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ADDENDUM TO MY PAPER "ON COLORING MANIFOLDS"

BY

K. S. SARKARIA

An important paper by Griinbaum [1], which had escaped my attention
until now, contains the following theorem: If m > 2 then one can assign
6(m 1) colors to the (m 2)-simplices of any simplicial complex imbedded
in R in such a way that any two (m 2)-simplices incident to the same
(m -1)-simplex have different colors. Afortiori, this implies the finiteness
of the numbers chm_2(Sm) of [2].

It is easily seen that Theorems and 2 of [2] are equivalent to the
following.

THEOREM A. If X is any closed m-dimensional pseudomanifold (m >
2), then

{m(m + 1) }Chm_2(g) < [1 + bm_l(S; Z2)]
m- 1

Further if K is any subcomplex of a triangulation of X and contains at
least one (m -2)-simplex, then

m- 1
m + 1

am-l(K) am-2(K) -k bm_l(X" Z2) l.

We will now use the ideas of Gr0nbaum [1] to show that this theorem
can be significantly improved when the hypotheses are strengthened
somewhat.

THEOREM B. If X is any closed triangulable manifold (m > 3), then
chm_2(S) < 6. Further if K is any subcomplex of a triangulation ofX and
contains at least one (m -2)-simplex, then mam-l(K) < 6am-2(K).

Proof. The first part will follow from the second (as in the proof of
Theorem 2 of [2], for example). Let K be a subcomplex of a triangulation
L of X and let o’1, 0"2, 0-t be the (m 3)-simplices of K which are
incident to at least one (m 2)-simplex of K. Since X is an m-manifold
(m > 3), Lkri, 1 < < t, is a triangulation of the 2-sphere S2. Further
Lkh.0-, 1 < < t, is a subcomplex of LkL0- and contains at least one vertex.
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Applying the case m 2 of Theorem A (or Lemma 1 of [1]) one gets

al(Lkxtri) < 3 ao(Lkrtri) 3, < < t.

Adding these inequalities one has

m 2 m_l(K) 3 Cm_(K) 3t

which implies mm-l(K) < 6Cm_(K).
Thus the finiteness theorem" stated in the introduction of [2] can be

improved to the above six color theorem"; however the above proof does
not generalize to pseudomanifolds X.
For any compact triangulable space X let us denote by Ch(X) the least

number of colors which suffice to label the i-simplices of any triangulation
of X in such a way that distinct faces of an (i + 1)-simplex are assigned
distinct labels. It is clear that ch(X) ebb(X). We can use Grtnbaum’s
trick of using weight functions" (see [1]) to supplement Theorem B with
the further assertion that for any closed manifold X of dimension m > 3,
Chm_(X) 6(m 1). The same trick and Theorem A can be used to get
upper bounds for Chm_(X) when X is an m-dimensional pseudomanifold.

Further results and conjectures. We have proved that if X is a compact
triangulable space with dimension greater than or equal to 2i + 3, then
ch(X) . Another result of some interest is that chin_ l(g) 2 whenever
X is a closed manifold with dimension m > 2. We hope to give elsewhere
a proof of the fact that ch(X) is finite whenever X is a dosed manifold
with dimension less than or equal to 2i + 2. In view of Theorem B above
it seems likely that the number chm_2(S) is the same for all closed m-
dimensional manifolds X with m > 3; quite possibly the numbers ch_ l(M2n)
are the only ones which reflect the global topology of a closed manifold.

If X is a closed triangulable m-manifold (m > 3), then ch,_2(X) < 4:
this improvement of the first part of Theorem B can be obtained by using
the four color theorem.

Added in proof. For more discussion regarding results mentioned above
see [3] and [4].
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