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CHARACTERIZATIONS OF CLOSED DECOMPOSABLE
OPERATORS

BY

WANG SHENGWANG AND I. ERDELYI

In extending the spectral theory beyond the class of spectral operators, one
can no longer produce a spectral measure to represent the operator or to
reveal its spectral structure. In this paper, we extend the use of some substi-
tutes for the unavailable spectral measure, such as spectral capacity [1], [2-1,
I-6] and spectral resolvent [3-1 for the spectral-theoretic study of closed oper-
ators in an abstract Banach space.
The program of the paper is as follows. After a preliminary section, we

supplement the given closed operator with a weaker constituent than that of
the spectral resolvent and obtain a new criterion for its spectral decomposi-
tion (Corollary 2.3). In Section 3, we introduce a concept weaker than that of
spectral capacity for a closed operator and again, we obtain a simpler
description of its spectral decomposition (Theorem 3.3). Moreover, we extend
a property of a bounded decomposable operator to the unbounded case
(Corollary 3.5) and find conditions for a specific linear manifold occuring in
the theory of spectral capacities, to be dense in the underlying space
(Theorem 3.6).

If not mentioned otherwise, throughout this paper T is an unbounded
closed operator with domain Dr and range in a Banach space X over the
complex field C. For a set S, g is the closure, S is the complement, cS is the
boundary, d(2, S) is the distance from a point 2 6 C to S c C, and we write
cov S for the collection of all finite open covers of S. If S is a subset of C,
then the above mentioned topological constructs are referred to the topology

Gof C Without loss of generality, we assume that for $ c C, each }-o 6

cov S has, at most, one unbounded set Go. A set G c C is said to be a
neighborhood of , in symbols G 6 V(R), if for r > 0 sufficiently large,

We write S+/- for the annihilator of S c X in the dual space X*. We write t5
and for the families of all open and closed subsets of C, respectively.
Further, we denote by ffiK and K the collection of all relatively compact
open and that of all compact subsets of C, respectively. N is the set of all
positive integers.
We use the notations a(T), p(T) and R(.; T) for the spectrum resolvent set

and resolvent operator, respectively of T. If T has the single valued extension
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property (SVEP) then, for x X, ar(X is the local spectrum, pr(x) is the
local resolvent set, x(.) is the resolvent function and, for S c C,

X(T, S)= {x X: aT(X) S}
is the spectral manifold, of T. We write (X) for the lattice of all subspaces
(closed linear manifolds) of X and Inv T for the sublattice of (X), whose
members are invariant under T. For Y Inv T, T IY is the restriction of T
to Y. T* denotes the conjugate (if defined) of T.

1. Introduction

We review the definitions and some properties which will serve as a basis
for our study.

1.1. DEFINITION [5]. Given n N, T is said to have the n-spectral decom-
position property (n SDP) if, for any {Gi}’=o e coy a(T) with Go Voo, there
exists a system {Xi}i=o Inv T satisfying the following conditions:

(i) Xi DT if

(ii) X X
i=O

Gi ffjr (1 _< _< n);

and a(TlXi) c Gi, 0 < < n.

If, for every n N, T has the n-SDP then T is said to have the spectral
decomposition property (SDP) [4],

If the system {X}7=0, satisfying conditions (i) and (ii), consists of spectral
maximal spaces of T then T is a decomposable operator.
Some properties of closed operators with the SDP are summarized in the

following result.

1.2. THEOREM [5], [8]. (a) If T has the SDP then, for every F , X(T, F)
is a spectral maximal space of T and

tr[T X(T, F)] F c a(T).

(b) Given T, let Y e Inv T be such that a(T Y) e r. Then there exist
W e Inv T with the followinl properties:

Y Y W, Y DT, a(TIY) a(TIY), a(TIW) O.
Moreover, if A is a bounded Cauchy domain that contains a(TI Y) then
Y PY, where P is the spectral projection

1 R(),(1.1) P - T IY) d2.
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In particular, if T has the SDP then, for every F r,
X(T, F) G(T, F) X(T, O)

with Z(T, F) Inv T, Z(T, F) c Dr, and a[T Z(T, F)].= a[T X(T, F)].
Moreover, ..(T, F)= PX(T, F) where, for Y X(T, F), P is the spectral pro-
jection (1.1).

(c) T is decomposable iff T has the SDP and X(T, )= {0}.
(d) Let T be densely defined with p(T) O. Then T has the SDP iff T* has

the SDP. Extend the definition of ..(T, .) to all open sets in C by

Then

(1.2)

(e)

..(T, G)= {x" x E(T, F), F(e )c G}.

X(T, G) E(T, G) X(T, 0), G open in C;

X*(T*, F) [E(T, C F)] +/-, F closed in C.

If T has the 1-SDP then T has the SDP.

1.3. DEFINITION. A map E" {5--} Inv T is called a spectral resolvent of T if
the following conditions are satisfied"

(I) E(G)Dr, ifG{Sr;
(II) a[T[E(G)] ffJ, for all G ffi;

(III) X .7=o E(G), for every {G}7=o cov a(T) with Go V.
It follows from (I) and (II) that E(0)= {0}, and (III) implies that, for every

G Voo with G a(T), E(G)= X.
Evidently, T endowed with a spectral resolvent has the SDP.
Given F = C with C F, for 2 Fc, let

G() {# e C’I# 21> 1/2d(2, V)},
provided that F 4: . Define

{G(2)’2eFc} if F:/:0;
(1.3) G ((5 c Vow, ifF=O.

1.4. LEMMA. Let T have a spectral resolvent E. Then, for every F j,

X(T, F)= {E(G)" G G}

Proof Formally the same as in [7, Theorem 4.1]. |

2. Prespectral resolvents and the SDP

If we drop condition (I) from Definition 1.3, the resulting weaker concept
of prespectral resolvent will give a characterization of the SDP.
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2.1. DEFINITION. We. call a map g" 15-, Inv T a prespectral resolvent of
T, if it satisfies the following conditions"

(i) a[TI/(G)] c t7
(ii) X ’--o g(G,)

for every G
for every {Gi}’--o e cov tr(T) with Go e Voo.

In contrast to E, we may have/(0) 4: {0}, but for every open G e Vo with
G tr(T), (ii) implies that /(G)= X. If T is bounded then the concepts of
prespectral and spectral resolvents coincide.
Given T, let Z be the set of all x e X satisfying the following property: for

every 20 C there is a neighborhood of 2o and a function f: 6-, Dr, analy-
tic on fi, such that

(2-T)f(2)=x on6.

2.2. THEOREM. Let be a prespectral resolvent of T. The following asser-
tions are equivalent"

(i)
(ii)

(2.1)

Z c if(G), for every G Vo.
There exists a spectral resolvent E of T such that

E(G) ff(G) if G ffK, E(G)= (G) if G is unbounded.

Proof. (i)=(ii) Let H ffix. Then tr[Tlff(H)’l is compact and by
Theorem 1.2 (b), we have

(2.2) (H) =/’(H) W,

where /’(H), W Inv T, /’(H) = D, [T]’(H)] a[T]E(H)] =/-7 and
(TIW)=O. Then T I/’(H) is bounded and W=Z. If GVo then, for
every H , the direct summand W in (2.2) is contained in (G) since, by
hypothesis, W = Z =/(G). Define E" G-, Inv T, by

(2.3) E(G) ’(G), if G flit;
[/(G), if G is unbounded.

Then, for every {Gi}’=o cov tr(T) with Go e Voo and G ffir (1 < < n), we
have

i=0 i=1 i=0

a[T E(Go)3 a[T E(Go)] Go;
tr[TIE(G,)] tr[Tl/’(G,)] trI-Tl/(G,)] d,, 1 < < n.

Consequently, E is a spectral resolvent of T that satisfies condition (2.1).
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(ii) =:,(i) Let E be any spectral resolvent of T that satisfies condition (2.1).
By Lemma 1.4, we have X(T, )= {E(G)’G ffi c V}. Since, for every
G qJ V, E(G) =/(G) as defined by (2.3), we have

Z X(T, O) =/(G), G ffi c V. |

The following properties are immediate consequences of Theorem 2.2.

2.3. COROLLARY. If T has a prespectral resolvent E that satisfies condition
(i) of Theorem 2.2, then T has the SDP.

2.4. COROLLARY. If Z {0}, then every prespectral resolvent of T is a
spectral resolvent of T.

3. Spectral capacities and decomposable operators

Spectral capacities play a role in the theory of decomposable operators
analogous to the role of spectral resolvents in the skeletal structure of oper-
ators with the SDP. The spectral capacity concept introduced axiomatically
in [1], subsequently evolved to an auxiliary of bounded decomposable oper-
ators in [6]. The concepts of spectral resolvent and spectral capacity come in
junction in an extreme case" the maximal spectral resolvent is a spectral
capacity for bounded operators. In this section, we shall both weaken and
generalize the concept of spectral capacity for further characterizations of
unbounded closed decomposable operators.

3.1. DEFINITION. Given n N, a map : S(X) is called a n-prespectral
capacity if it satisfies the following conditions"

(i) {Fk}=l : implies ((’-)o__1 Fk ("]o=t ((Fk);
(ii) X 7=o (d,), for any {G,}7=0 cov C with Go Vow.
Note that (ii) implies that ((C)= X.
Given T, ( is said to be a n-prespectral capacity of T if ( satisfies condi-

tions (i), (ii) above and the following:
(iii) (F) Inv T, tr[Tlf(F)]

( is called a n-spectral capacity of T if it satisfies conditions (i)-(iii) above
and the following

(iv) ((F) c Dr, if F
If, for all n N, ( is a n-prespectral (n-spectral) capacity of T then ( is

said to be a prespectral (spectral) capacity of T.

3.2. Remarks. (a) Condition (i) of Definition 3.1 can be replaced by the
following:

(i’) For every collection ’ c , (((’]rF’ F)= (’FF’ (F).
(b) If is a n-prespectral capacity of T then ((O) c Z. Moreover, if ( is a

n-spectral capacity of T then ((O) {0}.
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3.3. THEOREM. Given T, the following assertions are equivalent"

(I) T has the n-SDP.
(II) T has a n-prespectral capacity f such that f()) is a spectral maximal

space of T. In this case, f is unique.

Proof (II) =:, (I). Let F r. In view of Theorem 1.2 (b), we have

(3.1) (F) ’(F) ) W

where ’(F) c Dr, tr[T I$’(F)] a[TI (F)] c F and tr(TI W) . Since ()
is a spectral maximal space of T, we have W fi(0). For G (, let

(’(G), if G flit;
(3.2) E(G) 4"--.((7), if G is unbounded.

It follows from Definition 3.1 (i) that, for every G (5, we have (0) (G)
and hence (3.2) implies that () E(G) whenever G ffi is unbounded.
Thus, by Definition 3.1 (ii), for any {Gi}’_-o cov a(T) with Go V and
Gi ffjr (1 < < n), we have

X (Gi)-- (GO)+ ’(Gi)"-" E(Gi).
i=0 i=1 i=0

Consequently, T has the n-SDP. In case that is a prespectral capacity of T,
E as defined by (3.2), is a spectral resolvent of T. To see that is unique,
note that for every F , the members of Gv (1.3) are unbounded. Apply
Remark 3.2 (a), (3.2) and Lemma 1.4 to infer that

x(r, F)= c {E(G)’G s Gv) c {e(()" G s Gv)
e(c {t: G e Gv}) e(F).

(I) (II) In view of Theorem 1.2 (e), (a), we can define (F)= X(T, F),
F . By the properties of X(T, .), f is a n-prespectral capacity of T. Since
f(O) X(T,O) isa spectral maximal space of T, (II) holds. |

3.4 COROLLARY. If E is a 1-prespectral capacity of T such that E(O) is a
spectral maximal space of T then E is a prespectral capacity of T.

Proof. Let I$ have the properties stated by the corollary. By Theorem 3.3,
T has the 1-SDP. In view of Theorem 1.2 (e), for every n N, T has the
n-SDP. Thus, again by Theorem 3.3, is a n-prespectral capacity of T for all
nN. |

Next, we extend a property of a bounded decomposable operator [6] to
the unbounded case.

3.5. COROLLARY. T is a decomposable operator iff T has a spectral capac-
ity f. Moreover, in such a case, f is unique.
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Proof. By Theorem 1.2 (c), T is decomposable iff T has the SDP and
X(T, )= {0}. Then, assuming that T has the SDP and X(T, )= {0},
Theorem 3.3 implies that T has a unique prespectral capacity . Since, for
F r, (3.1) implies

etF) e’(F) W e’(F) + (0) e’(F) + {0} e’(F) O,

is a spectral capacity of T.
Conversely, if T has a spectral capacity , then ()= {0}, by Remark 3.2

(b). Since, for G 6ir, ((7)= ’(G), E defined by (3.2) is a spectral resolvent
of T. For F and Gr ffi c V, it follows from (3.3) that X(T, O)=
() {0}. Then, T is decomposable, by Theorem 1.2 (c). |

In [2] an extension of the decomposable operator concept to the
unbounded case was obtained by means of a strong version of the spectral
capacity. An extra feature of the strong spectral capacity e is that, for any
closed F in C, the linear manifold

M(F) {x e(K)" K r, K F}
is dense in e(F). In this vein we have the following"

3.6. THEOREM. Let T have a spectral capacity f.

(i) MiC)= X iff T is densely defined and T* is decomposable.
0i) For every closed F Voo, M(F)= f(F) if T is densely defined and T* is

decomposable.

Proof. By Corollary 3.5, T is decomposable and (F)= X(T, F), F .
Assume that T is densely defined.

(i) In particular, T has the SDP and hence T* has the SDP, by Theorem
1.2 (d). Moreover, for every F , (1.2) holds. Let {Gn}n%o c ffir be such that
Go 0, G c G.+ (n N), and = G C. Putting F C G, n e N,
we have = F. . The monotonicity of the spectral manifold implies
X(T, n) X(T, Gn+ 1), r/6 N, and since T is decomposable we have

E(T, Gn)= X(T, G,), n 0, 1,...

Assume that T is densely defined, apply (1.2) and obtain successively

X*(T*, O)= X*(T*, F.)= (T, Gn) X(T, G.)
n=l n=l

Property (i) now follows from the sequel of the equivalent statements"

(a) T* is decomposable;
(b) X*(T*, 0)= {0}, by Theorem 1.2 (c);
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(c) [U,,%. e(,,)] {o};
(d) U2.-, e(d,,) x.
(ii) Assume that T is densely defined and T* is decomposable. Let

F 6 Voo be closed, let H1 be the interior of F and choose H2 6 r such that
H1 w H2 Coo. Since T is decomposable, we have

(3.4) X X(T, til) + X(T, I2).
Let x X(T, F). Since, by (i), M(C)= X, there is a sequence {x.} c Dr such
that ar(x.) is compact for each n and x. x. In view of (3.4), there is a
representation

x x. x.1 + x.2, x.i X(T,/-/i), 1, 2,

and there is M > 0 (independent of x) such that Ilx, + tlx,ll MIIx x, ll.
Consequently, IIx- xll--, 0 and this implies that IIxll---, 0, i= 1, 2, For the
vectors

we have

Yn X, Xnl X - gn2 11 . N
crr(yn) F [crr(xn) w//2].

Since crr(x.) w/-i2 is compact, y. M(F). Thus, tlx- ytl IIx, II--’ 0 implies
M(F) (F). |
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