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NORMALIZED BY ELEMENTARY MATRICES

BY

A. W. MASON

1. Introduction

Let A be a ring with identity, q a (two-sided) ideal in A (possibly q A)
and let f" GLn(A)--.GLn(A/q) be the natural homomorphism. We put

O OLd(A), O(q)= Kerf and H(q)= f-l(C),

where C is the centre of GL,(A/q). (By definition

H(q) IX E O X E xI (mod q), where x (E A) is central (mod q)}

and H(A)= G(A)= G.)
Let A be the subgroup of G generated by all the elementary matrices

I + aE,j, a A, j, < i, j < n, and let A(q) be the normal subgroup of A
generated by the q-elementary matrices, I + qE,j, q q, j. (By definition
A A(A).) Finally, if H,K are subgroups of G, [H,K] is the subgroup
generated by commutators [h, k] h-lk-hk, h H, k K.
Our starting point is the following:

THEOREM 1. Assume that either

(a) A satisfies SR,(A), for some t _> 2, and n >_ max(t, 3),
or

(b) A is finitely generated as a module over its centre andn > 3.

IfE is a subgroup ofG normalized by A, thenforsome unique ideal o(called
the level of E),

() <_ E < H(e).

Parts (a) and (b) are due to Bass [1, p. 240] and Vaserstein [11], respectively.
Many special cases of this result have appeared over the last twenty years.
Among the most important are those due to Brenner [3] (A Z, n _> 3) and
Golubchik [4] (A commutative, n _> 3). The classical example of the modular
group shows that the restriction n > 3 is necessary. It is known [5] that, ifN is
a normal subgroup of finite index in GL2(Z), then, with finitely many excep-
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tions, the commutator subgroup N’ is a normal, non-central subgroup which
contains A(e) only when e 0. (Z satisfies SR3(Z).)
We assume throughout that A satisfies SRt(A) (t > 2) [1, p. 231] and that

n _> max(t, 3). This enables us to use results from algebraic K-theory, in par-
ticular the well-known stability theorem of Bass-Vaserstein [10|. As above let
E be a subgroup of G, normalized by A, with level . (From now on we abbre-
viate this to "E is a subgroup of level ".) This paper is concerned with the
following question (first raised by Bass in 1964): Is E a normal subgroup of G?
Now, since [A, A(8)] A(a) [1, p. 223] we have, by Theorem 1,

A(e) s [G,E] _<[G,H(e)].

It follows that, if [G, H(e)] A(o), then E is normal. The most obvious ques-
tion which arises from this is the following:

(,) Does [G, H(a)] : A() imply the existence of a non-normal subgroup
of level?

It has been shown [7] that non-normal subgroups of this type exist for the case
A Z[] if and only if n is even (n _> 3). In this paper an example (in 4) is
given which shows that in general the answer to (.) is no. In 2 however we do
establish various conditions on A, q and n under which (.) has an affirmative
answer. For example we show that if A contains central units of infinite order
then (for any ideal q) non-normal subgroups of level q exist if and only if

[G,H(q)] # A(q) (n >_ max(t,3)).

We also prove that a similar result holds for commutative A which have only
units of finite order, provided certain finiteness hypotheses on A/q and
G(q)/A(q) (together with related restrictions on n) are satisfied.

In 3 using the famous paper of Bass, Milnor and Serre [2] we apply the
results of 2 to the case where A is Dedekind of arithmetic type (t 3,
n >_ 3). We show that the answer to (.) is always yes provided that either A is
not totally imaginary or A contains units of infinite order. Different situations
can arise when A is totally imaginary with only finitely many units. In 4 by
considering the case

A Z[0], where 02+0+1 0,

and n 2 (mod 4) (n >_ 6), we show that in general the answer to (.) is no.
On the other hand we prove in 5 that, when A Z[] (i -1), every
subgroup of level q is also normal (in GLn(Z[:])) if and only if
[G, H(q)] A(q) (n > 3).

2. Non-normal subgroups of level q

It is clear that, when [G, H(q)] # A(q), the existence of a non-normal sub-
group of level q is equivalent to the existence of such a subgroup which is also
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cyclic (mod A(q)). We note that, since [A,H(q)] A(q)[1, p. 2401, the sub-
group <X, A(q) > has level q, for all X( H(q). This motivates the following
lemma.
For any g E G we put [G,g] [[x,g] x

LEMMA 2. Suppose that [G,H(q)] :/: A(q). Let X H(q) satisfy [G, XI

_
A(q) and let S <X, Z(q)>. Then S < G implies thatX hasfinite order

(mod A(q)).

Proof. Since S has level q we have [6]

a(q) _< [G,s] _<

Now [G, G(q)] A(q) [10] and hence [G, [G, S]] Z(q) ([,X(q)] A(q)).
It follows that, for all X1, X2 S, and YI, Y2 G,

rY, Xd r, Xd Y, Xd (mod A(q))

and

r, XX,_] r, Xd rl, X] (mod z(q)).

It is clear then that [G, S [G, X]A(q).
Suppose now that S < G, i.e., (A(q) <_) [G, S _< S G(q). Then [G, S is

generated by X’, say, (mod A(q)), where s > 0. Let Y G "generate" the im-
age of the epimorphism G-[G,S] / A(q), defined by

r Y, X]A(q) (Y E G).

This means that [Y, Xl X" (mod z(q). Then by the above we have

I [Y,X’] - [Y,X]" X"- (mod zX(q)).

Before our first theorem we make the following definition.

DEFINITION. For any ideal q, the subgroup Z(q) of G is defined by the
property that Z(q)/A(q) is the centre of G/A(q).

LEMMA 3. (i) O(q) Z(q) _< H(q).

(ii) Z(q) H(q) if and only if[O,H(q)] A(q).

(iii) uI Z(q), where u is any unit ofA such that ua au (mod q),for all
aA.

Proof. Clearly Z(q) has level q’, say. Since [G, G(q)] A(q) [10], it
follows that G(q) Z(q) and q q’. On the other hand, by Theorem 1,

(q’) [z,z(q’)l [G,Z(q)I _< z(q).

And soq’ _< q.
is trivial.

(i) follows from Theorem 1. (ii) follows from (i), and (iii)
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THEOREM 4. Suppose that (the abelian group) Z(q)/A(q) has elements of
infinite order. Then every subgroup oflevel q is also normal in G ifand only if
[O, H(q)] A(q).

Proof. We only have to show that when [G,H(q) A(q) there exists a
non-normal subgroup of level q.
Choose XEH(q) such that [G,X] A(q) and let S <X,A(q)>. If

[G, S] _<S, we are finished. Suppose then that [G, S] _< S. By Lemma 2 it
follows that X has finite order (mod A(q)). Now choose U E Z(q) of infinite
order (mod A(q)) and let So <XU, A(q)>. Clearly [G, So] [G,S]
:# A(q).
Suppose further that [O, So] -< So. Then, again by Lemma 2, XU (and

hence U) has finite order (mod A(q)). Therefore So is the required non-normal
subgroup of level q.

In particular we have (Lemma 3 (iii)):

COROLLARY 5. Suppose that A has central units of infinite order. Then
every subgroup oflevel q is also normal in G ifand only if [G,H(q)] A(q).

We show later ({}4) that Theorem 4 is not true in general if Z(q)/A(q) is tor-
sion. However as we show later in this section Theorem 4 does hold for
commutative A provided certain finiteness hypotheses are satisfied. Since A
will be assumed to be commutative for most of the remainder of the paper it
seems appropriate at this time to provide a non-commutative illustration of
Theorem 4 and Corollary 5.
We refer to the example given in [8] (after Theorem 3.5) and we use the

notation of this paper. It is shown that for this choice ofA and q there is a unit
v in A such that (i) vI H(q) and (ii) the subset [G, vii of G(q) contains an
element of infinite order (mod A(q)). It is easily verified that vI has infinite
order (mod G(q)). By Lemma 2 we conclude that < vI, A(q)> is a non-
normal subgroup of level q.
We require the following "minimal counterexample" lemma.

LEMMA 6. Suppose that [O,H(q)] ,: A(q) and let

q= min{ <X, A(q)> "A(q) "X H(q), [G,X] A(q), <X, A(q)> <3 G}.

Then q p% for some prime p and integer cz > 2. Further, if q p is "at-
tained" by Xo H(q), then

(i) Xo Z(q), and

(ii) [O, <Xo, A(q)>]/A(q) is generated by Xo-’ (mod A(q)).

Moreover, ifA is commutative, then p divides n.

Proof. By Lemma 2, q is well-defined. Put T <Xo, A(q)>. As in the
proof of Lemma 2, let Y G "generate" the image of the epimorphism
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defined by

Y I- [Y,Xo]A(q).

([G, T] [G, Xo]A(q) and [G, T] _< T.) It is clear that, for any integerf, we
have

(1) Xo Z(q) if and only if Y, Xo] -= I (mod A(q)).

Let T Z(q) <Xo,A(q)> and [G, 7] <o,A(q) >, where die and
elq with d,e > 1. (Xo has order q (rood A(q)) and [G, 7] _< Z(q).) It
follows from (1) that q de, since, by definition,

Y, Xo] --- X" (mod A(q)).
Suppose that d did2, with 1 < dl < d. Then XIE Z(q) and so by (1),

Y,X] - [Y, Xo]d I (mod A(q)).
But Xd

o has order q/d < q(mod A(q)) and <XI,A(q)> <] G, since

[Y,Xo m [Y, Xo]k (mod A(q)), for all k.

This contradicts the minimality of q unless d p, prime, say.
Let p’ be the largest diviser of q prime to p. Clearly o’ Z(q) and so,

again by (1), [G, X’] C__ h(q). By considering the subgroup <Xo ,A(q) > we
deduce as above that p’ 1.
The last part follows from the fact [7, Theorem 2.1] that when A is com-

mutative the abelian group [G, H(q)] / A(q) has exponent n.

THEOREM 7.
following:

Suppose thatA is commutative and that A, q and n satisfy the

(a) There exists h > 0 (assumed minimal) such that, for all a A prime to
q, ah U(A) + q, where U(A) is the group of units in A.

(b) The(abelian) groupG(q)/A(q) has(minimum)exponentk( >O),say.

(c) hk divides n.

Then non-normalsubgroups oflevel q exist ifand only if[G, H( q)] A(q).

Before the proof of Theorem 7 we make some remarks about the
hypotheses.

(i) Clearly h is independent of n. This is also true of k(modulo the basic
assumption that n max(t, 3).) More precisely the Bass-Vaserstein stability
theorem [10] states that the groups C,(q)/A(q) are all isomorphic when
n _> max(t,3).

(ii) IfA is a Dedekind ring of arithmetic type [2, p. 83] and q 0, (a) and
(b) are both satisfied. (A/q is finite and [G(q) A(q) divides m2, where m is
the order of the group of roots of unity in A.) Theorem 7 will then hold in this
case provided n is divisible, for example, by m2ho, where ho IU(A/q)I.
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Proof of Theorem 7. We need only prove that, if (a), (b), (c) are satisfied
and if [G, H(q)] : A(q), then there exists a non-normal subgroup of level q.
We may suppose then that Xo H(q) satisfies the statement of Lemma 6,

for some prime p dividing n. Then

Xo XoI (mod q),

where Xo A and

det(Xo) (modq).

As in Lemma 6, letp ord=,(Xo) (c >_ 2). Clearlyo 1 (modq). Letp
be the smallest positive integer such that Xo U(A) + q. By definition

Xo uX’,

say, where u U(A), u Xo (mod q) and X’ G(q). Hence Xo Z(q) by
Lemma 3. Now, from Lemma 6, Xo (E Z(q) andx (mod q). We con-
clude that 0 < < c. Further pa divides h by (a) and hence n by (c).
Now, by [9, p. 332] there exists Xt SL,,a(A) such that

Xt XoI (modq).

Let X SLy(A) be the "diagonal" matrix consisting of n/p blocks, each of
which is Xt, "along its main diagonal". Then

Xo=X,Y,

where Y G(q). NowX uI (mod q) and so, by repeated applications of
the Whitehead lemma [1, p. 226], we see that

X =- uX’’ (mod h(q)),

where X3 is u-’X( I (mod q)) embedded in G in the "upper left hand cor-
ner." Now kh divides n, by (c), and so k divides n/p), We deduce from (b) that

Xo ==uY (modA(q)).

(Recall from Lemma 30) that Y G(q) and so is central (rood A(q)).)
Let p, ord,(xo). Then from the above 0 < /3 <_ 3’ < (x and up’-n I

(rood q). Again by Whitehead lemma and (c) it follows that vI G(q)"
A(q) where v u.-, We deduce that

X Y," (mod A(q)).

Now consider the subgroup <X,, h(q) > of level q, where X, Xo Y-*. By
the above X A(q) and, by Lemma 6, [G, X,] [G, Xo] I (rood A(q)).
The minimality of p= then implies that < X4,A(q)> is non=normal.
We show later ({}4) that, for a given pair h, k, hypothesis (c) is, in a sense,

"best possible". Of course (a) and (b) can be replaced by weaker (but more
complicated) hypotheses.
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3. Dedekind rings of arithmetic type

From now on we assume that A is a Dedekind ring of arithmetic type as
defined in [2, p. 83] (t 3 and n _> 3). The basic reference in this connection
is of course the Bass, Milnor, Serre paper [2]. For our purposes however the
most convenient reference is [7]. We make frequent use of the notation in these
papers. A is said to be totally imaginary if it is the ring of integers of an
algebraic number field which cannot be embedded in R.
We begin by recalling some of the basic results of [2]. For any ideal q, let

r(q) c_,(q) SLy(A) and C(q) r(q)/A(q).

(When A satisfies SR,(A) and n >_ max(t, 3), A(q) <3 O [1, p. 240].) Since A
satisfies SR3(A) each element of C(q) can be represented by a unimodular pair

(a, b) (1,0) (mod q).

The pair (a,b) is the first row of a 2 x 2 matrix in Ker(SL2(A)--SL2(A/q)),
embedded in G in the usual way.

(a) When A is not totally imaginary, C(q) 1, for all q.

(b) When A is totally imaginary the situation is much more complicated.
Let m be the order of the group of roots of unity in such on A. Throughout p
denotes a prime ideal in .4 and p the rational prime over which it lies. For any
real x and positive integer y,/ is the cyclic group of order y and Ix] to.yj is the
nearest integer in the range [0 ,y] to the integral part Ix] of x.

It can be shown that for some divisor r, say, of m,

C(q) =

where r is given by

orOX ) %n [{
with h ordp(q) and e ordp(p). When r > 1, the mapping C(q)-/, is
given by

(a, b) I-
-b-),. bO

b=O

where (a, b) =- (1, O) (mod q), aA + bA A and

-)
is the r-th power residue symbol. Clearly r when q is prime to m and
r m when m’ divides q (see [7, {}4]).
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Our next theorem covers the situation where [G,H(q)] is always equal to
A(q). We note that in general A(q) [G, H(q)] _< r(q) [9, Theorem 3.1].

TH.OtEM 8. Let A be Dedekind ofarithmetic type and suppose that either
A is not totally imaginary or A is totally imaginary and (n, m) 1.

Then, for any subgroup E of G, E G if and only if [E, SL,(A)] <_ E.

Proof. When A is Dedekind of arithmetic type, A SL,(A) [2, Corollary
4.3]. The proof follows from Theorem and the fact that for the above cases,
[G, H(q)] A(q), for all q [7, Corollaries 4.2, 4.4]. (In fact, when A is not
totally imaginary, [G, H(q)] A(q) F(q), for all q.)
By Corollary 5 we have:

THEOR.M 9. Let A be totally imaginary with infinitely many units. Then
non-normal subgroups of G of level q exist if and only if [G, H(q)] q: A(q).

There remain to consider therefore the totally imaginary number fields with
only finitely many units. By the Dirichlet unit theorem these are precisely the
rings of integers of the imaginary quadratic extensions of Q. We will consider
the cases A Z[0], Z[i], where 02 + + 0 and i" 1. Before dealing
with them we require the following (technical) lemma.

LMMA 10. Let A be totally imaginary and let q be an ideal such that
C< )l for some s 1. Suppose that n is even (n >_ 4) and that for

some prime t E A, c q, where q q: Put

2
X {c(1 + q)E,-l.,-1 + q(E,-1.2,- E.,.I)+

Then X H(q) (3 SL.(A ), X F(q) and the order of X2(mod A(q)) is

(N(a) 1)n- (3 (- 1)), where B 2,/1

(N(c) is the (absolute) norm of .)

Proof. Clearly X cI(mod q) and det X 1. Our first task is to find a
unimodular pair (a, b) (1,0) (mod q) representing X in C(q).

Since [A,H(q)] A(q) [1, p. 240],

X’- YXY-1X (mod A(q)),

where Y I + E"/"-i-cE,,,.,_. By repeated applications of the Whitehead lem-
ma [1, p. 226] we deduce that

I I hi2

X2 =_
1- 2q 2cq

(mod A(q)),



NON-NORMAL SUBGROUPS OF GLn(A) 133

where the 2 x 2 matrix is identified with its usual embedding in I’(q). It re-
mains therefore to evaluate the symbol

for the caser 2",a l-2qand
Using standard notation [7, p. 125] we have

Now letr 2s,a 1-2q2andb 2aq. Foranyp[2,

ordp(a- 1) f+ 2 ordp(q) >_ f+ 2 ordp(q),
where f ordp(2). Since C(q) 2s, the formula for c(q)l implies that

orda(q) _> f(s + 1).

Hence ordp(a- 1) _> f(2s + 3) > f(s + 1). It follows that in this case

We note that c is prime, thatp 12q a (rood ), and that a 1 (rood
). It follows from the definition of the symbol

(called the r-th power residue symbol at p) and the above that, in this case,

The result follows.

4. ThecaseA Z[0]

In this case the units ofA are + 1, + 0, + 0 (0 1) and so m 6. Our
counterexample is based on the ideal (4). Now 2 is prime and it follows from
the formula given in the previous section that IC(4) 2. (We have modified
the notation slightly.) When n (_> 3) is odd it follows from [7, Corollary 4.4]
that [G, H(4)] ZX(4). In this case then every subgroup of level (4) is normal
in G. The situation when n is even is however more complicated.

THEOREM 11. Let,4 Z[0], where 0 + 0 + O, and suppose that n is
even (n >_ 4). Then [G, H(4)] I’(4) zX(4)).

(i) When 4In, there exist non-normal subgroups of level (4).

(ii) When n m s2 (mod 4), every subgroup of level (4) is normal in G.
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Proof. Let c 1 + 20. Then a is prime, N(x) 3 and cd- m (mod (4)).
Define XEH(4) as in Lemma 10. By [7, Theorem 4.6] (with u -1,
cz* 1 + 20) we deduce that commutator [I- 2Ell, X] A(4). Hence

[G,H(4)] I’(4),

since 1I’(4)" A(4) 2. ([G,H(4)] _< F(4).)
Now it is easily verified that A/(4) has 12 units and that if/ A is prime to

2, then

/ =- u(1 + 20) (mod (4)),

where j 0, 1 and u U(A) {+/- 1, +/- 0, +/- 02} Part (i) then follows from
Theorem 7 with h k 2.

For part (ii) we note first of all that, by Lemma 10 (with c + 20,
N(c) 3, s 1, n 2 (mod 4)), X I’ (4) \ A(4). It follows that

I(4) <X2, A(4)>.

Now let YEE H(4). Then, by the above,

Y uXJT,

where u(?.. U(A), j 0 or 1 and T G(4)= I(4). Now, since [G, G(4)]
A(4), we deduce that

[G, Y] m [G,XI (mod A(4)).

Let S < Y, A(4)> and recall that A(4) _< [G, S] 1’(4).
If j 0, [G, S] A(4) <_ S and so S is normal. On the other hand, if

j= 1,

y6 u6X6T X (mod A(4)).

(G(4) is central (mod A(4)) by Lemma 3(i)).) Hence

S >_ <X,A(4)> F(4) _> [G,S]

and so S is normal in G. This completes the proof.

Theorem 11 shows that in general hypothesis (c) of Theorem 7 (for a given
pair h,k) cannot be weakened.

5. The caseA Z[i]

The object of this section is to show that (in the context of this paper) some
imaginary quadratic number fields "behave nicely". In this case the units are
_+ 1, +/- and so m 4. Throughout p will denote the ideal (1 + 0 and Cl will
always be non-zero. As in [7] we put

0(q) H(q) tq SL,,(A), /7(q) [O,H(q)]/A(q)

and
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(q) [O, O(q)]l

For any E A, N(c0 cl is the norm of c.
Since (2)= p2, the structure of C(q) depends entirely

"p-component" of q. We recall the following [7, Theorem 5.1].
on the

THEOREM 12.

and

Let x ordp(q). Then

1, x<_3

C(q) -= C(O) -= C(.p4), x 4,5
C(p), x > 6

lc(p)l
1, x<3
2, X 4,5
4, x>6

We will show that when [G,H(q)] : A(fl) non-normal subgroups of level q
always exist. We begin by determining precisely when [G, H(q)] A(q). This
has been done for n 4 in [7, Theorem 5.15]. When n is odd it is known [7,
Theorem 5.20)] that (G,H(q)] A(q), for all q. We require the following
lemmas.

LEMMA 13. Let c E A be prime to p. Then

(i) ordp(c4+l) 2,

(ii) a"--- +1 (mod p.S),

(iii) c" 1 (mod px), where

s __x 1,

for all x
_

6.

Proof. (i) and (ii) are trivial. (iii) follows by induction.

LEMM 14. (a) Under the natural isomorphism

C(q) _= C(p=) where x ord(q),

(q) embeds into ](pX) and

(q) = ’-(p,).
Under the natural isomorphism C(p+’) -_- C(p), where x _< 4 or(b)

x>-6,

j(p+1) (resp. -6(px+l))

embeds into

(p’) (resp. (-O"O-(.p)).
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(c) If ord,(n) >_ 2 and ord(q) 3, then H(q) 0(q).

Proof. We recall that if q < q2, then

H(qt) _< H(q,) and 0(qt) s 0(q,).
(a) follows from Theorem 12 and the fact that

[G, 0(p)] [G, 0(q)]A(p)

(See the proof of [7, Theorem 5.3].) (b) again follows from Theorem 12.
For (c) we note that if c4 u (mod p), where u +/- 1, +/- and x _> 3,

then u 1 by Lemma 13(ii).

THEOREM 15.

(a)

()
2y+5.

Let x ordp(q) and y ord,(n), with y > 0.

[G,H(q)] A(q), when x > 2y + 6.

[G, 0(q)] I’(q), when x <_ 2y + 3.

It(q) [G, H(q)] I[G, H(q)] A(q) 2, when x 2y + 4 or

Proof. By Theorem 12 we may assume that x 4. We treat the cases
y 1 and y > 1 separately.

Case where y 1. For (a) it is sufficient to prove that 1"( 38) 1, by
Lemma 14. By [7, Lemma 4.7] we have to consider those tx ( A such that

c u (modp),

where u + 1, + i. By Lemma 13(ii) we have u + 1 and it is easily verified
that N(cx) =- 1 (mod 16). It follows by [7, Theorem 4.6] that (pS) 1.
(We can assume by the Dirichlet theorem on primes in an arithmetic progres-
sion that x is prime.)
For (b), consider c 1 + 2i. Clearly a" (mod pS) and c is prime, with

N(x) 5. We deduce again by [7, Theorem 4.6] and Theorem 12, that
[G,/7(#)] I’(pS). (b) then follows from Lemma 14.
For (c) consider c 5 + 4i. Clearly cd- 1 (mod.p.’) and c is prime with

N(cx) 41. By [7, Theorem 4.6] it follows that (p’) ,: 1. But by [7,
Theorem 4.3(a)] ]t/’(q) always divides 2. Hence [Br(pT)l and similarly
I//’(p) is equal to 2. The general case follows from Lemma 14.
Case wherey > 1. By [7, Lemma 4.7] and Lemma 14(c) we are concerned

with these x E A for which cd y 1 (mod px). (We may assume again by
Dirichlet’s theorem on primes in an arithmetic progression that any such c is
prime.)
For (a) it is sufficient to prove that [G, H(p’-y*e)] A(p’-,/), by Lemma 14.

If c" 1 (mod p’-,/), then

CI4 1 (modp)
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by Lcmma 130). (Note that c- 1 (c"-"’x- 1)(a""- + 1).) It follows by
direct calculation that N(c) m 1 (mod 16), which implies that D-/I’(.p2/) 1
by [7, Theorem 4.6].

For (b) we note that if x < 2y + 3 then, by Lemma 13, c2 m 1 (mod p’),
for all c prime to p. Now choose any rational primep m 5 (mod 8) and write it
in the formp a + b2, where a, b 6 N. Let co a + lb. Then co m 1 (rood
p), Co is prime and

N(cto) -5 (mod8).

It follows from [7, Theorem 4.6] that [G, 0 (px)] F(px) and hence by Lem-
ma 14(a) that [G, 0 (q)] l(q).

For (c) consider ct, 5 + 4i. Now (, is prime, with
4N((I) 41 and (1 1 (mod pg).

It follows that c, 1 (mod and hence by [7, Theorem 4.6] that

GO(p/) 1.

On the other hand for any ( A such that c="- 1 (mod p2/), we have, by
Lemma 13(i), (4 1 (mod I:19) which implies that N(() 1 (mod 8). We de-
duce from [7, Theorem 4.6] that Ib’T(p") divides 2. Hence and
similarly Ip2,/4) are equal to 2. The general case follows from Lemma 14.
We now come to the main result of this section.

Tnoxu 16. When A Z[q, non-normal subgroups of level q exist if
and only if [G, H(q)] A(q)(n _> 3).

Moreover, if or,dp(q) 5 and [G,H(q)] A(q), then, for each Y H(q)
such that [G, YI A(q), the subgroup < Y, A(q) > (of level q) is not normal
in G.

Proof. As before, let x ord(q) and y ord(n). We assume that

[G, H(q)] : A(q)

and so n must be even (i.e., y > 0) by [7, Theorem 5.2(i)]. By Theorem 15 we
may also assume that 4 < x _< 2y + 5.

Case 1. x > 6. Consider (x 5 + 4i. (x is prime, with N(tx) 41, and

c"’ = 1 (mod p,/).

Use the Chinese remainder theorem to find Y 0(q) such that Y oar (mod
p’). Now construct X 0(p) as in Lemma 10 with c 5 + 4i (s 1). Since
X oar (mod p) we have Y XT, for some T I’ (p ).
Now, by Theorem 12, C(q)_= C(p). Choose ToI’(q) such that

To T(mod A(p) and consider the subgroup S < YT,A(q)>. If S is
normal in G then so is

< YT-o A(p’) > <X, A(p6) >.
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An argument identical to that used in the proof of [7, Theorem 5.5] shows that
<X, A(p) > is not normal in G.
Case 2. x 4,5. In this case we have

by Theorem 12 and

c(q) C(p’)

[G, O(q)] r(q)

by Theorem 15(b). Let S < Y,A(q)>, where YEH(q) and [G, Y]
A(q). If S is normal in Gthenr’(q) _< S. (]C(p4)[ 2, byTheorem 12.)

We prove that S f3 I(q) zX(q).
Now Y H(p0 and [G, Y] g; A(p") since, by Theorem12, A(p") f3 I(q)

zX(q). It follows that Y -= u(1 2i)I (rood p"), where u + 1, + i. (See the
first part of the proof of Theorem 15.) Construct X O(p") as in Lemma 10
with c 1 + 2i (s 1). Then by Lemma 10, X A(p,). Now Y uXT,
for some T1 E r’ (p 4), from which we deduce that y2 u2i (mod p4) (i(p4) is
central (mod zX(p4)) and IC(p4)l 2). Hence, for any s, Y" - uY (mod
A(p0), where u + 1, +/- i, andj 0,1.

It follows that Y’ E I’(q) if and only if Y" A(q). This completes the proof
of the theorem.
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