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ON THE COHOMOLOGY OF THE LIE ALGEBRA OF
FORMAL VECTOR FIELDS PRESERVING A FLAG

BY

K. SITHANANTHAM

1. Let

and

x,...,x,)
0
+ f(x,...,x.)

0

i=r+ Xl
A-formal power series in the variables concerned.}

s,= xx, x,) f-formal power series in xl, x,}
The cohomology groups of ’, were studied by Gelfand and Fuks [4]. In
this paper we prove that .,, is r-connected" Hi(.,, R) 0 for 0 < < r.

In this context Professor A. Haefliger asked the author whether

H(..,, R) - H(,, R) for < 2n (canonically).

Here we prove this isomorphism for i< n- r only (Theorem 3.6). The
method of this paper is not powerful enough to answer Haefliger’s question
for > n- r.
The method of proof is essentially that employed by M. Jacques Vey [101

in proving a vanishing theorem for the cohomology of the formal Poisson
algebra.
We describe below how the cohomology groups of .,, (,) are related to

the characteristic classes of a flag of foliations (a foliation). For more details
see I-3] and [11.

Let M be a smooth manifold of dimension m. A flag of smooth foliations
of codimensions r, n (r < n) is a pair of foliations r,, -. on M of codimen-
sions r, n respectively such that the leaves of ’. are contained in the leaves
of ,. Let v, be the normal bundle of ’, and let

normal bundle of.
normal bundle of ,
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Let E(’,, -,) be the principal Gl(r)x Gl(n-r) bundle associated to
v,Vn_,; let E(3r,) be the principal Gl(r) bundle associated to v,. The
inclusion

i" Vr-- Vr( V

and the projection

Vr Vn-

induce

i’: E(-,)--, E(-, 3r,) and

such that n’ i’= idr,). Hence i’, n’ induce on the cohomology level maps
i* and n* satisfying

i,

H*(E(.’n, -,), R) H*(E(.,.), R)

H*(e(,), R).

Similarly there is a canonical inclusion i",,., and a projection n"
n.,-- ’, such that n i idle,. Hence on the cohomology level, we have
nl’" H*(C,,R)--H*(Cn.,,R) which is injective and if’" H*(Cn.,,R)--
H*(,, R) which is surjective.

Given a smooth foliation -, of codimension r on M", there is a homo-
morphism

j,: H*(’,, R) H*(E(,), R)

whose image depends on the integrable homotopy class of -,. The elements
of the image ofj, are called characteristic classes of ,. For this reason one
may view H*(, R) as universal characteristic classes of codimension r foli-
ations.

In a similar way, given a smooth flag on Ms, one can construct a homo-
morphism

j(,.,): H*(Cn.,, R)-- H*(E(:n, ,), R).

Given a flag (’n, r,) of foliations, we have the following commutative
diagram"

Hk(cn.,, R)

J(’n,,r)

HR(E(’--n, ’,’), R

i1"

Hk(z,,, R)

J,r

Hk(e(,), R).
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The i’ associates to a characteristic class of a flag of foliations, the corre-
sponding characteristic class of the bigger foliation. Thus the elements of the
kernel of i’ are precisely those additional characteristic classes one gets by
subfoliating a codimension r foliation. The geometric implication of the
canonical isomorphism Hk(An,r, R) - Hk(Ar, R) (k < n- r) is that these addi-
tional characteristic classes can appear only in Hk(’.,,, R), k > n r.
The author wishes to thank his adviser Dr. D. Sundararaman for his kind

help and encouragement; and Prof. Andre Haeflinger for his valuable sugges-
tions, encouragement, and specifically for the proof of Lemma 3.2. Thanks
are also due to the referee for his comments.

2. Let S denote the polynomial algebra in n indeterminates xl, x. over
R. Let A p=o" Ap denote the exterior algebra with generators el, e.
over R with deg e 1. Let M be a module over S. We have the following
complex:

d

(2.1) C(M): .--- A" (R) M--- A’-1 (R) M... M---. 0

where d is defined by

,d((ei A... A ei,) (R) m) (- 1)+ l(e A... A ei, A... A eq) (R) xi,m.

We have d2 0 and the homology of this complex is denoted by HS(M).
Consider the map e: S--- R defined by e(x)= 0. Then R becomes a S

module and we consider the complex

(2.2) -- A (R) S A- (R) S-- "--* S--- R--* 0.
It is a free S-module resolution for R and is known as Koszul resolution. For
more details on this see [7].

3. Let L be a topological Lie algebra and L* its topological dual: L* {f:
L R lf is continuous and linear}. Let T = L be a finite dimensional abelian
subalgebra. Then T acts on L and L* via adjoint representation and this
extends to an action of the universal enveloping algebra of T which is S(T),
the symmetric algebra of T.

PROPOSITION 3.1. Let L, T be as above. Assume .that L* is a free S(T)
module. Then we have

H(L, R) O for O < < dim T.

Proof. We need the following lemma.

LEMMA 3.2. Under the assumptions of the proposition, C(L, R) At(L*) is a
projective S(T) module.
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Let C @>o At(L*) Consider the double complex

A (AT @n S(T)) @s<r)C, At"q (A-t’T @n S(T)) @s{r)Cq

There are two differentials d’ and d" on A"

d’" At"--, At" + 1, d"" At" At"q + 1.

d’ is induced by the boundary operator of the Koszul resolution and d" by
the coboundary operator of the complex C. One can check that
d’ d" + d" d’ O. H(A) denotes the cohomology of A with respect to the total
differential d d’ + d".

This double complex is zero outside the strip -n <i< 0, j > 0 where
n dim T. Hence the associated spectral sequences converge.

Consider the first filtration of A, given by Ft’A @t" A’. The Eo term
of the corresponding spectral sequence is given by

At’,q.Eg Ft’+ 1A - At’* @

the differential do on Eo is the differential d" on A. Hence

E{ H(Eg)=

Consider

ht"q A-pT ()n S(T) (sr) Cq) - A-t’T ()n Cq.

As the differential in the complex C does not ,involve any action of L on T
(and hence on A-t’T) we have

Hd,(At’*) H(A-t’T (R) C) A-t’T (R) H(C).

The differential d on E1 is that on the Koszul complex, and as the action
of S(T) on H(C) is trivial we have

E2 AT (n H(C)

That is, E’q A-t’T (R) H(C).
Similarly considering the second filtration, the Eo term of the associated

spectral sequence is given by

E (AT (n S(T)) (ST)C.

The differential do on Eo is induced by that of the Koszul complex
AT (R) S(T). As the Koszul complex is a free S(T) module resolution for R
and C is a projective S(T) module we have

E R ()sCr) C.
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This spectral sequence collapses and E2 ---H(R ()str)C). Therefore for the
first spectral sequence,

E’q -- n’ + q(R (sr) C).

Let r be the first integer such that H’(C) O. Then

En’" Hr(C) 0 and E-n-.,+ E-n+.-i 0.

This implies that E’q - E’ whenever p + q -n + r. Hence

En. H’(C) - n +’(R str C).

But H(R (R) C)= 0 for i< 0. Therefore -n + r > 0. This proves the propo-
sition.

Proof of Lemma 3.2. As L* is S(T) free, we can write L* S(T)(R) V. As
Ak(L*) is the direct summand of ()k (L*), it is enough to prove that ()k (L*)
is S(T) free. We know that (k (L*) is )k S(T) free because ()k (L*)=
(k (S(T))(R) k V. Therefore it is sufficient to prove that (k (S(T)) is S(T)
free.

$(T) acts on k (L*) through the map : $(T)-- (k $(T) where

xix(R)l(R)...(R)l+l(R)x(R)...(R)l+...+l(R)...(R)x,

S(T)= R[tl, tn] and @k S(T)= R[tJ], < n,j < k,

and the action sends t t. Using new indeterminates s we have the
isomorphism b" R[sj] R[t] where s t and s tl, j > 1. R[sJ] is a
free R[ti-I module through the action b-1 because - (t) si. There-
fore R[t] is a free R[ti] module.
We next prove that the assumption of Proposition 3.1 is satisfied for L

an,r and T {= , t3/dx, a, R}.

LEMMA 3.3.
over S(T).

Let L n, and T {= i t/txil R}. Then L* is free

Proof. For < r let (, ,) be a multiindex and for r + 1 < < n
let fl (ill fin) be a multiindex.

Define c3, t L* by

2 0 0 o’

E A

It is known [2] that {d, dll r, r + 1 j n} generates L*.
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If 0 denotes the adjoint representation of L on L* then

C=--(k+l)t + ifk<r

=0 ifk > r,

and

The following algebraic fact is well known (for example, see [8]).
Let M be a graded module over R[x, x,]. The following are equiva-

lent"

(i)
(ii)

M is free over R[xl, x,-].
x is a nonzero divisor of

M
(xl, xi_

for 1 <i<n.

By virtue of this fact it suffices to prove that if k < r and

C=-- L*

then

O e
Ox_

This implies that > 0 for k 1; say > O. Then

0 0(_ ,.
Hence

g e x_
Now we use Proposition 3.1 to get"

THEOREM 3.4.
Consider

H(.,,, R) 0 for < r.

n,r
r+!
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and

then T is abelian and H* is generated by

(c9]r + 1 _< _< n and fl (ill,..., .))
As above, one can show that H* is S(T) free. Therefore we have the follow-
ing result.

THEOREM 3.5. H(1-I, R) 0 for 0 < <_ n r.
From this we deduce the required theorem:

THEOREM 3.6. Hi(z/.,,, R) - H’(z/r, R)for <_ n r.

Proof. Consider the Hochschild-Serre spectral sequence [6] for /.,r
tive to the ideal H. The E2 term is given by

rela-

Eg, H(/,, H(n, R)).

Thus E’ H(,, R) and E’ 0 for 0 < q _< n r.
As the Hochschild-Serre spectral sequence converges to H*(/,,, R), we

have

H’(:/.,,, R)_ H’(:/,, R), _< n r, Q.E.D.

Remark. Let r < n. Let F,,, be the topological gropoid of germs of local
diffeomorphisms of R" of the form

f(x, y) (9(x), h(x, y))

where (x, y) (xl, x,, Yx,..., Y.-r) s R’ x R"-’, 9 is a local diffeomor-
phism of R’ and h is a smooth map from an open set of R" to R"-’. Let Fr
be the topological groupoid of germs of local diffeomorphisms of R’. Let
BF,,,, BF, denote the Haefliger’s classifying spaces for F.,,, F, respectively
[5]; BF.,,, BF, classify F,., foliations (flags of foliations) and codimension r
foliations, respectively.

There is a canonical morphism from F.,, to F, x Gl._, given by

f= (#, h)-- (#, dy(h))
This induces a map n on the classifying space level"

re: BF.,, BF x BGI._,
The author has proved in his thesis [-9] that n is n-connected.
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