GENERALIZATIONS OF RIESZ POTENTIALS AND L^{P} ESTIMATES FOR CERTAIN k-PLANE TRANSFORMS

BY
S. W. Drury ${ }^{1}$
\section*{0. Introduction}

In this article we consider certain generalizations of the complex Riesz potentials on \mathbf{R}^{n}. For $f \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ these are defined by

$$
\begin{equation*}
R_{z} f(x)=\alpha(z) \int|x-y|^{-n+z} f(y) d \lambda(y) \tag{1}
\end{equation*}
$$

for $\mathscr{R} z>0$ and by

$$
\begin{equation*}
\left(R_{z} f\right)^{\wedge}(u)=\alpha(n-z)|u|^{-z} \hat{f}(u) \tag{2}
\end{equation*}
$$

for $\mathscr{R z}<n$ [7, Chapter 5]. Here we have denoted λ the Lebesgue measure on \mathbf{R}^{n}, \hat{f} the Fourier transform of f and α the entire function

$$
\alpha(z)=\frac{\pi^{z / 2}}{\Gamma\left(\frac{1}{2} z\right)}
$$

which has no zeros in $\mathscr{R z}>0$. The definitions agree in $0<\mathscr{R} z<n$.
The generalizations with which we are concerned are all motivated by the k-plane transform. For f a suitable function defined on \mathbf{R}^{n} we define the k-plane transform $T_{k} f$ by

$$
T_{k} f(\Pi)=\int f(x) d \lambda_{\Pi}(x)
$$

where Π is an affine k-plane in \mathbf{R}^{n} and λ_{Π} is the Lebesgue measure on Π. Thus $T_{k} f$ is a function on the manifold $M_{n, k}$ of affine k-planes in \mathbf{R}^{n}. In view of [1, Chapter 7, Section 2, Theorem 3] one may construct on $M_{n, k}$ a measure μ invariant under the action of Euclidean motions. Aside from renormalization, μ is unique with this property.

Conjecture. Let

$$
1 \leq q \leq n+1, \quad n p^{-1}-(n-k) q^{-1}=k
$$

[^0](so that $1 \leq p \leq(n+1)(k+1)^{-1}$). Then T_{k} is a bounded operator:
$$
T_{k}: L^{P}\left(\mathbf{R}^{n}, \lambda\right) \rightarrow L^{q}\left(M_{n, k}, \mu\right)
$$

The conjecture is trivially true for $p=1, q=1$ and is known in the case of the Radon transform [2]. In fact in that article, Oberlin and Stein obtain considerably more delicate estimates. The conjecture is also true in the case $k=1$ of the x -ray transform at least for $1 \leq q<n+1$ [3]. In this article we establish the conjecture for $n \leq 2 k+1$. For other values of n and k only fragmentary results are known. (Added in proof. The conjecture has now been settled affirmatively by M. Christ.)

Our proof makes use of an analytic family of multilinear operators

$$
\begin{equation*}
A_{z}\left(f_{0}, \ldots, f_{n}\right)=\gamma_{n}(z) \int\left\{\prod_{k=0}^{n} f_{k}\left(x_{k}\right)\right\} \Delta^{-n+z} d \lambda\left(x_{0}\right), \ldots, d \lambda\left(x_{n}\right) \tag{3}
\end{equation*}
$$

Here $f_{k} \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$,

$$
\Delta=\left|\operatorname{det}\left(x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{n}-x_{0}\right)\right|
$$

and $\gamma_{n}(z)=\prod_{k=0}^{n-1} \alpha(z-k)$ is an entire function with no zeros in $\mathscr{R} z>n-1$. The integral in (3) converges absolutely for $\mathscr{R} z>n-1$ and we make this definition only for these values of z. In case $n=1$ we have

$$
A_{z}\left(f_{0}, f_{1}\right)=\int\left(R_{z} f_{0}\right) f_{1} d \lambda
$$

so that A_{z} is just a bilinear formulation of the Riesz potential.
It follows from some work of Geibart [4] that A_{z} can be continued analytically to the whole complex plane. The connection of A_{z} with the k-plane transform is simply that

$$
\begin{equation*}
A_{k}\left(f_{0}, \ldots, f_{n}\right)=c_{n, k} \int\left\{\prod_{j=0}^{n} T_{k} f_{j}(\Pi)\right\} d \mu(\Pi) \tag{4}
\end{equation*}
$$

for k an integer $0 \leq k \leq n$.

Theorem 1. Let $\frac{1}{2}(n-1) \leq \mathscr{R} z \leq n$ and $(n+1) p^{-1}=1+\mathscr{R z}$ (so that $1 \leq p \leq 2$). Then

$$
\left|A_{z}\left(f_{0}, \ldots, f_{n}\right)\right| \leq c_{n, z} \prod_{j=0}^{n}\left\|f_{j}\right\|_{p}
$$

The proof of the conjecture (in case $n \leq 2 k+1$) follows almost immediately from these facts. We give the details in Section 1.

In Section 2 we introduce generalizations of Riesz potentials on the Grassmann manifold $G_{2 k, k}$ and on $M_{2 k+1, k}$. We feel that these potentials designated Ω_{z} and Λ_{z} respectively are of independent interest. We rely on the
work of Gelbart both for the definition of these potentials and for the estimates obtained.

Finally, in Section 3 we relate the potentials Ω_{z} and Λ_{z} to k-plane transforms and to A_{z}, giving a different proof of Theorem 1 in the case n odd.

1. The multilinear forms A_{z}

We first need to calculate a Jacobian determinant $J_{n, k}$.
Lemma 1. We have

$$
\left.d \lambda_{\Pi}\left(x_{0}\right), \ldots, d \lambda_{\Pi}\left(x_{k}\right) d \mu\right)(\Pi)=J_{n, k} d \lambda\left(x_{0}\right), \ldots, d \lambda\left(x_{k}\right)
$$

where $J_{n, k}=c_{n, k} \Delta^{-(n-k)}, \Delta$ is the volume of the k-simplex with vertices x_{0}, \ldots, x_{k} and μ is the invariant measure on $M_{n, k}$.

Proof. It is clear that $J_{n, k}$ is a Euclidean invariant of the k-simplex with vertices $x_{0}, x_{1}, \ldots, x_{k}$. Unfortunately the action of Euclidean motions on k simplices has too many orbits $(k>1)$. Hence we make a proof by induction on k. If $k=0$ or 1 the lemma is obvious. Assume it holds for $k-1$ and all n simultaneously. Let V be the volume of the $(k-1)$ simplex with vertices x_{1}, x_{2}, \ldots, x_{k}. Let v be the invariant measure on $M_{n, k-1}$, and for Π a k-plane let v_{Π} denote the invariant measure on the hyperplanes of Π. Further let $\mu_{x_{0}}$ be the invariant probability measure on the manifold of k-plane passing through the point x_{0}. By the uniqueness of the invariant measure on the homogeneous space

$$
\left\{\left(x_{0}, \Pi\right) ; \quad x_{0} \in \mathbf{R}^{n}, \Pi \in M_{n, k}, x_{0} \in \Pi\right\}
$$

we have

$$
\begin{equation*}
d \mu_{x_{0}}(\Pi) d \lambda\left(x_{0}\right)=d \lambda_{\Pi}\left(x_{0}\right) d \mu(\pi) \tag{5}
\end{equation*}
$$

for suitable normalizations of these measures. The orbits of

$$
\left\{\left(x_{0}, \Theta\right) ; \quad x_{0} \in \mathbf{R}^{n}, \Theta \in M_{n, k-1}\right\}
$$

are parametrized by r, the perpendicular distance from x_{0} to Θ. The action of dilations about the point x_{0} yields

$$
\begin{equation*}
d v_{\Pi}(\Theta) d \mu_{x_{0}}(\Pi)=\mathrm{Cr}^{-(n-k)} d v(\Theta) \tag{6}
\end{equation*}
$$

Finally our induction hypothesis yields both

$$
\begin{equation*}
c_{n, k-1} V^{-(n-k+1)} d \lambda\left(x_{1}\right), \ldots, d \lambda\left(x_{k}\right)=d \lambda_{\Theta}\left(x_{1}\right), \ldots, d \lambda_{\Theta}\left(x_{k}\right) d v(\Theta) \tag{7}
\end{equation*}
$$

and, when applied to the hyperplanes of Π,

$$
\begin{equation*}
c_{k, k-1} V^{-1} d \lambda_{\Pi}\left(x_{1}\right), \ldots, d \lambda_{\Pi}\left(x_{k}\right)=d \lambda_{\Theta}\left(x_{1}\right), \ldots, d \lambda_{\Theta}\left(x_{k}\right) d v_{\Pi}(\Theta) . \tag{8}
\end{equation*}
$$

Now, using (8), (5), (6) and (7) in turn we have

$$
\begin{aligned}
d \lambda_{\Pi}\left(x_{0}\right), \ldots, d \lambda_{\Pi}\left(x_{k}\right) d \mu(\Pi) & =c V d \lambda_{\Pi}\left(x_{0}\right) d \lambda_{\Theta}\left(x_{1}\right), \ldots, d \lambda_{\Theta}\left(x_{k}\right) d v_{\Pi}(\Theta) d \mu(\Pi) \\
& =c V d \lambda_{\Theta}\left(x_{1}\right), \ldots, d \lambda_{\Theta}\left(x_{k}\right) d v_{\Pi}(\Theta) d \mu_{x_{0}}(\Pi) d \lambda\left(x_{0}\right) \\
& =c V r^{-(n-k)} d \lambda_{\Theta}\left(x_{1}\right), \ldots, d \lambda_{\Theta}\left(x_{k}\right) d v(\Theta) d \lambda\left(x_{0}\right) \\
& =c V^{-(n-k)} r^{-(n-k)} d \lambda\left(x_{0}\right) d \lambda\left(x_{1}\right), \ldots, d \lambda\left(x_{k}\right) .
\end{aligned}
$$

Since $\Delta=c r V$ we have our result.
Next we shall need to review the work of Oberlin and Stein [2]. Let $G_{n, k}$ denote the Grassmann manifold of linear k-planes (i.e., k-planes passing through the origin). It is a compact manifold and possesses an invariant probability measure γ under the action of the orthogonal group. We may view $M_{n, k}$ as a bundle over $G_{n, k}$ in which each fibre consists of a family of mutually parallel k-planes. We follow Solmon [5] in denoting a generic element Π on $M_{n, k}$ by

$$
\Pi=(\pi, x)=\pi+x
$$

the translate of $\pi \in G_{n, k}$ by $x \in \pi^{\perp}$. In this way the fibre over π is realized as the ($n-k$)-dimensional space π^{\perp}. We may take

$$
d \mu(\pi, x)=d \lambda_{\pi^{\perp}}(x) d \gamma(\pi)
$$

since the right hand side is invariant under Euclidean motions.
Oberlin and Stein are concerned with the case $k=n-1$. Let us denote by $S\left(=T_{n-1}\right)$ the Radon transform, and by S_{z} the Radon transform followed by the Riesz potential R_{z} on the 1-dimensional fibre. Thus

$$
S f(\pi, x)=\int f(x+y) d \lambda_{\pi}(y)
$$

and

$$
S_{z} f(\pi, x)=\alpha(z) \int|x-y|^{-1+z} S f(\pi, y) d \lambda_{\pi^{\perp}}(y)
$$

for $\mathscr{R} z>0$, and

$$
S_{z} f^{\wedge}(\pi, u)=\alpha(1-z)|u|^{-z} S f^{\wedge}(\pi, u) \quad\left(u \in \pi^{\perp}\right)
$$

for $\mathscr{R} z<1$ where ${ }^{\wedge}$ denotes the Fourier transform along the fibre. Since

$$
S f^{\wedge}(\pi, u)=\hat{f}(u)
$$

Oberlin and Stein find that for $\mathscr{R} z=-\frac{1}{2}(n-1)$,

$$
\begin{equation*}
\left\|S_{z} f\right\|_{2}=C_{z, n}\|f\|_{2} \tag{9}
\end{equation*}
$$

From this and the trivial estimate

$$
\left\|S_{z} f\right\|_{\infty} \leq C_{z, n}\|f\|_{1} \quad(\mathscr{R z}=1)
$$

they deduce

$$
\begin{equation*}
\|S f\|_{n+1} \leq C\|f\|_{(n+1) / n} . \tag{10}
\end{equation*}
$$

For $f_{k} \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)(0 \leq k \leq n)$ let us define $F \in C_{c}^{\infty}(M(n, n))$ on the space $M(n, n)$ of $n \times n$ real matrices by

$$
F\left(y_{1}, \ldots, y_{n}\right)=\int f_{0}\left(x_{0}\right) f_{1}\left(x_{0}+y_{1}\right), \ldots, f_{n}\left(x_{0}+y_{n}\right) d \lambda\left(x_{0}\right)
$$

Then for $\mathscr{R} z>n-1$ we have by (3)

$$
\begin{equation*}
A_{z}\left(f_{0}, \ldots, f_{n}\right)=\gamma_{n}(z) \int F(Y)|\operatorname{det} Y|^{-n+z} d Y \tag{11}
\end{equation*}
$$

where $d Y$ denotes Lebesgue measure on $M(n, n)$.
According to the work of Gelbart [4, Section 4] the locally integrable density

$$
\gamma_{n}(z)|\operatorname{det} Y|^{-n+z} \quad(\mathscr{R} z>n-1)
$$

can be continued analytically to the whole complex plane as a distribution Σ_{z} on $M(n, n)$. Thus we have:

Lemma 2. For $f_{k} \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)(0 \leq k \leq n), A_{z}\left(f_{0}, \ldots, f_{n}\right)$ can be continued analytically to the whole complex plane. Furthermore for fixed z, A_{z} is a continuous multilinear form on $C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$.

Proof of Theorem 1. We proceed by induction on n. For $n=1$ the result is well known [7, Chapter 5]. Assume that the result holds for $n-1$. Let $f_{k} \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)(0 \leq k \leq n)$ and assume for the moment that $\mathscr{R} z>n-1$. Then

$$
A_{z}\left(f_{0}, \ldots, f_{n}\right)=\gamma_{n}(z) \int\left\{\prod_{k=0}^{n} f_{k}\left(x_{k}\right)\right\} \Delta^{-n+z} d \lambda\left(x_{0}\right), \ldots, d \lambda\left(x_{n}\right)
$$

Let Π be the hyperplane passing through $x_{1}, x_{2}, \ldots, x_{n}$. Then, according to Lemma 1,

$$
A_{z}\left(f_{0}, \ldots, f_{n}\right)=\gamma_{n}(z) \int\left\{\prod_{k=0}^{n} f_{k}\left(x_{k}\right)\right\} \Delta^{-n+z} \Delta^{\prime} d \lambda\left(x_{0}\right) d \lambda_{\Pi}\left(x_{1}\right), \ldots, d \lambda_{\Pi}\left(x_{n}\right) d \mu(\Pi)
$$

where Δ^{\prime} is the volume of the simplex with vertices x_{1}, \ldots, x_{n}. Now $\Delta=C_{n}$ $d\left(x_{0}, \Pi\right) \Delta^{\prime}$ where $d\left(x_{0}, \Pi\right)$ is the perpendicular distance from x_{0} to Π so that

$$
\begin{equation*}
A_{z}\left(f_{0}, \ldots, f_{n}\right)=c_{n} \int g_{z}(\Pi) h_{z}(\Pi) d \mu(\Pi) \tag{12}
\end{equation*}
$$

where

$$
h_{z}(\Pi)=A_{z}\left(\left.f_{1}\right|_{\Pi},\left.f_{2}\right|_{\Pi}, \ldots,\left.f_{n}\right|_{\Pi}\right)
$$

and

$$
g_{z}(\Pi)=\alpha(z-n+1) \int f_{0}\left(x_{0}\right) d\left(x_{0}, \Pi\right)^{-n+z} d \lambda\left(x_{0}\right)
$$

An easy calculation shows that $g_{z}=S_{z-n+1} f_{0}$.
In equation (12), A_{z}, g_{z} and h_{z} are defined and analytic on the whole complex plane. By Lemma 2, h_{z} is a continuous function of compact support on $M_{n, n-1}$. It is easy to see that g_{z} is locally integrable on $M_{n, n-1}$. It follows that the identity (12) holds for all complex z. Let us take $\mathscr{R} z=\frac{1}{2}(n-1)$. Then by (9),

$$
\begin{equation*}
\left\|g_{z}\right\|_{2} \leq C_{z, n}\left\|f_{0}\right\|_{2} \quad\left(\mathscr{R} z=\frac{1}{2}(n-1)\right) . \tag{13}
\end{equation*}
$$

On the other hand, h_{z} is controlled by the induction hypothesis

$$
\begin{equation*}
\left|h_{z}(\Pi)\right| \leq C_{z, n} \prod_{k=1}^{n}\left\{S\left|f_{k}\right|^{a}(\Pi)\right\}^{1 / a} \tag{14}
\end{equation*}
$$

where $a=2 n /(n+1)$. It follows from (14), (10) and Holder's inequality that

$$
\begin{equation*}
\left\|h_{z}\right\|_{2} \leq C_{z, n} \prod_{k=1}^{n}\left\|f_{k}\right\|_{2} \quad\left(\mathscr{R} z=\frac{1}{2}(n-1)\right) \tag{15}
\end{equation*}
$$

It now follows from (13) and (15) that

$$
\begin{equation*}
\left\lvert\, A_{z}\left(f_{0}, \ldots, f_{n}\right) \leq C_{z, n} \prod_{k=0}^{n}\left\|f_{k}\right\|_{2} \quad\left(\mathscr{R} z=\frac{1}{2}(n-1)\right)\right. \tag{16}
\end{equation*}
$$

Combining this with the trivial estimate

$$
\mid A_{z}\left(f_{0}, \ldots, f_{n}\right) \leq C_{z, n} \prod_{k=0}^{n}\left\|f_{k}\right\|_{1} \quad(\mathscr{R} z=n)
$$

and the fact that the constants generated by these methods have at worse exponential growth in $\mathscr{I} z$, we have the conclusion of Theorem 1 by routine complex interpolation arguments.

By the same methods and the use of the mixed norm estimates of Oberlin and Stein one may prove the following generalization.

Theorem 1. Suppose that $\frac{1}{2}(n-1) \leq \mathscr{R} z \leq n$,

$$
\begin{gathered}
\sum_{k=0}^{n} p_{k}^{-1}=1+\mathscr{R} z \\
n^{-1} \mathscr{R} z \leq p_{k}^{-1} \leq n(n+1)^{-1}+n^{-1}(n+1)^{-1} \mathscr{R} z \quad(0 \leq k \leq n) .
\end{gathered}
$$

Then

$$
\left|A_{z}\left(f_{0}, \ldots, f_{n}\right)\right| \leq C_{z, n} \prod_{k=0}^{n}\left\|f_{k}\right\|_{p_{k}}
$$

We leave the details to the reader.

At this point let us digress to take the Fourier transform of Theorem 1 in the case $p=2, n=2$. Gelbart [4] has shown that the Fourier transform of Σ_{z} is locally integrable for $\mathscr{R} z<1$ and is given explicitly by

$$
\hat{\Sigma}_{z}(Y)=\gamma_{n}(n-z)|\operatorname{det} Y|^{-z}
$$

This leads to the identity

$$
\begin{align*}
& A_{z}\left(f_{0}, \ldots, f_{n}\right) \tag{17}\\
= & \gamma_{n}(n-z) \int \hat{f}_{0}\left(-\left(u_{1}+\cdots+u_{n}\right)\right) \hat{f}_{1}\left(u_{1}\right), \ldots, \hat{f}_{n}\left(u_{n}\right) D^{-z} d \lambda\left(u_{1}\right), \ldots, d \lambda\left(u_{n}\right)
\end{align*}
$$

where $D=\left|\operatorname{det}\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right|$. Incidentally, (17) with $z=0$ immediately gives (4) with $k=0$. Specializing now to the case $n=2$, from Plancherel's theorem we have:

Theorem 1". Let $\phi \in L^{2}\left(\mathbf{R}^{2}\right), \alpha \in \mathbf{R}$. Then

$$
\phi\left(u_{1}+u_{2}\right)\left|\operatorname{det}\left(u_{1}, u_{2}\right)\right|^{-(1 / 2)+i \alpha} \quad\left(u_{1}, u_{2} \in \mathbf{R}^{2}\right)
$$

is an L^{2} bounded kernel on \mathbf{R}^{2}.

Our next task is to establish the relation (4) between A_{k} and T_{k}. We will do this by induction on n with k fixed. If $k=n$ the relation follows directly from the definition (3) of A_{z}. Further if $k=n-1$ then (12) yields

$$
A_{n-1}\left(f_{0}, \ldots, f_{n}\right)=c_{n} \int g_{n-1}(\Pi) h_{n-1}(\Pi) d \mu(\Pi)
$$

where $g_{n-1}=S_{0} f_{0}=c_{n} S f$ by well known properties of the standard Riesz potential, and

$$
\begin{aligned}
h_{n-1}(\Pi) & =A_{n-1}\left(\left.f_{1}\right|_{\Pi}, \ldots,\left.f_{n}\right|_{\Pi}\right) \\
& =c_{n} \prod_{j=1}^{n}\left\{\int f_{j}\left(x_{j}\right) d \lambda_{\Pi}\left(x_{j}\right)\right\} \\
& =c_{n} \prod_{j=1}^{n} S f_{j}(\Pi)
\end{aligned}
$$

It follows that

$$
A_{n-1}\left(f_{0}, \ldots, f_{n}\right)=c_{n} \int \prod_{j=0}^{n} S f_{j}(\Pi) d \mu(\Pi)
$$

as required. In this way the induction starts.

For the general induction step we assume the result for $n-1$ and prove it for n. We may assume that $k<n-1$. Again by (12) we have

$$
\begin{equation*}
A_{k}\left(f_{0}, \ldots, f_{n}\right)=c_{n} \int g_{k}(\Pi) h_{k}(\Pi) d \mu(\Pi) \tag{18}
\end{equation*}
$$

where $g_{k}=S_{k-n+1} f_{0}$ and

$$
\begin{equation*}
h_{k}(\Pi)=A_{k}\left(\left.f_{1}\right|_{\Pi}, \ldots,\left.f_{n}\right|_{\Pi}\right)=\int\left\{\prod_{j=1}^{n} T_{k} f_{j}(\Theta)\right\} d v_{\Pi}(\Theta) \tag{19}
\end{equation*}
$$

by the induction hypothesis. In (18) and (19), Π denotes a generic hyperplane, Θ a k-plane, μ is the invariant measure on $M_{n, n-1}$ and v_{Π} is the invariant measure on the k-planes of Π.

By the uniqueness of invariant measures on homogeneous spaces we have

$$
\begin{equation*}
d v_{\Pi}(\Theta) d \mu(\Pi)=c_{n, k} d \mu_{\Theta}(\Pi) d v(\Theta) \tag{20}
\end{equation*}
$$

where v is the invariant measure on $M_{n, k}$ and μ_{Θ} is the invariant measure on the manifold of hyperplanes containing the k-plane Θ. The general induction step is an immediate consequence of (18), (19), (20) and the identity

$$
\begin{equation*}
\int g_{k}(\Pi) d \mu_{\Theta}(\Pi)=c_{n, k} T_{k} f_{0}(\Theta) \tag{21}
\end{equation*}
$$

which has to be interpreted in the distributional sense since we know only that g_{k} is locally integrable on $M_{n, n-1}$. We now establish (21) by means of the uniqueness of Fourier transforms.

Let us write $\Theta=(\theta, x)$ with $\theta \in G_{n, k}, x \in \theta^{\perp}$. Then we fix θ and calculate the Fourier transforms of each side of (21) along the fibre θ^{\perp}. We have

$$
\begin{equation*}
T_{k} f_{0}^{\wedge}(\theta, u)=c_{n, k} \hat{f}_{0}(u) \quad\left(u \in \theta^{\perp}\right) \tag{22}
\end{equation*}
$$

The left hand side of (21) is more difficult. It can be rewritten as

$$
\int g_{k}(\Pi) d \mu_{\theta+x}(\Pi)=\int g_{k}(\pi+x) d \mu_{\theta}(\pi)
$$

where $\pi \in G_{n, n-1}$. If $x=y+y^{\prime}, y \in \pi^{\perp}, y^{\prime} \in \pi \cap \theta^{\perp}$ is the orthogonal decomposition of x, we may write $\pi+x=(\pi, y)\left(y \in \pi^{\perp}\right)$. Thus the Fourier transform of the left hand member of (21) is

$$
\begin{equation*}
\int g_{k}(\pi, y) e^{-2 \pi i u \cdot\left(y+y^{\prime}\right)} d \lambda_{\pi^{\perp}}(y) d \lambda_{\pi \cap \theta \perp}\left(y^{\prime}\right) d \mu_{\theta}(\pi) \tag{23}
\end{equation*}
$$

at least in the distributional sense. But $g_{k}=S_{k-n+1} f_{0}$ and $k-n+1<1$ so that, by definition of S_{z},

$$
\hat{g}_{k}(\pi, u)=c_{n, k}|u|^{-k+n-1} \hat{f}_{0}(u) \quad\left(u \in \pi^{\perp}\right)
$$

Thus (23) becomes

$$
c_{n, k}|u|^{-k+n-1} \hat{f}_{0}(u) \int e^{-2 \pi i u \cdot y^{\prime}} d \lambda_{\pi \cap \theta \perp}\left(y^{\prime}\right) d \mu_{\theta}(\pi)
$$

and the integral is easily seen to be equal to $c_{n, k}|u|^{-n+k-1}$ in the distributional sense. This completes the proof of (21) and the general induction step.

We now establish the conjecture for the cases outlined in the introduction.
Theorem 2. Let

$$
n \leq 2 k+1, \quad 1 \leq q \leq n+1, \quad n p^{-1}-(n-k) q^{-1}=k
$$

(so that $1 \leq p \leq(n+1)(k+1)^{-1}$). Then T_{k} is a bounded operator:

$$
T_{k}: L^{p}\left(\mathbf{R}^{n}, \lambda\right) \rightarrow L^{q}\left(M_{n, k}, \mu\right)
$$

Proof. The result is easy for $p=1, q=1$:

$$
\begin{aligned}
\left\|T_{k} f\right\|_{1} & =\int\left|\int f(x+y) d \lambda_{\theta}(y)\right| d \lambda_{\theta \perp}(x) d \gamma(\theta) \\
& \leq \iint|f(x+y)| d \lambda_{\theta}(y) d \lambda_{\theta 1}(x) d \gamma(\theta) \\
& =\|f\|_{1} .
\end{aligned}
$$

By the principle of convexity it suffices to establish the result at the other endpoint $p=(n+1)(k+1)^{-1}, q=n+1$. By (4) we have

$$
\left\|T_{k} f\right\|_{n+1}^{n+1}=c_{n, k} A_{k}(f, \ldots, f) \quad(n+1 \text { arguments })
$$

and, by Theorem 1,

$$
\left|A_{k}(f, \ldots, f)\right| \leq c_{n, k}\|f\|_{p}^{n+1}
$$

where $(n+1) p^{-1}=1+k$ as required.

2. Riesz potentials on $G_{2 k, k}$ AND $M_{2 k+1, k}$

Let $\pi_{1}, \pi_{2} \in G_{n, k}$. Select an orthonormal basis $e_{a}^{(j)}(1 \leq a \leq k)$ for π_{j}. Let us put

$$
A_{a, b}=\left(e_{a}^{(1)}, e_{b}^{(2)}\right)
$$

so that A is a $k \times k$ matrix with operator norm ≤ 1. Different choices of basis would yield the matrix $U A V$ with $U, V \in O(k)$. Now define

$$
\begin{equation*}
s\left(\pi_{1}, \pi_{2}\right)=\left(\operatorname{det}\left(I-A^{t} A\right)\right)^{1 / 2} \tag{24}
\end{equation*}
$$

an invariant of the two k-planes π_{1} and π_{2}. If $k=1, s\left(\pi_{1}, \pi_{2}\right)$ is just the sine of the angle between π_{1} and π_{2}.

Next let us fix a reference k-plane $\pi_{0} \in G_{n, k}$ and define the open subset \mathscr{U} of $G_{n, k}$ by

$$
\mathscr{U}=\left\{\pi ; \pi \in G_{n, k}, \pi \cap \pi_{0}^{\perp}=\{0\}\right\} .
$$

We observe that the complement \mathscr{U}^{c} of \mathscr{U} is of codimension one in $G_{n, k}$ and hence is γ-null. From the measure-theoretic viewpoint we may replace $G_{n, k}$ by \mathscr{U}. We now parametrize \mathscr{U} in the standard way. For $\pi \in \mathscr{U}$ we denote by $\rho_{\pi, \pi_{0}}$ the restriction to π of the orthogonal projection onto π_{0}. Since $\pi \in \mathscr{U}$, $\rho_{\pi, \pi_{0}}$ is invertible. Thus

$$
u(\pi)=\rho_{\pi, \pi_{0}{ }^{\perp}} \circ\left(\rho_{\pi, \pi_{0}}\right)^{-1} \in \mathscr{L}\left(\pi_{0}, \pi_{0}^{1}\right)
$$

A little linear algebra shows that $u: \mathscr{U} \rightarrow \mathscr{L}\left(\pi_{0}, \pi_{0}^{\perp}\right)$ is a bijective diffeomorphism.

Select an orthonormal basis e_{1}, \ldots, e_{n} of \mathbf{R}^{n} such that e_{1}, \ldots, e_{k} is a basis of π_{0}. Let $\pi \in \mathscr{U}$ and let f_{1}, \ldots, f_{k} be an orthonormal basis of π. Let

$$
\begin{array}{ll}
A_{a, b}=\left(e_{a}, f_{b}\right), & 1 \leq a \leq k, \quad 1 \leq b \leq k \\
Q_{a, b}=\left(e_{a}, f_{b}\right), & k+1 \leq a \leq n, \quad 1 \leq b \leq k
\end{array}
$$

so that A is a $k \times k$ matrix, Q an $(n-k) \times k$ matrix such that $A^{t} A+Q^{t} Q=I$. Further $u(\pi)$ is represented by the $(n-k) \times k$ matrix $R=Q A^{-1}$. The matrix R will be considered as the "coordinate matrix" of the k-plane $\pi \in \mathscr{U}$.

Lemma 3. We have $d \gamma(R)=c\left(\operatorname{det}\left(I+R^{t} R\right)\right)^{-n / 2} d R$ where $d R$ denotes Lebesgue measure on the space $M(n-k, k)$ of $(n-k) \times k$ matrices.

Proof. Let ϕ be a nice rapidly decreasing positive function on \mathbf{R}^{+}. The measure

$$
d \theta\binom{A}{-\ddot{Q}}=\phi\left(\operatorname{tr}\left(A^{t} A+Q^{t} Q\right)\right) d A d Q
$$

on the space $M(n, k)$ is invariant under left multiplication by $O(n)$. It follows that the image measure $\check{\kappa}(\theta)$ under κ,

$$
\kappa\left(\begin{array}{c}
A \\
\hdashline- \\
Q
\end{array}\right)=Q A^{-1}
$$

is a constant multiple of γ. Putting $Q=R A$ yields

$$
d \theta=\phi\left(\operatorname{tr}\left(A^{t} A+A^{t} R^{t} R A\right)\right)|\operatorname{det} A|^{n-k} d A d R
$$

Finally integrating out with respect to A yields the conclusion of the lemma.
Now let $n=2 k+1$, let $\sigma_{\pi_{0}}$ be the invariant measure on the sphere of unit vectors $u=\left(0, \ldots, 0, u_{k+1}, \ldots, u_{n}\right)$ in π_{0}^{\perp}. Let γ_{u} be the invariant measure on the Grassmann of k-planes in u^{\perp}.

Lemma 4. $\quad d \gamma(\pi)=c s\left(\pi_{0}, \pi\right) d \gamma_{u}(\pi) d \sigma_{\pi_{0}}(u)$.

Proof. Clearly $\pi \in u^{\perp}$ if and only if $u R=0$. It follows from Lemma 3 that

$$
\begin{equation*}
d \gamma_{u}(R)=c\left(\operatorname{det}\left(I+R^{t} R\right)\right)^{-(n-1) / 2} d \alpha_{u}(R) \tag{25}
\end{equation*}
$$

where α_{u} is Lebesgue measure on the space of $(n-k) \times k$ matrices R such that $u R=0$. Up to choice of sign, u can be recovered from R by

$$
u= \pm\left\|\Lambda^{k} R\right\|^{-1} \Lambda^{k} R
$$

and it follows that

$$
d \alpha_{u}(R) d \sigma_{\pi_{0}}(u)=j(R) d R
$$

for some jacobian $j(R)$. By invariance,

$$
j(U R A)=j(R) \quad \text { for all } U \in O(k+1), \quad A \in S L(k, \mathbf{R}) .
$$

A little linear algebra shows that outside the null set on which $\operatorname{det}\left(R^{t} R\right)=0$, the orbits are parametrized by $\operatorname{det}\left(R^{t} R\right)$. Thus j is a function of $\operatorname{det}\left(R^{t} R\right)$ alone. The action of dilations on R now yields $j(R)=\left(\operatorname{det}\left(R^{t} R\right)\right)^{-1 / 2}$. Combining this with (25) and Lemma 3 we have

$$
\begin{equation*}
d \gamma_{u}(R) d \sigma_{\pi_{0}}(u)=\left(\operatorname{det}\left(I+R^{t} R\right)\right)^{1 / 2}\left(\operatorname{det} R^{t} R\right)^{-1 / 2} d \gamma(R) . \tag{26}
\end{equation*}
$$

Finally $A^{t} R^{t} R A=Q^{t} Q=I-A^{t} A$ and $A^{t}\left(I+R^{t} R\right) A=I$ so that

$$
\operatorname{det}\left(I+R^{t} R\right)^{-1 / 2} \operatorname{det}\left(R^{t} R\right)^{1 / 2}=\operatorname{det}\left(I-A^{t} A\right)^{1 / 2}
$$

Thus the lemma follows from (26) and (24).

Lemma 5. We have $d \gamma\left(\pi_{1}\right) d \gamma\left(\pi_{2}\right)=c s\left(\pi_{1}, \pi_{2}\right) d \gamma_{u}\left(\pi_{1}\right) d \gamma_{u}\left(\pi_{2}\right) d \sigma(u)$ where σ is the invariant measure on the sphere in \mathbf{R}^{n}.

Proof. The manifold $\left\{(\pi, u) ; \pi \in G_{n, k}, u \in \mathbf{R}^{n},\|u\|=1, u \in \pi^{\perp}\right\}$ is clearly a homogeneous space of $O(n)$. The probability measures

$$
d \sigma_{\pi}(u) d \gamma(\pi) \quad \text { and } \quad d \gamma_{u}(\pi) d \sigma(u)
$$

are both invariant on this homogeneous space. Thus by [1, Chapter 7, Théorème 3] they must coincide. The result now follows from Lemma 4.

Lemma 6. Let $\pi_{1}, \pi_{2} \in \mathscr{U}$. Then

$$
s\left(\pi_{1}, \pi_{2}\right)=\left|\operatorname{det}\left(R_{1}-R_{2}\right)\right|\left(\operatorname{det}\left(I+R_{1}^{t} R_{1}\right)\right)^{-1 / 2}\left(\operatorname{det}\left(I+R_{2}^{t} R_{2}\right)\right)^{-1 / 2}
$$

Remark. In case $k=1$ this is just the difference formula for sine in the form

$$
\left|\sin \left(\theta_{1}-\theta_{2}\right)\right|=\left|\tan \theta_{1}-\tan \theta_{2}\right|\left(1+\tan ^{2} \theta_{1}\right)^{-1 / 2}\left(1+\tan ^{2} \theta_{2}\right)^{-1 / 2}
$$

Proof. Let A_{j}, Q_{j} and R_{j} be the matrices relating to π_{j}. Let $f_{a}^{(j)}$ $(1 \leq a \leq k)$ be an orthonormal basis of π_{j} and let $A_{a, b}=\left(f_{a}^{(1)}, f_{b}^{(2)}\right)$. Then

$$
\begin{aligned}
A & =A_{1}^{t} A_{2}+Q_{1}^{t} Q_{2}=A_{1}^{t}\left(I+R_{1}^{t} R_{2}\right) A_{2} \\
A^{t} A & =A_{2}^{t}\left(I+R_{2}^{t} R_{1}\right) A_{1} A_{1}^{t}\left(I+R_{1}^{t} R_{2}\right) A_{2}
\end{aligned}
$$

But $A_{j} A_{j}^{t}=\left(I+R_{j}^{t} R_{j}\right)^{-1} j=1,2$ so that

$$
\begin{aligned}
& \operatorname{det}\left(I-A^{t} A\right) \\
& =\operatorname{det}\left(I-\left(I+R_{2}^{t} R_{2}\right)^{-1}\left(I+R_{2}^{t} R_{1}\right)\left(I+R_{1}^{t} R_{1}\right)^{-1}\left(I+R_{1}^{t} R_{2}\right)\right) \\
& =\left(\operatorname{det}\left(I+R_{2}^{t} R_{2}\right)\right)^{-1} \operatorname{det}\left(I+R_{2}^{t} R_{2}-\left(I+R_{2}^{t} R_{1}\right)\left(I+R_{1}^{t} R_{1}\right)^{-1}\left(I+R_{1}^{t} R_{2}\right)\right)
\end{aligned}
$$

But

$$
\begin{aligned}
I+R_{2}^{t} R_{2}-\left(I+R_{2}^{t} R_{1}\right)(I+ & \left.R_{1}^{t} R_{1}\right)^{-1}\left(I+R_{1}^{t} R_{2}\right) \\
= & I+R_{2}^{t} R_{2}-\left(I+R_{1}^{t} R_{1}+\left(R_{2}-R_{1}\right)^{t} R_{1}\right) \\
& \times\left(I+R_{1}^{t} R_{1}\right)^{-1}\left(I+R_{1}^{t} R_{1}+R_{1}^{t}\left(R_{2}-R_{1}\right)\right) \\
= & \left(R_{2}-R_{1}\right)^{t}\left(I-R_{1}\left(I+R_{1}^{t} R_{1}\right)^{-1} R_{1}^{t}\right)\left(R_{2}-R_{1}\right) \\
= & \left(R_{2}-R_{1}\right)^{t}\left(I+R_{1} R_{1}^{t}\right)^{-1}\left(R_{2}-R_{1}\right) .
\end{aligned}
$$

Since $\operatorname{det}\left(I+R_{1} R_{1}^{t}\right)=\operatorname{det}\left(I+R_{1}^{t} R_{1}\right)$, the result now follows.
At this point let us again recall the distribution of Gelbart, this time on the space of $k \times k$ matrices $M(k, k)$. It is designated Σ_{z} and is defined as the locally integrable density

$$
\gamma_{k}(z)|\operatorname{det} R|^{-k+z}
$$

for $\mathscr{R} z>k-1$ and can be continued analytically to the whole complex plane. Furthermore Gelbart shows that the Fourier transform $\hat{\Sigma}_{z}$ is given by the locally integrable function

$$
\hat{\Sigma}_{z}(S)=\gamma_{k}(k-z)|\operatorname{det} S|^{-z}
$$

for $\mathscr{R} z<1$. In particular if $\mathscr{R} z=0, \hat{\Sigma}_{z}$ is a constant multiple of a unitary convolver on L^{2}. One has the estimate

$$
\left\|\Sigma_{i \gamma}\right\| \leq c_{1} e^{c_{2}|\gamma|} \quad(\gamma \text { real })
$$

on the L^{2} convolver form.
For $\mathscr{R} z>k-1$ we may define a distribution Ω_{z} on $G_{2 k, k} \times G_{2 k, k}$ by

$$
d \Omega_{z}\left(\pi_{1}, \pi_{2}\right)=\gamma_{k}(z) s\left(\pi_{1}, \pi_{2}\right)^{-k+z} d \gamma\left(\pi_{1}\right) d \gamma\left(\pi_{2}\right)
$$

Lemma 7. (a) The distribution Ω_{z} can be continued analytically for all complex z.
(b) Let $0 \leq \mathscr{R} z \leq k, 2 k p^{-1}=k+\mathscr{R} z$. Then

$$
\left|\int f_{1}\left(\pi_{1}\right) f_{2}\left(\pi_{2}\right) d \Omega_{z}\left(\pi_{1}, \pi_{2}\right)\right| \leq c_{k, z}\left\|f_{1}\right\|_{p}\left\|f_{2}\right\|_{p}
$$

Furthermore $c_{k, z}$ increases at most exponentially in $\mathscr{I} z$.

Proof. It is easy to write

$$
G_{2 k, k} \times G_{2 k, k}=\bigcup_{l=1}^{L} \mathscr{U}_{l} \times \mathscr{U}_{l}
$$

where $\mathscr{U}_{l}(1 \leq l \leq L)$ are the open sets determined by finitely many reference planes π_{1}, \ldots, π_{L}. Part (a) now follows from the corresponding fact for Σ_{z} by Lemma 6 and a standard resolution of unity argument.

For (b), the case $p=1, \mathscr{R} z=k$ is trivial since Ω_{z} is a bounded function. By routine complex interpolation arguments it suffices to prove the result for $p=2, \mathscr{R} z=0$.

For this it suffices to work with one reference plane π_{0}. Let $f_{1}, f_{2} \in C_{c}^{\infty}(\mathscr{U})$. Then by Lemmas 3 and 6 we have

$$
\begin{aligned}
&\left|\int f_{1}\left(\pi_{1}\right) f_{2}\left(\pi_{2}\right) d \Omega_{z}\left(\pi_{1}, \pi_{2}\right)\right| \\
&=\left.|c(z)|\left|\int \tilde{f}_{1}\left(R_{1}\right) \tilde{f}_{2}\left(R_{2}\right)\right| \operatorname{det}\left(R_{1}-R_{2}\right)\right|^{-k+z} \\
& \times\left(\operatorname{det}\left(I+R_{1}^{t} R_{1}\right) \operatorname{det}\left(I+R_{2}^{t} R_{2}\right)\right)^{-1 / 2(k+z)} d R_{1} d R_{2} \mid \\
& \leq c_{1} e^{c_{2}|\gamma|}\left\|f_{1}\right\|_{2}\left\|f_{2}\right\|_{2}
\end{aligned}
$$

in case $z=i \gamma(\gamma$ real) since

$$
\left\|f_{j}\right\|_{2}^{2}=c \int\left|\tilde{f}_{j}(R)\right|^{2}\left(\operatorname{det}\left(I+R^{t} R\right)\right)^{-k} d R \quad(j=1,2)
$$

and we use the L^{2} estimate on $\Sigma_{i \gamma}$. Part (b) now follows since $C_{c}^{\infty}(\mathscr{U})$ is dense in $L^{2}\left(G_{2 k, k}\right)$.

For $\mathscr{R} z>k$ we define the distribution Λ_{z} on $M_{2 k+1, k} \times M_{2 k+1, k}$ by

$$
d \Lambda_{z}\left(\Pi_{1}, \Pi_{2}\right)=\gamma_{k+1}(z) \Delta\left(\Pi_{1}, \Pi_{2}\right)^{z-k-1} d \mu\left(\dot{\Pi}_{1}\right) d \mu\left(\Pi_{2}\right)
$$

where

$$
\begin{gathered}
\Delta\left(\Pi_{1}, \Pi_{2}\right)=\delta\left(\Pi_{1}, \Pi_{2}\right) s\left(\pi_{1}, \pi_{2}\right), \\
\Pi_{j}=\left(\pi_{j}, x_{j}\right), \quad \pi_{j} \in G_{2 k+1, k}, \quad x_{j} \in \pi_{j}^{\perp}
\end{gathered}
$$

and $\delta\left(\Pi_{1}, \Pi_{2}\right)$ is the orthogonal distance between the k-planes Π_{1} and Π_{2}.
Lemma 8. $\quad \Lambda_{z}$ can be continued analytically as a tempered distribution for all complex z.

Proof. Let G be in the Schwartz class of $M_{2 k+1, k} \times M_{2 k+1, k}$. For $\pi_{1}, \pi_{2} \in$ $G_{2 k+1, k}$ and $u \in \pi_{1}^{\perp} \cap \pi_{2}^{\perp}$ we define the Schwartz class function \tilde{G} by

$$
\tilde{G}\left(u, \pi_{1}, \pi_{2}\right)=\int G\left(\pi_{1}, x_{1} ; \pi_{2}, x_{2}\right) e^{-2 \pi i u\left(x_{1}-x_{2}\right)} d \lambda_{\pi_{1} \perp}\left(x_{1}\right) d \lambda_{\pi_{2} \perp}\left(x_{2}\right) .
$$

We may view $\delta\left(\Pi_{1}, \Pi_{2}\right)$ as the length of the orthogonal projection of $x_{1}-x_{2}$ onto $\pi_{1}^{\perp} \cap \pi_{2}^{\perp}$. Using this fact, the relation $d \mu\left(\Pi_{j}\right)=d \mu_{\pi_{j} \perp}\left(x_{j}\right) d \gamma\left(\pi_{j}\right)$ and the standard theory of Euclidean Fourier transforms and Reisz potentials [7] we have

$$
\begin{align*}
& \int G d \Lambda_{z} \tag{27}\\
& \quad=c(z) \int|u|^{k-z} S\left(\pi_{1}, \pi_{2}\right)^{-k-1+z} \tilde{G}\left(u, \pi_{1}, \pi_{2}\right) d \lambda_{\pi_{1} \perp \cap \pi_{2} \perp}(u) d \lambda\left(\pi_{1}\right) d \gamma\left(\pi_{2}\right)
\end{align*}
$$

where $c(z)=\gamma_{1}(k+1-z) \gamma_{k}(z)$. Certainly (27) holds in the range $k+1>\mathscr{R} z>k$.

It is important to realise that the function $\tilde{G}\left(u, \pi_{1}, \pi_{2}\right)$ is left invariant under a change of origin in \mathbf{R}^{n}. That is \tilde{G} is intrinsic to the bundle $M_{2 k+1, k}$. We now wish to make a change of viewpoint. We regard u as a point of linear Euclidean space \mathbf{R}^{n} and π_{1}, π_{2} as k-planes in the $2 k$-dimensional space u^{\perp}. By Lemma 5 we find

$$
d \lambda_{\pi_{1} \perp \cap \pi_{2} \perp}(u) d \gamma\left(\pi_{1}\right) d \gamma\left(\pi_{2}\right)=c|u|^{-2 k} s\left(\pi_{1}, \pi_{2}\right) d \gamma_{u}\left(\pi_{1}\right) d \gamma_{u}\left(\pi_{2}\right) d \lambda(u)
$$

and the right hand side of (27) becomes

$$
\begin{equation*}
c_{1}(z) \int|u|^{-k-z} s\left(\pi_{1}, \pi_{2}\right)^{-k+z} \widetilde{G}\left(u, \pi_{1}, \pi_{2}\right) d \gamma_{u}\left(\pi_{1}\right) d \gamma_{u}\left(\pi_{2}\right) d \lambda(u) \tag{28}
\end{equation*}
$$

which makes sense for $k+1>\mathscr{R} z>k-1$. Thus (28) extends the definition of Λ_{z} into $\mathscr{R} z>k-1$. To extend it further we denote by $\Omega_{u, z}$ the distribution Ω_{z} taken relative to the k-planes of u^{\perp}. We may then rewrite (28) as

$$
\begin{equation*}
\gamma_{1}(k+1-z) \int|u|^{-k-z} \tilde{G}\left(u, \pi_{1}, \pi_{2}\right) d \Omega_{u, z}\left(\pi_{1}, \pi_{2}\right) d \lambda(u) \tag{29}
\end{equation*}
$$

which is valid for $\mathscr{R} z<k+1$. Thus (29) extends the definition of Λ_{z} to the whole complex plane.

Lemma 9. Let $0 \leq \mathscr{R} z \leq k+1,2(k+1) p^{-1}=k+1+\mathscr{R} z$. Then

$$
\left|\int g_{1}\left(\Pi_{1}\right) \overline{g_{2}\left(\Pi_{2}\right)} d \Lambda_{z}\left(\Pi_{1}, \Pi_{2}\right)\right| \leq c_{k, z}\left\|g_{1}\right\|_{p}\left\|g_{2}\right\|_{p}
$$

Proof. The case $p=1, \mathscr{R} z=k+1$ is trivial since Λ_{z} is a bounded function. By routine complex interpolation arguments we need only prove the result in case $p=2, \mathscr{R} z=0$. Let us put

$$
G\left(\pi_{1}, x_{1} ; \pi_{2}, x_{2}\right)=g_{1}\left(\pi_{1}, x_{1}\right) \overline{g_{2}\left(\pi_{2}, x_{2}\right)}
$$

Then

$$
\tilde{G}\left(u, \pi_{1}, \pi_{2}\right)=\hat{g}_{1}\left(\pi_{1}, u\right) \overline{\hat{g}_{2}\left(\pi_{2}, u\right)}
$$

so that, by (29),

$$
\int g_{1} \otimes \bar{g}_{2} d \Lambda_{z}=\gamma_{0}(k+1-z) \int|u|^{-k-z} \hat{g}_{1}\left(\pi_{1}, u\right) \overline{\hat{g}_{2}\left(\pi_{2}, u\right)} d \Omega_{u, z}\left(\pi_{1}, \pi_{2}\right) d \lambda(u)
$$

This yields

$$
\left|\int g_{1} \otimes \bar{g}_{2} d \Lambda_{z}\right| \leq c_{z}\left\|g_{1}\right\|_{2}\left\|g_{2}\right\|_{2} \quad(\mathscr{R} z=0)
$$

using Lemma 7(b) and the fact that

$$
\left\|g_{j}\right\|_{2}^{2}=c_{k} \int|u|^{-k}\left|\hat{g}_{j}(\pi, u)\right|^{2} d \gamma_{u}(\pi) d \lambda(u)
$$

This completes the proof.

3. Applications of Λ_{z}

In this chapter we relate Λ_{z} to the k-plane transform in $2 k+1$ dimensions and give different proofs of special cases of Theorems 1 and 2.

We start out by giving a new proof of Theorem 2 in case $n=2 k+1$. As already pointed out we need only establish the result at the difficult endpoint $p=2, q=2 k+2$. Towards this we calculate T_{k}^{*} the formal adjoint of T_{k}. We do this by means of the Fourier transform. For $\pi \in G_{2 k+1, k}, u \in \pi^{\perp}$, let

$$
\ddot{g}(\pi, u)=\int e^{-2 \pi i u \cdot x} g(\pi, x) d \lambda_{\pi^{\perp}}(x) .
$$

That is, for g defined on $M_{2 k+1, k}$ we find \dot{g}^{\wedge} by taking the Fourier transform along each fibre. Then

$$
\left(T_{f} f\right)^{\wedge}(\pi, u)=\int e^{-2 \pi i u \cdot x} f(x+y) d \lambda_{\pi}(y) d \lambda_{\pi^{\perp}}(x)
$$

and since $u \cdot x=u \cdot(x+y)$ for $u \in \pi^{\perp}$, we have

$$
\left(T_{k} f\right)^{\circ}(\pi, u)=\hat{f}(u)
$$

Now, by Plancherel's Theorem,

$$
\begin{aligned}
\int T_{k} f(\pi, x) \overline{g(\pi, x)} d \lambda_{\pi^{\perp}}(x) d \gamma(\pi) & =\int T_{k} f^{\wedge}(\pi, u) \overline{\hat{g}(\pi, u)} d \lambda_{\pi \perp}(u) d \gamma(\pi) \\
& =\int \hat{f}(u) \overline{\hat{g}(\pi, u)} d \lambda_{\pi^{\perp}}(u) d \gamma(\pi) \\
& =c \int \hat{f}(u) \overline{\hat{g}(\pi, u)}|u|^{-k} d \gamma_{u}(\pi) d \lambda(u)
\end{aligned}
$$

It follows that

$$
\left(T_{k}^{*} g\right)^{\wedge}(u)=c|u|^{-k} \int \hat{g}(\pi, u) d \gamma_{u}(\pi)
$$

Again by Plancherel's Theorem we have

$$
\begin{aligned}
\int T_{k}^{*} g_{1}(x) \overline{T_{k}^{*} g_{2}(x)} d \lambda(x) & =\int\left(T_{k}^{*} g_{1}\right)^{\wedge}(u) \overline{\left(T_{k}^{*} g_{2}\right)^{\wedge}(u)} d \lambda(u) \\
& =c \int|u|^{-2 k} \dot{g}_{1}^{\wedge}\left(\pi_{1}, u\right) \overline{\dot{g}_{2}^{\wedge}\left(\pi_{2}, u\right)} d \gamma_{u}\left(\pi_{1}\right) d \gamma_{u}\left(\pi_{2}\right) d \lambda(u)
\end{aligned}
$$

If $G\left(\pi_{1}, x_{1} ; \pi_{2}, x_{2}\right)=g_{1}\left(\pi_{1}, x_{1}\right) \overline{g_{2}\left(\pi_{2}, x_{2}\right)}$ then

$$
\tilde{G}\left(u, \pi_{1}, \pi_{2}\right)=\dot{g}_{1}^{\wedge}\left(\pi_{1}, u\right) \overline{\dot{g}_{2}^{\wedge}\left(\pi_{2}, u\right)}
$$

so by (28) we have

$$
\int T_{k}^{*} g_{1}(x) \overline{T_{k}^{*} g_{2}(x)} d \lambda(x)=c \int g_{1} \otimes \bar{g}_{2} d \Lambda_{k}
$$

as required.
An application of Lemma 9 now yields

$$
\int\left|\cdot T_{k}^{*} g(x)\right|^{2} d \lambda(x) \leq c\|g\|_{(2 k+2) /(2 k+1)}^{2}
$$

Hence T_{k}^{*} is bounded as a map from $L^{(2 k+2) /(2 k+1)}\left(M_{2 k+1, k}\right) \rightarrow L^{2}\left(\mathbf{R}^{2 k+1}\right)$. It follows by duality that T_{k} is bounded,

$$
\begin{equation*}
T_{k}: L^{2}\left(\mathbf{R}^{2 k+1}\right) \rightarrow L^{2 k+2}\left(M_{2 k+1, k}\right) \tag{30}
\end{equation*}
$$

as required.
Finally we use (30) together with Lemma 9 to give a new proof of Theorem 1 in the case n odd. For this let n be odd and define k by $n=2 k+1$. Again we need only establish the difficult estimate (cf. (16))

$$
\begin{equation*}
\left|A_{z}\left(f_{0}, \ldots, f_{n}\right)\right| \leq c_{z, n} \prod_{j=0}^{n}\left\|f_{j}\right\|_{2} \quad(\mathscr{R} z=k) \tag{31}
\end{equation*}
$$

Towards this we need to establish a lemma which gives insight into the geometrical meaning of the invariant $\Delta\left(\Pi_{1}, \Pi_{2}\right)$ of a pair of k-planes Π_{1}, Π_{2}. Let $x_{0}, \ldots, x_{2 k+1}$ be $2 k+2$ generic points of $\mathbf{R}^{2 k+1}$. Let Δ denote the volume of the simplex having these points as vertices. Let Π_{1} be the k-plane passing through $x_{0}, x_{1}, \ldots, x_{k}$ and Π_{2} the k-plane passing through $x_{k+1}, \ldots, x_{2 k+1}$. Let Δ_{1} and Δ_{2} be the volumes of the corresponding simplexes in Π_{1} and Π_{2} respectively.

Lemma 10. $\Delta\left(x_{0}, \ldots, x_{2 k+1}\right)=c_{k} \Delta_{1} \Delta_{2} \Delta\left(\Pi_{1}, \Pi_{2}\right)$.

Proof. Let $\Pi_{j}=\left(\pi_{j}, \xi_{j}\right)$ with $\xi_{j} \in \pi_{j}^{\perp}(j=1,2)$. Let e_{0} be a unit vector in $\pi_{1}^{\perp} \cap \pi_{2}^{\perp}$. We define

$$
\begin{array}{rlrl}
y_{l}^{(1)} & =x_{l}-x_{0}, & & l=1, \ldots, k, \\
y_{l}^{(2)} & =x_{l+k}-x_{2 k+1}, & l=1, \ldots, k, \\
y & =x_{2 k+1}-x_{0} . & &
\end{array}
$$

Then

$$
\begin{aligned}
\Delta & \sim \operatorname{det}\left(y_{1}^{(1)}, \ldots, y_{k}^{(1)}, y_{1}^{(1)}+y, \ldots, y_{k}^{(2)}+y, y\right) \\
& =\operatorname{det}\left(y_{1}^{(1)}, \ldots, y_{k}^{(1)}, y_{1}^{(2)}, \ldots, y_{k}^{(2)}, y\right) \\
& = \pm y \cdot e_{0} \operatorname{det}\left(y_{1}^{(1)}, \ldots, y_{k}^{(1)}, y_{1}^{(2)}, \ldots, y_{k}^{(2)}\right)
\end{aligned}
$$

where in this last determinant the $y_{l}^{(j)}$ are considered to be vectors in the $2 k$-dimensional space e_{0}^{\perp}. Clearly $\left|y \cdot e_{0}\right|=\delta\left(\Pi_{1}, \Pi_{2}\right)$. Now let $e_{l}^{(j)}$ ($l=1, \ldots, k$) be an orthonormal basis of $\pi_{j}(j=1,2)$. It is easy to see that

$$
\operatorname{det}\left(y_{1}^{(1)}, \ldots, y_{k}^{(1)}, y_{1}^{(2)}, \ldots, y_{k}^{(2)}\right) \sim \pm \Delta_{1} \Delta_{2} \operatorname{det}\left(e_{1}^{(1)}, \ldots, e_{k}^{(1)}, e_{1}^{(2)}, \ldots, e_{k}^{(2)}\right)
$$

Finally taking π_{1} as reference plane and using the notations of Section 2 we have

$$
\operatorname{det}\left(e_{1}^{(1)}, \ldots, e_{k}^{(1)}, e_{1}^{(2)}, \ldots, e_{k}^{(2)}\right)=\operatorname{det}\left(\begin{array}{l|l}
I & A \\
\hline O & Q
\end{array}\right)=\operatorname{det} Q
$$

But $|\operatorname{det} Q|=\left(\operatorname{det} Q^{t} Q\right)^{1 / 2}=\operatorname{det}\left(I-A^{t} A\right)^{1 / 2}=s\left(\pi_{1}, \pi_{2}\right)$. Combining these facts we have

$$
\Delta \sim \delta\left(\Pi_{1}, \Pi_{2}\right) \Delta_{1} \Delta_{2} s\left(\pi_{1}, \pi_{2}\right)=c_{k} \Delta_{1} \Delta_{2} \Delta\left(\Pi_{1}, \Pi_{2}\right)
$$

as required.
We return now to the problem at hand-that of establishing (31). By Lemma 1, we have

$$
\begin{aligned}
d \lambda\left(x_{0}\right), \ldots, d \lambda\left(x_{k}\right) & =c_{k} \Delta_{1}^{(k+1)} d \lambda_{\Pi_{1}}\left(x_{0}\right), \ldots, d \lambda_{\Pi_{1}}\left(x_{k}\right) d \mu\left(\Pi_{1}\right), \\
d \lambda\left(x_{k+1}\right), \ldots, d \lambda\left(x_{n}\right) & =c_{k} \Delta_{2}^{(k+1)} d \lambda_{\Pi_{2}}\left(x_{k+1}\right), \ldots, d \lambda_{\Pi_{2}}\left(x_{n}\right) d \mu\left(\Pi_{2}\right) .
\end{aligned}
$$

Thus, from the definition of A_{z} in (3) and by Lemma 10, we have

$$
A_{z}\left(f_{0}, \ldots, f_{n}\right)=c_{k} \gamma_{n}(z) \int h_{z}^{(1)}\left(\Pi_{1}\right) h_{z}^{(2)}\left(\Pi_{2}\right) \Delta\left(\Pi_{1}, \Pi_{2}\right)^{-n+z} d \mu\left(\Pi_{1}\right) d \mu\left(\Pi_{2}\right)
$$

for $\mathscr{R} z>n-1$, where

$$
\begin{aligned}
& h_{z}^{(1)}\left(\Pi_{1}\right)=\int \Delta_{1}^{-k+z} \prod_{j=0}^{k} f_{j}\left(x_{j}\right) d \lambda_{\Pi_{1}}\left(x_{0}\right), \ldots, d \lambda_{\Pi_{1}}\left(x_{k}\right) \\
& h_{z}^{(2)}\left(\Pi_{2}\right)=\int \Delta_{2}^{-k+z} \prod_{j=k+1}^{n} f_{j}\left(x_{j}\right) d \lambda_{\Pi_{2}}\left(x_{k+1}\right), \ldots, d \lambda_{\Pi_{2}}\left(x_{n}\right) .
\end{aligned}
$$

By the definition of Λ_{z-k} and the principle of analytic continuation we now have

$$
A_{z}\left(f_{0}, \ldots, f_{n}\right)=c_{k} \gamma_{k}(z) \int h_{z}^{(1)}\left(\Pi_{1}\right) h_{z}^{(2)}\left(\Pi_{2}\right) d \Lambda_{z-k}\left(\Pi_{1}, \Pi_{2}\right)
$$

which is valid for $\mathscr{R} z>k-1$.
Now let $\mathscr{R} z=k$. Then, by Lemma 9,

$$
\begin{equation*}
\left|A_{z}\left(f_{0}, \ldots, f_{n}\right)\right| \leq c_{k}\left\|h_{z}^{(1)}\right\|_{2}\left\|h_{2}^{(2)}\right\|_{2} \tag{32}
\end{equation*}
$$

Again, for $\mathscr{R} z=k$ we have

$$
\left\|h_{z}^{(1)}\right\|_{2}^{2} \leq \int \prod_{j=0}^{k}\left(T_{k}\left|f_{j}\right|\right)^{2}\left(\Pi_{1}\right) d \mu\left(\Pi_{1}\right)
$$

But by (30),

$$
\left\|\left(T_{k}\left|f_{j}\right|\right)^{2}\right\|_{k+1} \leq c_{k}\left\|f_{j}\right\|_{2}^{2}
$$

which leads to

$$
\left\|h_{z}^{(1)}\right\|_{2} \leq c_{k} \prod_{j=0}^{k}\left\|f_{j}\right\|_{2}
$$

This together with a similar estimate for $h_{z}^{(2)}$ and (32) now gives

$$
\left|A_{z}\left(f_{0}, \ldots, f_{n}\right)\right| \leq c_{k} \prod_{j=0}^{n}\left\|f_{j}\right\|_{2}
$$

as required.

References

1. N. Bourbaki, Intégration, Livre VI, Hermann, Paris, 1963.
2. D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana J. Math., vol. 31 (1982), pp. 641-650.
3. S. W. Drury, L^{p} estimates for the X-ray transform, Illinois J. Math., vol. 27 (1983), pp. 125129.
4. S. S. Gelbart, Fourier analysis on matrix space, Mem. Amer. Math. Soc. No. 108, 1971.
5. D. C. Solmon, A note on k-plane integral transforms, J. Math. Anal. Appl., vol. 71 (1979), pp. 351-358.
6. E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups, Actes du Congrès International des Mathematicians (1970), tome 1, Gauthier-Villars, Paris, 1971, pp. 173-189.
7. -, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.

McGill University
Montreal, Canada

[^0]: Received April 2, 1982.
 ${ }^{1}$ The research for this article was sponsored by the Natural Sciences and Engineering Research Council of Canada.

