) < IxI Neither h,(/x) nor h,(/z) are limit
cardinals [6]. There is a unique cardinal h(/z) so that/x is r-complete but
not r +-complete. We have h(/x) < hp(/x) with h(/x) h,(/x) r if and
only if/x is purely non-r-additive but is r-complete. The set of/x P(X)
with h,(/x) h(/x) r form a split face of P(X). All such split faces are
disjoint and the o--convex hull of these faces is the split face of all diffuse
measures. Notice that the discrete measures are those which are r-additive
for all cardinals r. h(/x) > No for any diffuse/z. Of course h,(/z)
h(/x) if/x is a diffuse r-complete probability on a set of cardinality r.
Conversely, if r h,(/z) h,(/z) there is a surjection of X onto the
pointset of r so that the image measure is r-complete. The cardinal
is shown in [6] to be an at most countable sum of MICs or to be 0.

It is possible, if an RVM exists, for a probability/x to be non-countably
additive yet to have Ac, be countably additive.

Example 4.1. Let r be an RVM and let /3 be a diffuse r-complete
probability measure on Y where YI . Let cz be a discrete probability
on X N with a(n) > 0 for all n N and let a2 be a diffuse probability
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on X. Then

1

is not countably additive yet dV, is countably additive. To see this note
that from Proposition 4.1, tr(a2, /3) is purely finitely additive so /x isn’t
countably additive. Now suppose that {A(n) n N} is a sequencein dV,.
We have fl((A(n))m) 0 for all rn N since Otl({m}) > 0 for all m N.
Thus,

0"- [(n= (A(n))m) [(Im__l a(n)]m).
From this it follows that

Thus, U-I A(n) N. which establishes countable additivity of N..
PROPOSITION 4.2. Any diffuse tx P(X) admits a unique decomposition

as a countable convex combination E{XK/XK K a cardinal} where hp(IxK)
x(z) .

Proof. If hp(/x) hc(/x) K set X 1 and/ /x. Otherwise K

hc(ld6 < hp(t). For h < K, # is h-additive yet # isn’t K-additive. Write

h + (1 h)’

where g’ is K-additive and g is purely non K-additive. We have h(g)
h() K since g is h-additive for h < K. We have

x,() x,(’) x(’) > x().

Replace # by #’ and proceed by induction to obtain h,, and #, for
between K and hp(#). I

COROLLARY 4.2.1. If tZ is {0, 1}-valued then hp(tx) h(tz).

COROLLARY 4.2.2. If h is a cardinal number then X{h/x K < h} is the
purely non-h-additive part of/x, E{hK/XK K > h} is the -additive part of
Ix, ,{htx K > } is the h-complete part of tz and i,{hdx K < } is the
purely non-h-complete part of

Degrees of additivity and of completeness are defined for ideals and for
filters analogously to the corresponding definitions for measures. For instance
an ideal (filter) is K-additive iff the union (intersection) of any subfamily of
cardinality at most equal to K is an element of the ideal (filter). An ideal
(filter) is K-complete iff it is h-additive for
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The definition of r-completeness of an ideal or filter here is that of r-
additivity in [6] and elsewhere but is now consistent with that for measures.
For countably additive probabilities/z, the degree of additivity of/x is that
either of its ideal , of negligible sets or, dually, that of its filter F:, of sets
of measure 1. This is a well known fact which we record as a lemma and
shall prove.

LEMMA 4.3. Let tx be a countably additive measure and r an infinite
cardinal number. Then tx is r-additive (r-complete) iff W is r-additive
(r-complete).

Proof. Let {A a F} be a disjoint collection in 2x. There are at most
countably many members of this collection with/z(A) > 0, say

LetF’ {a F a aalli}. We have

p. A, p.(A,) + {A" F’}.
i=l

If W. is IF’I additive then

A #(A,) {#(A) a Ft.

This suffices to establish the lemma.

PROPOSITION 4.4. Let tr (tro, try) be countably additive.
(a) tr is marginally and conditionally r-additive iff tr is r-additive.
(b) If tr is marginally or conditionally purely (strongly) non-r-additive

it is purely (strongly) non-r-additive.
(c) If tr is strongly (purely) non-r-additive and v is the normalized

r-additive part of tro then (v, try) is conditionally strongly (purely) non-r-
additive.

Proof. To establish (a), it must first be shown that if cr is marginally
and conditionally r-additive then 3c is r-additive. Let {Ax h < r} be
a family in 3c indexed by r and let A t.J {Ax h < r}. We must show
that o-(A) 0. For any X < , f try(x, (Ax))tro(dx) 0 so tr(x,(A))
0 for tr0-almost all x. Since (r0 is r-additive there is an N ( W so that if
x X\N then try(x, (Ax)) 0 for all X < r. Since try(x, .) is r-additive
try(x, (A)x) 0 for x X\,N. As a result,

,r(A) r(x, (A.L),ro(dx) O.

Thus, tr is r-additive if it is marginally and conditionally r-additive.
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Conversely, assuming (b), if o- is -additive, tr0 can’t have a non-trivial
purely non--additive part, nor, using Lemma 2.1 can it be true that oh(x, .)
has a non-trivial purely non--additive part for a set of x with tr0 positive
measure.

(b) Suppose that o- is conditionally strongly non--adttitive. For each
x X let {Ax(x) h < } be a partition of Y into x sets, some of which
may be , each of which is O’l(X, .)-negligible. Set A t.J {{x} x Ax(x)}
for all h < to obtain a partition of X Y into sets in r,. Thus, tr is
strongly non-s-additive if it is conditionally strongly non--additive. An
easier demonstration shows that tr is strongly non--additive if it is marginally
strongly non--additive.
Suppose that o- is conditionally purely non--additive. For an > 0 and

each x X, let O’I(X ") h(X)O’ll(X ") "" (1 h(x))trt2(x, ") where h(x) >
1 e and tr(x, .) is strongly non-r-additive. By Lemma 2.1, the strongly
non-r-additive strategic measure (tr0, o-) is within e of tr in variation norm.
Since e is arbitrary, o-is purely non-r-additive. Similarly, if tr is marginally
purely non-r-additive then it is purely non-r-additive.

(c) Suppose that o- is purely non-r-additive. Then (v, try) is also purely
non-r-additive. Thus we may assume that v tr0. If tr is purely non--
additive then it is impossible that, for a set of x with positive o’0 measure,
o-(x, -) has a non-trivial r-additive part. Thus, tr is conditionally purely
non-r-additive.
Now assume that tr is strongly non-r-additive. Let {A h < r} be a

partition of X x Y into sets in c. For each h < ,
oh(x, (A,),)O’o(dx) 0

so try(x, (Ax)) 0 for go-almost all x. Since tr0 is r-additive we have, for
g0-almost all x ands for all h, oh(x, (Ah)x) 0. Thus, for g0-almost all x,
O’l(X, ") is strongly non-r-additive. Thus, if tr is strongly non--additive .it
is conditionally strongly non-r-additive. |

COROLLARY 4.4.1. (a) tr is r-complete iff it is marginally and conditionally
r-complete.

(b) Iftr is marginally or conditionally purely non-r-complete, it is purely
non-r-complete.

(c) If tr is purely non-r-complete and v is the normalized r-complete
part of tro then (v, oh) is conditionally purely non-r-complete.

Let Ix be countably additive and diffuse. For each cardinal > N0, let
h/x be the r-complete purely non-r-additive part of/z so/z, P(X) and

# 0 for at most countably many r. There is a partition {A r an infinite
cardinal} with h/x equal to/z on A for all r. This is a consequence of
the Hahn decomposition theorem. We shall set A if 0 and call
A the r-complete purely non-r-additive set for/x noting that it is unique
modulo dV,.
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PROPOSITION 4.5. Let (tro, o’1) cr be a countably additive strategic
measure. For an infinite cardinal let Ax C X (Al(x) C Y) be the
h-complete purely non-h-additive set for ro (try(x, .)). For an infinite cardi-
nal c

A {(x,y)’xA,yA(x),h>}

U {(x, y) x a, y A(x), h > }

is the c-complete purely non--additive set for or.

Proof. It follows from Proposition 4.4 and Corollary 4.4.1 and their
proofs that the restriction of (r toA is r-complete and purely non-r-additive.
The complement of this set is the union of

{(x, y) x ax, X < r} E, {(x, y) y a(x), X < to} E2
and

E3 {(x, y) x A,,, X, > , y A(x), h > }.

On E1 t3 E, r is purely non--complete, and, on E3, r is -additive. Thus,
A. is the -complete purely non--additive set for r. 1

5. Uniform strategic measures

A diffuse measure on X is said to be c-uniform if it annihilates all
subsets of X of cardinality smaller than . Denote by X< the ideal of
subsets of X of cardinality less than c. z is c-uniform iff X< C f,. If

IxI then tz is said to be a uniform measure on X if it is -uniform.
The uniform ultrafilters on X are those ultrafilters whose dual maximal
ideals contain X<lxl 12]. The -uniform ultrafilters ll are those whose dual
maximal ideals contain X<" [12]. If we regard/iX as the Stone space of 2x

then a// is a closed subset of fix corresponding to the filter dual to the
ideal X<’. A measure/z is -uniform iff the measure corresponding to it
under the Stone correspondence has supp() C

If tx is any finite diffuse measure then it is N0-uniform. There is a least
cardinal number c of a set A with ix(A) > 0. This is the largest cardinal
so that tz is -uniform. For this cardinal, there is a maximal disjoint collection
of sets A with IAI and tz(A) > 0. This collection is at most enumerable.
The unionA of this family has the property that if IAI then Iz(A\A)
0. Furthermore,/z, when restricted to A, is uniform and, when restricted
to X\A, is / uniform. If we let
to A,, we may find a smallest cardinal > of a subset of A, with
positive/z measure and a maximal set A, C A,, of cardinality c2 on which
/z is uniform. Proceeding by induction we obtain an increasing sequence
{c n N} of cardinals, a disjoint, sequence {A n N} of sets with

A.I each of which is maximal in that tz is uniform on it. On
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X +-uniformOn= 1A, (where m is allowed and ro supr), t is. tm
or o-uniform if m 0. Set/.’ /. -_/., where/, is the restriction
of/x to A, so /’ is ,-uniform. Replacing/. by/’, one may repeat the
preceding procedure getting a new sequence of cardinals {to, +, ...} and
a new disjoint sequence {Ao, A./, ...} so that [A./[ ro+, ’ is uniform
on A./, and A./ is maximal in this regard. Furthermore Ao/ is disjoint
from {A, A,, .} ifj > 1. Proceeding by transfinite induction, we have
this proposition.

PROPOSITION 5.1. Let I be a diffuse measure on X. There is a countable
ordinal So, an increasing sequence {K a < s0} of cardinals, and a
corresponding sequence {/K a < s0} of positive measures on X so that
/ X {/K x < a0} and so that each I is K-uniform. There is a
corresponding sequence {A a < s0} of subsets ofX so that

for all a < So and so that A f) Ao fk ira > and a is a successor
ordinal (or for any a, if tx is countably additive). Furthermore, tz is the
restriction to A of tx X {txo < a} for a < ao.

Remark. We may call this proposition the "uniform decomposition
proposition" since each/z is the ,,-uniform purely non-r-uniform part
of/x. The h-uniform part of/z is

X{ >x}

and the purely non-h-uniform part of/ is

X{ < x}.

If a is a limit ordinal less than 0 and # sup{a fl < }, then A is
disjoint from Aa if fl < . In particular, if the cofinality of isn’t R0, or

isn’t a limit cardinal, this is the case. If {A < 0} is disjoint it
will be cMled the uniform decomposition partition for
is the purely non--uniform pa of and 2 is the purely non-2-uniform
pm of then 2 . Hence, to deteine theuodecomposition
of it is only necessary to know the purely non--uniform pas of for
all infinite cardinMs . It is useful to know that a measure is purely non-
-uniform for some iff

(A) sup{(A): A C A, IAI
iff f d sup{A f d IAI < } for any bounded function f. These
suprema are maxima if the cofinality of k is not

COROLLARY 5.2.1. In order that Ix be purely non-h-uniform for some
cardinal it is necessary and sufficient that for any A C X with I(A) >
0 there exist an A’ A< with I(A’) > O.
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Proof. Suppose that there is an A with/z(A) > 0 yet with Iz(A’) 0
when A’ C A with IA’I < X. Then /z is h-uniform on A hence isn’t
purely non-h-uniform. Conversely, suppose that for all A with/z(A) > 0
there is an A’ C A with/z(A’) > 0 with IA’I < X. This implies that/z
E {/z a < h}. Else there is > h occurring in the uniform decomposition
of tz. For A we have/z(A) > 0 yet tz(A’) 0 for all A’ C A with [A’I
< h. This contradicts our supposition so/z E {tz < h} is purely
non-h-uniform. |

For o- (o’0, cry) and an infinite cardinal let h(r) denote the diffuse
purely non--uniform part of (r0 and, for x X, let h(x)(r(x, .) denote
the diffuse purely non--uniform part of o-(x, .) where (r) and (r’(x, .) are
diffuse purely non--uniform probabilities.

PROPOSITION 5.2. Let K be an infinite cardinal number and let (r

(O’o, (r) be a diffuse strategic measure. The purely non-r-uniform part o"
of o" is the measure described in one of (a), (b), (c) or (d).

(a) If o" is marginally discrete and conditionally diffuse then (r is

x(X(x)X; (r0, o-)

where Xk f Xk(x)(ro(dx).
(b) If (r is marginally diffuse and conditionally discrete then (r

X((rg, (r).
(c) If o" is marginally diffuse and conditionally diffuse then (r is the

supremum of the measures 0-"’ where

0"’"

with h,, f h,(x)o’g(dx) for a < if is a limit cardinal and (r is (r’
otherwise.

(d) If o" is the convex combination a)’ + a2)’2 + a3)’3 where )’l is a
marginally discrete conditionally diffuse strategic measure, )’2 is a marginally
diffuse conditionally discrete strategic measure and )’3 is a marginally and
conditionally diffuse strategic measure then cr a)’ + a2)’ + ot3)’.

Proof. (d) is a consequence of the fact that purely non-r-uniform measures
form a split face of P(X Y).
Of (a), (b) and (c), only the hardest, (c), will be established. Here the

difficult case is where r is a limit cardinal and this will be the case established.
Let v sup{r’ a < k}.
Let ]A] < r. For any x, lAx] < a and ]{x ax - }1 < a. We have

o-(A) f o’(x, Ax)o’o(dx) X" o’l(x, A,)o’g(dx)

h f ht(x)crf(x, Ax)cr)(dx)

o’’(A) if c </3.
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Thus, (tr v)(A) 0 and tr v is r.uniform. Now let A C X x Y have
v(A) > 0 hence have o-’(A) > 0 for some a < r. There is an E C X so
that IEI /3 < r and tr(A’) > 0ifA’ A fq [E x Y]. This is because
trg is purely non-r-uniform as is Vx. For each x E let E(x) C Y have
IE(x)[ < cz and E(x) C a, ax with try(x, E(x)) > 1/2tr’((x, E(x)). Set

A" U ({x} x E(x) x E} CA.

We have o’’K(A’’) > 1/2o’’K(A’) > 0. Thus, v(A") > 0. Since [A"[ < a./3 <, v is purely non--uniform by Corollary 5.2.1. Consequently, tr v is
the -uniform part of o- and v is the purely non-x-uniform part.

COROLLARe 5.2.1. If tr is marginally diffuse, marginally countably additive,
and conditionally diffuse then tr tr’ even if r is a limit cardinal.

Proof. It is only necessary to show that o-"’ is purely non-r-uniform
for o- o-’ is -uniform by the same argument as used in the preceding
proof. If o-’(A) > 0 for an A C X x Y we must find A" C A with ]A"[ <
r with tr’(A") > 0. There is an E C X with IEI < so that r’(A’) > 0
whereA’ A t’l (E x Y). For eachcz< rletEbethosexEsothat
there is an A(x, a) C A Ax with trT(x, A(x, a)) > 1/2trY(x, Ax) and
IA(x, )1 <- . Since each tr’(x, .) is purely non-r-uniform, E must increase
to E as a increases. If r is of countable cofinality, trg(E) > 0 for some
c < r. In this case, set

A" U {{x} x A(x, ot) :X

and note that, as in the preceding proof, (r’(A") > 0 so tr’ is purely non-
r-uniform. If r isn’t of countable cofinality then tr tr for some cz < r
which is either a successor cardinal or is of countable cofinality. In either
case tr o-’ o"’ which establishes the corollary. |

COROLLARY 5.2.2. Let tr be marginally and conditionally diffuse and
countably additive and let r be an infinite cardinal. Let Ao C X with
IAol < r be such that tro is purely non--uniform on Ao with trg(Ao)
Ikr ,ll. For each x Ao, let A(x) C Y be such that IA(x)l < r and
trl(X, -) is purely non-r-uniform on Ai(x) with

try(x, Al(x)) IkrT(x, ")11.

Set A U {{x} x Al(X) x A0}. Then tr is purely non-r-uniform on A
and o-(A) Ikrll,

Proof. Immediate.

Remark. If r is a cardinal whose cofinality is not R0 then the assumption
of conditional and marginal countable additivity may be dropped.
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6. Singularity and Absolute Continuity of Reverse Strategic Product
Measures if One Margin is Diffuse and Countably Additive

We start this section with a result which indicates that reverse strategic
product measures may be nearly strategic even if both margins are diffuse.
In fact our result is much stronger. If ct P(X) and [3 P(Y) then a (R)/3
denotes the usual product measure on the product algebra 2x ( 2r. Both
tr(a, /3) and z(a, [3) extend a /3. The ct ( /3-completion of 2x x 2r

consists of all E C X x Y for which, for all e > 0, there exist {E, E2} C
2x () 2r with El C E C E2 with a ( fl(EE\E} < e. The a (R) fl-completion
of 2x ( 2r is the largest subalgebra of 2x r to which a (/3 has a unique
extension. When we say below that z(a, fl) a ( fl we mean that 2x r

is the a () fl-completion of 2x @ 2r. In this case z(a,/3) hence tr(a,/3) is
the unique extension of a /3 to 2x r

Note that if 3 is a subalgebra of 2"r and {/z, n N} are finitely
additive probabilities on then any E in the/,-completion of for all n
is in the/x-completion of for any/z which is a countable convex combination
of {/-tn n N}. To see this, write/z asEkn and pick m so that Enm=
h > 1 e for a given e. Pick {El, E2} C with El C E C E2 and/z(E2\E)
< e for all n 1, m. Then,/z(E2\E) < e.

PROPOSITION 6.1. Let r be an infinite cardinal.
(a) Let a P(X) be 2-additive and [3 P(Y) purely non-r +-uniform.

If a is atomic or if fl is countably additive then z(a, fl) a () ft.
(b) If a P(X) is r-additive and atomic and fl P(Y) is purely non-
+-uniform and atomic then z(a, fl) a () ft.

Proof. Since/3 is purely non-r +-uniform iff it gives measure to a set
of cardinality r we may assume that YI < .

(b) If a and/3 are {0,1}-valued this is the content of Corollary 7.24 (b)
in [12]. If a E__ Xa and/3 E,__ ")lm[ where a and/3m are {0, 1}-
valued then each a is r-additive and a (R)/3 E= E,__ kn’)lmOln @ m.
Since 2x r is the a ( tim-Completion of 2x (R) 2 r, it is also the a @/3
completion of 2x @ 2r.

(a) Let E C X x Y. We may regard E as the graph of a correspondence
E X ---> 2 r given by E(x) E. For A C Y let E-(A) {x E A}.
Since

X U {E-(A) :A 2r}

and ct is 2-additive and YI < r, we have

a(X) E {a(E-(A)) A 2r}.

Let {A n N} enumerate the A 2r with a(E-(A)) > 0, so

c(x) : a(E-(A.)).
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Set N X\\LI= {E-l(An) so a(N) 0. Set E’ E fq [(X\N) x Y] C
E so

,r(a,/3)(E’) ’r(a, B)(E) and a () fl(E’) a () fl(E).

We have E’ tA= E-(A,,) x A,. When fl is countably additive, so is
-(a, /3), by Proposition 4.1. As a result, for any s > 0, there is an m so
that

a() fl(’Jn--1 g-l(An) An)>’(a, [3)(E’)-e=z(a,[3)(E)-e.

That is, there is an E1 C E with

E 2x x 2r and s + a () B(EI) > ’t-(a, B)(E).

Similarly, there is an E2 2x x 2r with E C E2 and ’r(a, fl)(E) > a (
fl(E2) s. Thus, a (R) B(E2\Et) < 2s which shows, since e is arbitrary,
that E is in the a (R) B-completion of 2x (R) 2 r. This establishes (a) in the
case B that is countably additive.

In (a), when a is atomic the proof immediately reduces to the case where
a is {0,1}-valued. Obtain E’ O=lE-l(An) An as before. In this case,

a(E-l(An)) > 0 for only one n,

say n 1, and E’ E-I(An) x An so a ( (E’) a ( fl(E)
-(a, fl)(E) which suffices to establish this case. I

Remarks (1) a and fl may have discrete parts. If a and/3 are discrete,
the equality tr(a, ) -(a,/3) is Fubini’s Theorem.

(2) If h is a real-valued measurable cardinal we may let X be a set with
X h and a be a diffuse h-complete probability on X. If Y is any set such
that r ]YI satisfies 2 < h then for any P(Y), tr(t, ) z(A, ).
Of course, if Y is infinite then h > 2s, hence is a measurable cardinal. In
this case, as soon as lYI < IXI (i.e., r < ) we have 2 < .

(3) /3 may be countably additive and diffuse or it may be purely finitely
additive. However for this result a must be countably additive if/3 is purely
finitely additive.

(4) (a,/3) a /3 if the assumptions on a and fl are interchanged.

LEMMA 6.2. Let a P(X) be diffuse and countably additive and let
fl P(Y) be diffuse. Then z(a, fl) is singular to all conditionally discrete
strategic measures.

Proof. ’(a,/3) is singular to any conditionally discrete tr (tr0, o"1) if
tro+/- a. We may, therefore, only consider tr with o’0 << a hence with o’0
countably additive. By Corollary 3.4.5, tr is a countable convex combination
of strategic measures of the form (e0, t) where eo << tro and r(x, dy)
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8zt)(dy) for some function f" X Y. Therefore we may assume that
o’0 0 and o-. LetFbe the graph of f so o-(F) 1. For each
/5 > 0 there are only finitely many y Y so that a(Fy) a(f-(y)) > .
Since fl is diffuse it follows that, for B-almost all y, a(Fy) < 5. Thus,
z(a, [3)(F) 0. This shows that z(a, fl) +/- tr which establishes the lemma. |

LEMMA 6.3. Suppose that Ixl rl P X) is -uniform and
P(Y). If tr =(tro, try) is conditionally r-uniform then z(a, ) +/- cr.

Proof. Regard as the set of ordinals of cardinal smaller than r. Regard
X and Y as equal to r. Set

D {(x,y)X x Y" y<x}.

Since Dx {y y < x} has IDol < r we have o-(x, Dx) 0 for all x,
hence tr(D) 0. Since XDy {x X < y} has IX\DYl < , it follows
that a(Dr) 1 for y Y. Thus, z(a, B)(D) 1. Consequently, z(a, 13) +/-

O’. |

COROLLARY 6.3.1. If tr is a conditionally r-uniform strategic measure
and z is a conditionally r-uniform reverse strategic measure then tr +/- z.

Remark. These results extend Lemma 7.22 (a) of [12], which says that
cr(a,/3) .1_ ’(a,/3) if a and/3 are uniform {0, 1}-valued measures on .

PROPOSITION 6.4. Let a P(X) and P(Y) be r-complete diffuse
measures where r Ixl YI. Then z(a, ) is purely non-strategic.

Proof. We must show that z(a, ) .1. o- (tr0, try) for all tr. We may
assume that tr0 << a hence that o’0 is r-complete, diffuse and, as a result
r-uniform. If tr were conditionally purely non--complete then by Lemma
4.3 it would be purely non-r-complete hence singular to z(a, [3). Thus, we
may assume that o- is conditionally r-complete. If tr is conditionally discrete,
Lemma 6.2 shows that o- _t_ z(a, [3). Thus, we may assume that tr is
conditionally diffuse. For all x, o-(x, .) is a r-complete diffuse probability
hence is -uniform. Lemma 6.3 shows that z(a, [3) +/- r which establishes
the proposition.

PROPOSITION 6.5. Let X and Y be arbitrary. Let a P(X) and B P( Y)
be r-complete purely non-r-additive probabilities. Then z(a, fl) is purely
non-strategic.

Proof. The case r 0 is Theorem 1. Thus we may assume that r >
1%, hence that a and/3 are countably additive. We first examine the case
where Y r.
Suppose that -(a, /3) is not singular with respect to tr (tr0, try). By
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Corollary 2.2.4 it may be assumed that tr0 a. Decompose the strategic
measure tr into a conditionally diffuse part O"diff and a conditionally discrete
part O"disc using Lemma 2.1. By Lemma 6.2, z(a, fl) +/- tri. Thus, z(ct, fl)
and gown aren’t singular. Thus, we may assume that g is conditionally diffuse.
Decompose g into conditionally r-complete and conditionally purely non-
r-complete pas and 2 respectively. Since z(a, fl) is r-complete and
g2 (with X-margin a) is purely non-r-complete, by Corollary 4.4.1, z(a, fl)
must not be singular to g. That is, we may assume that g (a, g) is
conditionally r-complete and conditionally diffuse, hence conditionally uni-
form. Since a is purely non-r-additive, it is approximable in variation norm
by a sequence {a n N} of strongly non-r-additive measures. The
sequence {Z(an, fl) n approaches z(a, fl) in variation norm and the
sequence {g n of strategic measures given by g, (a, g)
approaches g in variation norm. For some n, z(a,, fl) is not singular with
respect to g,. Thus, we may assume that a is strongly non-r-additive. Since
a is strongly non-r-additive there is a decreasing sequence {Xx r} of
subsets of X with empty intersection and with a(Xx) 1 for all r.
Set

s u(x x {x})cxx .
Note thin, for each x X, [Sx[ < so (x, Sx) 0 and, as a result,
w(S) 0. On the other hand, ,(a, fl)(S) f a(Xx)fl(d) 1. Thus,
z(, fl) . As a result, ,(a, ) X. This establishes the proposition if

Now let Y be arbitrary. Since is approximable in variation norm by
strongly non--additive measures a familiar argument shows that to show
thin ,(, fl) X we need only establish the special case where is strongly
non--additive. In this case there is a Y so that the image ’ of
under is a -complete diffuse measure on . A repetition of an argument

in the proof of Theorem 1.1 shows that since z(a, fl’) is purely non-strmegic
on X x , so is z(a, B) on X x Y.

We conclude with an example where ,(a,/3) is purely non-strategic with
tx purely finitely additive and/3 countably additive. For this example cz and
/3 are both chosen {0,1}-valued so z(ct,/3) is {0,1}-valued. By Corollary 3.4.1,
it suffices to show that ,(a,/3) # (tr0, trl) tr where tr is marginally and
conditionally {0,1}-valued. Here YI may be chosen to be a measurable
cardinal h with/3 the corresponding h-complete {0,1}-valued measure on
Y. X is chosen with IXI h and a is chosen so that its ultrafilter of sets
of measure 1 is regular. Recall from [12] that an ultrafilter a//is regular on
a set X iff there is a family {X} of cardinality IX[ in q/so that the intersection
of any infinite subfamily is empty. We may imitate the definition of regularity
of ultrafilters and say that a measure/x on X is regular iff there exists a
family {X} of subsets of X which has cardinality IXI so that/x(X) 1 for
all a, yet so that-fqo X 0 for any infinite set D of indices. A more
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general notion of r-regularity is definable for both ultrafilters and measures
where r is a cardinal, and one requires the family {X} to be of cardinal
r. Any r-regular measure is, of necessity, strongly finitely additive. On
any infinite set X there exist regular ultrafilters [12, Lemma 7.11.].

PROPOSITION 6.6. Let IX IYI x. Let be a diffuse {0, 1}-valued
element ofP(Y) and let a be a regular {0, 1}-valued element ofP(X). Then
z(t, fl) is purely non-strategic.

Proof. Let {T(y) y Y} be such that a(T(y)) 1 for all y and such
that ifD C Y is infinite then (q {T(y) y D} . Set

T t3 T(y) {y}.

It is immediate that z(a, /3)(T) 1. Let tr (r0, o’) be marginally and
conditionally {0, 1}-valued with tr r(a, ). Note that if x X then

T {y x T(y)}

is finite. Since o-(T) 1 o-(x, T,) for tr0-almost all x. That is, for
o-0-almost all x, o-(x, .) 6t, for a unique t(x) T,. Thus, there is a
X Y so that f f(x, y)dtr f f(x, t(x))tro(dx), for all f. If

graph(t) {(x, t(x)) x X}

then

o’(graph(t)) r(a, fl)(graph(t)) f a(t-(y))(dy).
Thus, a(t-(y)) 1 for fl-almost all y. Since t-(y) N t-(y2) if
Y Y2, there is only one y with a(t-(y)) 1. This implies that/3 is 6y
for some y Y which contradicts the fact that/3 is diffuse.

COROLLARY 6.6.1. Let h be an infinite cardinal number. Let a be a h-
regular {0, 1}-valued element of P(X) and let be a purely non-X-additive
{0, 1}-valued element of P(Y). Then z(a, fl) is purely non-strategic.

Proof. Since/3 is {0, 1}-valued it is strongly non-h-additive. There is a
surjection 7rx X h so that the image of/3 under Zrx is diffuse. Thus it
may be assumed, to start, that Ixl h and that/3 is diffuse on X. To finish
the proof note that the cardinality of Y wasn’t important in the proof of
Proposition 6.6; we only needed the fact that a was h-regular. |
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