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THE ACTION OF THE STABLE OPERATIONS OF COMPLEX
K-THEORY ON COEFFICIENT GROUPS

BY
KEITH JOHNSON

Introduction

A stable operation of degree 0 on complex K-theory is a natural transforma-
tion

o*: K*()—K*()

and may be identified with a map of spectra ¢: K—K. Adams and Clarke [1]
showed that the set of such operations is large, in fact uncountable. Since the
coefficient groups K*(S°) = w,(K) are shown to be Z for * even, 0 for * odd,
it is natural to ask what the action of ¢ on these groups might be. The present
paper answers this question, both for K-theory and K-theory localized at a
prime.

In [4] and [3], Lance and Clarke respectively considered the corresponding
unstable question, i.e., the action induced in homotopy by a self H-map of BU
or BU,,,. Our results are of the same form as theorem 4 of [3], but in the stable
case we must consider m,(K) for i < 0 as well.

We will define integers v, (n), I'(n), t,(n,i), v(n,i) forn €Z*,0 < i < nand
show:

THEOREM 1. If the action of ¢: K,y —K,, on 1K) = Z, is multipli-
cation by \,, then

Ei:o t,(n,i) + - = 0 mod p‘Yp(n)

Sfor all n€ Z*, m € Z. Furthermore every sequence {\} satisfying these con-
gruences for the special cases m = [n/2] arises from a unique map of spectra.

THEOREM 2. If the action of ¢: K—K on m:{K) = Z is multiplication by
N\, then

Ei:o v(n)i) * >\i-m = O mOd P(n)

for all n€ Z*, m € Z. Furthermore every sequence {\;} satisfying these con-
gruences for the special cases m = [n/2] arises from a unique map of spectra.

Received October 14, 1981.

© 1984 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

57



58 KEITH JOHNSON

The functions v, and I" are easily described:

1,(n) = v((n+ [n/p— 1]

where [x] denotes the largest integer less than or equal to x, and »,(x) denotes
the p-adic valuation, i.e., the largest integer m for which p™ divides x; and
I'(n) is the unique integer with v,(I'(n)) = v,(n) for all primes p.

The integers #,(n,i) can be described as follows: For a given prime p, let
d,,a,,... denote the sequence 1,2,3,...,p—1,p + 1,... of integers prime to
p. Then t,(n,i) is defined by the equation

w—a)...(w-a) = Y t(ni) - w

For the integers v(n,i), we first choose a sequence a, ,,...,a,, of integers
subject to the conditions that for each prime p for which v,(n) > 0, we have

a;, = a; mod p~

where m is the least integer for which p™ > a,. Note that a; depends on the
prime p being considered. This is a finite set of conditions, and can always be
satisfied, by the Chinese Remainder Theorem. The v(n,i) are defined by the
equation

n

WwW=a.,)...(w=a.,) = Y v(ni)-w.
=0
The proof of these theorems is based on the fact that (K,K),, and KoK are
free over Z,,, and Z respectively. This was established in [1], and implies that
the Kronecker pairing induces an isomorphism. In §1 we construct explicit
bases for (K,K),, and K,K and use this in §2 to prove the theorems.

Section 1

We begin by recalling from [2] the description of the hopf algebra K,K.
There it was pointed out that the natural map K,K—K,K ® Q is an injection,
and that K, K ® Q equals Q[u, v, u™*,v"'], i.e., finite Laurent series in two vari-
ables [2, Propositions 2.1 and 2.2]. Thus it suffices to describe those series ly-
ing in the image of this map, and this was done in [2] by giving a certain in-
tegrality condition (Theorem 2.3).

For our purposes it is sufficient to only consider K,K, and to give a slightly
different description. Letting w = v/u, we see that

KK®Q = Q[w,wl.

Let A denote the ring of polynomials f € Q[w] which take integral values at the
integers. Proposition 5.3 and Theorem 2.3 of [2] can be restated as the follow-
ing description of K,K in terms of A:

ProposiTiON 3.  The image of K, K in Q[w, w™'] equals the union of the sub-
rings 1/w") - A forn = 0,1,2,... .
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In [12], Adams and Clarke show that K, K is actually a free abelian group.
This isn’t obvious from the description above, even though A is easily seen to
be free. The difficulty is that K, K N Q[w] contains more than just A, for ex-
ample it contains (w? — 1)/24.

We will see that this problem does not arise in the p-local case, and so we
consider it first. Let us fix a prime p, and let B denote the subring of Q[w] con-
sisting of those polynomials f for which f(k) € Z, if k is an integer prime to p.
Also let us denote by G, the p-localization of an abelian group G.

LemMMA 4. B 2 A, and for any f € B there exists an integer n such that
W" . feA(p).

Proor. The first statement is immediate. For the second, take n to be the
maximum of the p-exponents of the denominators of the coefficients of the
polynomial f.

The inclusion KoK — Q[w,w™'] extends uniquely to an inclusion

(KoK) (p) = Qlw, w7'].

The previous lemma implies the following p-local analog of Proposition 3:

ProrosiTION 5. The image of (KoK),, in Q[w,w™] equals the union of the
subrings (1/w") - B,,.
In contrast with A, the ring B has the following useful property:

Lemma 6. If w* . f€ B, and f € Q[w], then fE€ B,,,.

Proof. 1t suffices to show that if w" - f€ B, then there exists a non-zero
integer b prime to p for which b - f € B. There certainly exists some non-zero
integer for which b - f€ B, for example the product of the denominators of
the coefficients of f. Order the non-zero integers with this property by
divisibility and choose a minimal one, b.

Suppose b were divisible by p, and let b = p - b’. If (k,p) = 1, then we
have b - f(k) = p- b’ - f(k) €EZ and also k" - f(k)EZ. Thus b’ - f(K)EZ,
and so b’ - f€ B, contradicting the minimality of b.

This lemma will allow us to construct a basis for (K, K),, from one for B,,.
A basis for B(,, can be constructed as follows:

DEerINITION 7. Define polynomials g.(w) € Q[w] by
aew) =1, qw)=WwW-a)..(w=a,)/ (@1 —ay)...(a —a,)

where a@,,a,, ... are as defined in the introduction. Note that the p-adic norm
of the denominator of q.(w) is v,(n).

ProposiTION 8. {g.|n = 0,1,2,...} is a basis over Z,, for B,,.

Proof. Since
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(@) degree (g.) = n,

() gua) =0ifi < nandg.(a) = 1,i = n+1,
it is clear that any polynomial f of degree n in B,, can be expressed as a Z,,
linear combination of q.,,...,q..

It remains, therefore, to show that g, € B,,. For this we note that B,, can

be described as those f € Q[w] for which f(k) € Z,, for all integers k prime to
p. Thus we must show that for such &,

Vp((k - al)- . (k - an)) = Vp((anu - al)- . -(anu - a..)).
Since (k,p) = 1, we note that

v((k—a)...(k=a)) = v((k=1) - (k=2)...(k—a,)

v((k = DYk —a,— 1))

o

and
Vo((@ner = )/ (@per — @, — 1)1)
V,,((a,.“ - 1)!).

Now (k — 1)!/(k — a, — 1)!a,! is a binomial coefficient, and so is an integer.
Thus

V,,((a,,u - 01)- . «(anu - an))

v((k— D/ (k—a.— 1)) = »v,(a.!).

If a,., is not congruent to 1 mod p, then @,., — 1 = a,, and we are finished. If
a.+1 = 1 mod p, then

vo((k = ay)...(k—an)) = (k- D/ (k- a))
vo((@, + 1))

vp((@nsr — 1)).

v

ProposiTION 9. {(1/w!"'?) . q,|n = 0,1,2,...} is a basis for (KoK),

over Z(p).
Proof. We make use of the subgroups F(n,m) introduced in [1]. Let
F(n,m) = (KoK)(,) N span(w", w™', ..., w™)

and let /,t: F(n,m)—Q be the homomorphisms /(f) = a.,t(f) = a, if
f = Tl.aw. By Lemma 6, any element of F(n,m) is of the form w" . f with
f € By, of degree m — n. Since f'is a linear combination of ¢, ..., g,.-. We see
that image(/) and image(¢) are equal to /(¢n.-») - Z(p) and t(qn-.) - Z(p)
respectively. Also, / and ¢ induce isomorphisms

F(n,m)/F(n,m — 1) = Image(/), F(n,m)/F(n+ 1,m) = Image(¢).
Thus we see, by induction on #n, that
Gos-..,(1/W"3) . g,
is a basis for F(— [n/2], n — [n/2]).
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We return now to the question of finding a basis for K, K. Our construction
is based on the following observation:

ProposiTioN 10. If {x;|i = 0,1,2,...} is a subset of a torsion free abelian
group G with the property that for each prime p it forms a Z,, basis for G,
then it forms a basis for G over Z.

Our candidates for basis elements for K,K are the Laurent polynomials

1/wt2) - p(w),
where we define
pw) = 1and p,(w) = W—a,,)...(w—a,,)/T(n)
with I'n),a,..,...,a.. as in the introduction.
LEMMA 11. For every prime p and nonnegative integer n, p,(w) € B,,.
Proof. If p > n+ [n/p— 1], then v,(n) = v,(I'(n)) = 0 and the result is
obvious. Otherwise, note that if k is an integer prime to p, then
v(k—a.,) = v(k—a)
since a,,, = @, mod p™ and 0 < a;, < p™. Thus
vo((k = a1,)...(k—a..) = v((k—a)...(k—a,) = v,(n) = y(T'(n)).

LemMa 12. (1/w™2 . p(x)|n = 0,1,...} is a basis for (K.K), over
Z(p)'

Proof. By Lemma 11, the prospective basis elements are actually in
(KoK)(». Consider the matrix expressing 1/w!*/2! . p,(w) in terms of the basis
elements of Proposition 9. Since

/w1 . p,(w) € F(—[n/2],n — [n/2]),

it is a Z,, linear combination of q,,...,1/w*’? . g (w) and so the matrix is
upper triangular. Furthermore the leading and trailing coefficients of both
p.(w) and g.(w) have p-adic norm - v,(n) so that the diagonal entries of the
matrix are all units in Z,,. Thus, by Cramer’s rule, the matrix is invertible.
The result follows.

CoroLLARY 13. {1/w!"? . p(w)|n = 0,1,...} is a basis for K,K over Z.

Section 2

Now that we have constructed a basis for (KoK),, and K,K we may con-
clude, as in [1], Theorem 2.1:

ProposITION 14. The Kronecker Pairing induces isomorphism
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(K°K) () = Hom, k,,(KsK) o) Tx(K ()’ = Hom(KoK (), Z(,))
and

K.K = Hom, x(K\Km\K)" = Hom(K,K, Z).

ProrositioN 15.  The action of
¢ € Hom(KoK, Z) or ¢ € Hom((KoK) (), Z¢,))
on m(K) or mAK), is multiplication by ¢(w’).
Proof. Since m (K) = Z[t,t™"], where ¢ is of degree 2, the action of a
homomorphism f : m,,(K)— m.(K) is multiplication by f(¢). Recall from [2]
that the elements w,u,v € K, K are defined by w = v/u, v = (),

u = n.(t) where 5 and 7, are the right and left actions of =K on K,K. If
¢ €K°K, then its action on m,K is given by

¢(X) = <¢,77R(x)>
where < , > denotes the Kronecker product.
In Proposition 14 the isomorphism Hom, « (KK, 7. K) ~Hom(KoK, Z) is

a restriction to K,K. Using the fact that K, K is an extended w,K module [2]
we see that an inverse to this isomorphism is given by

x (N)x) = fu'-x)

if f€ Hom(K,K, Z), x € K, K is of degree 2i. If ¢ € K°K is the element whose
image under the isomorphisms of Proposition 14 is f, then the action of ¢ on
72:(K) is multiplication by

o) = <P, () > = <P, vi> = f(uv) = f(w).
The p-local case is similar.

Proof of Theorem 1. Identify ¢ € (K°K),, with an element of Hom
((KoK)(py 5 Z(,,) via Proposition 14. Since g, € (KoK),, for all n, we must have

o(wm™.q,)EZ, foranym.
In other words,
dW™(w —ay)...(W—a,)/ (@1 — @1)...(Aus1 — a,)) E L,
or
o(w™(w—ay)...(w—a,)) Ep»'® - Z,.
Using the definition of #(n, i), this is
Y to(ni) - d(w™) € pre - Z(p)

or
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Y 1,(,i) + Mo € pt - Z(p).

as required.
Conversely suppose that {\ ]} is a sequence of elements Z ,, satisfying the
congruences for the cases m = [n/2]. Then

¥= (E tn,i) - )\-‘-ln/2])/(p7p(n)>
lies in Z,,. Define an element ¢ of Hom((KoK)(,),Z,) by

d((1/ W) . q,) = X..

Since these elements form a basis for (KoK),),® is uniquely defined, and has
the required property.

The proof of Theorem 2 is similar.
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