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A CONVOLUTION THEOREM FOR
PROBABILITY MEASURES ON FINITE GROUPS
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DAVID L. RITTER

1. Introduction

Central among phenomena studied by harmonic analysts is the smoothing
caused by convolution. One manifestation of this on the circle group T is the
existence of positive Borel measures / that, for every finite p > 1, convolve
E’(T) into IY(T) with q > p dependent on # and p. Such measures may be
considered to be LP-improving.
A remarkable example, the classical Cantor-Lebesgue measure supported

by the usual middle-third Cantor set, was shown by Oberlin in [6-1 to be
/_-improving. To obtain that result, by using the Riesz-Thorin convexity
theorem and by making a reduction based on a careful analysis of the struc-
ture of the natural discrete measures used to define the Cantor-Lebesgue
measure as a limit, Oberlin revealed that it suffices to prove there is a p < 2
such that

(#) II*xll2 -< Ilxll
for every x 6/Y(G), where G Z/3Z {0, 1, 2} is the cyclic group of integers
modulo 3, the/_Y-norms are those taken with respect to normalized counting
measure on G, and # is the probability measure that places a mass of 1/2 at
0 and at 2. Finally, to complete the proof, he obtained a quantitative version
of (#) that, subsequently, was sharpened by W. Beckner.

Here, in the context of arbitrary finite groups, we characterize the prob-
ability measures that satisfy (#) for some p < 2. In addition, we show that
the p appearing in (#) is well behaved with respect to compactness in the
space of probability measures.
We now make that precise. Let G be a finite group with K elements, and

for p > 1, let E’(G) be the usual Lebesgue space on G with norm II defined
in terms of the Haar measure on G that assigns mass 1/K to each point of G.
We denote the set of probability measures on G by P(G) and supply P(G)
with the topology obtained from the total variation norm on M(G), the
measure algebra on G. For/ P(G), let G(#) denote the subgroup of G gen-
erated by the set {i-j: i, j supp (/z)}, where supp (/z) denotes the support of
/z. Our main result is the theorem that follows.
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THEOREM 1. (a), If # P(G), where G is a finite group, then there is a p < 2,
dependent on #, such that

(1) II#*xll2 -< Ilxllp

for every x LP(G) if, and only if,

(2) G(#) G.

(b) In addition, if C is a compact subset of P(G) with every # in C
satisfying (2), then there is a p < 2, dependent on C, such that (1) is true for
every # C and every x L(G).

We shall prove Theorem in the next section after stating and proving
two essential lemmas. The last section will be devoted to some results related
to Theorem 1.

2. Proof of the main theorem

In this section we do some multivariable calculus. For notation, then, we
turn to [4, pp. 56-157]. In addition, unless otherwise indicated, sums will be
over the group G, where we shall assume K > 2 to avoid a trivial case.
Finally, we shall identify real-valued functions on G, the only type we treat in
this section, with elements of Rr.
Now set

for # aj6j in P(G) and x in Rr. The keystone on which the proof of
Theorem 1 rests is the following simple lemma concerning g(#, x).

LEMMA 2.1. Let G(#) be the subgroup of G generated by

D(#) {i-lj: i, j supp (#)}.
Then g(#, x) is a negative semi-definite quadratic form that vanishes precisely
on the set

Z(la) {x Rr: x is constant on right cosets of G(/)}.

Proof of Lemma 2.1. That g(#, x) is negative semi-definite is equivalent to
the inequality II#*xlt2 < Ilxll2 being true for x R, and thus, is an imme-
diate consequence of Theorem 20.12 of [5].
We next show that the set on which g(#, x) vanishes is just Z(#). Avoiding

the trivial case where # is a point mass 6j, we suppose ,that the support of #
contains at least two points.
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Now an elementary calculus argument shows that the set of points in Rtc

where g vanishes concides with the solution set of the system of linear equa-
tions

ijo-lj-lX -Xjo=0, joG.

This homogeneous system may be rewritten in a much more revealing form,
namely, as

(3) _, Co-x O, Jo G,

where, if e denotes the identity of G, then

c=l- and c=-,,forj#e.

Evidently the solution set of (3) is the null space of the convolution oper-
ator S(x)= v’x, where v j cjfj. Therefore it should come as no surprise
that, to complete the proof, we require the special properties of the measure v
that we now enumerate:

(i) cj= 0; (ii) Ce > 0; (iii)if j # e and cj# 0, then cj < 0; and (iv)
supp (v)= O(#).

When combined with (i) and (iv), an elementary computation reveals that if
x 6 Rx is constant on right cosets of G(/), then x is in the null space of S.
The real problem is in verifying the truth of the converse.

Before we prove that, we recall some necessary group theoretic notation.
First, if A and B are subsets of G, then AB {ab: a A and b 6 B}. There-
fore, if n > 1, then we may define An/l recursively by An/ AAn. Conse-
quently,

G(#) {D(#)n: n > 1 }.
Now let x bc an element of the null space of S. By making a preliminary

adjustment by a function constant on right cosets of G(#), we may suppose
that x is non-negative and that x vanishes at least once on each right cosct.
Thus, wc shall be finished once we show x vanishes identically.
To do that, choose a system of representatives for the right coscts of G(#)

from the zeros of x, and suppose Jo is such a representative. To finish, we
shall use a simple induction argument to show that x vanishes on D(#)njo for
each n > 1, and hence, on G(kt)jo.

That x vanishes on D(#)jo is obvious from (iii) and the equation

0 v*x(jo)= Y c-Xo

since x > 0 and Xjo O. Consequently, we have a basis for induction.
To make the induction step, we show that if x vanishes on D(#)njo, then x

vanishes on D(#)n+ XJo. To do that, it suffices to see that ifjx is any element of
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D(#)"jo, then x vanishes on D(#)jl. That, however, follows by making the
same argument as that of the preceding paragraph with j replacing Jo. Thus,
we have completed the induction argument and the proof of the lemma. //
Now suppose # aj6j is a probability measure on G. In Theorem 1, the

inequality with which we must contend is

(4) EK- E ,_x,]2]/2 < EK- x,]/,
where x is any non-negative function on G. Of course to study (4), we resort
to the usual tactic of defining a suitable function and studying its behavior.
To begin, set

A {x RK\{0}: x > 0 for each j G}.
Then define f on P(G) x A x [1, 2-1 by

where # z6j.
Evidently inequality (4) is equivalent to

(5) f(#, x, p) < K/2- /’

holding for x A;

it will be in this form that we shall treat (4) in proving (b) of Theorem 1.
Now to prove Theorem 1, we require one more lemma, a lemma that

concerns the behavior off near Xo (ILK, 1/K).

LEMMA 2.2 Let C be a compact subset of P(G) with every # in C satisfying
(2), and let tr {x Rr: x >_ 0 for every j, and x 1} be the simplex in
Rr spanned by the canonical basis. Then there is a p < 2, dependent on C,
and there is an open neighborhood U about Xo, such that (5) holds when
(#, x, p) e C x [U c tr] x [p, 2].

Proof of Lemma 2.2. Instead of considering f as a function defined on

P(G) xA x [1,2],

we now think of f as a family of functions defined on A and indexed in a
continuous way by P(G) x [1, 2]. Evidently every member of the family is
C on the interior of A. Consequently, we shall obtain the proof of the
lemma by studying the second degree Taylor expansion of the family.

First, it is easy to see that the ray {(t, t): > 0} is a set of critical
points for each member of the family. Set Xo (l/K, ILK). Then, since
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f(#, Xo, p) K1/2-1/p, there is a closed ball B centered at the origin of Rr

that Xo + B is contained in the interior of A, and so that

(6) f(#, Xo + h, p) g1/2- l/t, q(l, h, p) + R2(#, h, p)

so

for h B and (#, p) P(G) x [1, 2], where

q(#, h, p) (1/2)D2hf(Iz, xo, p)

(1/2)(hDx +"" + hr, Dr)2f(#, Xo, p),

and

R2(#, h, p) (1/6)Df(#, Xo + z(#, h, p) h, p)

with z(/z, h, p) e (0, 1).
A routine computation reveals that q(/, h, 2)= (K/2)9(#, h). Thus, by

Lemma 2.1, q(#, h, 2) is negative semi-definite and vanishes only on the line
L {t, t): R} whenever # is in C.

Conveniently enough, the orthogonal complement of L with respect to the
usual inner product on Rr is To {x e Rr: xj 0}, the tangent space of
cr at Xo. This means that q(#, h, 2) is bounded away from zero for # e C and
h Sxo To c Sr- x, where Sr- {x 6 Rr: xl- 1} is the unit sphere in
Rr defined by the usual quadratic norm. From continuity, then, there is an
m < 0 and a compact neighborhood of 2 in [1, 2], say [Px, 2], such that

(7) q(#, h, p) < m

for (#, h, p) 6 C x Sxo x [pl, 2].
Finally, the third order partials are bounded for

Thus, the limit,

(#, x, p) P(G) x [Xo + B] x [1, 2].

lim R2(#, h, P)/I h 12 0,
h--,0

is uniform with respect to # e P(G) and p [1, 2]. Hence, there is an open
ball U, centered at Xo, such that if Xo + h U, then

(8) R2(#, h, p)l/Ihl2 < -m/2

for each # P(G) and each p e [1, 2]. That is the last step, for when Xo + h e
U c a, we have h e T,,o. Thus, Lemma 2.2 follows from (6), (7), and (8). //
With all the tools in hand, we now get down to the business of proving

Theorem 1.

Proof of the necessity of G(#) G in Theorem 1 (a). We prove the contra-
positive. Suppose G(/z)4: G, and let Ko be the number of elements in the
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space of right cosets of G(#), G/G(#). Then, for non-negative x in Z(#), (4)
assumes the, form

Kff x < Kff x
j G/G(#) G/G(#) I

and since Ko > 2, there is a single non-negative x in Z(#) such that this
inequality fails for every p < 2. That completes the proof of necessity. //
To prove the sufficiency of the condition G(#) G in (a) of Theorem 1, it

evidently suffices to establish (b). That is our last task.

Proof of Theorem 1 (b). First, f is continuous, and for fixed # and p,
f(#,., p) is homogeneous of degree zero, that is, purely directional. For our
set of directions, then, we shall use the simplex a of Lemma 2.2.

Thus, set

M max {f(/, x, 2)" # C, x tr\U},
where U is the open neighborhood about Xo (I/K, IlK) given by
Lemma 2.2.
We claim M < 1. To see this, note that if # C, then G() G. It follows

from Lemma 2.1, then, that f(#,., 2) assumes its maximum, 1, only on .the
ray {(x, x): x > 0}. Thus, f(#, x, 2) < 1 for x e tr\U, and the claim is true.
An immediate consequence of the inequality M < 1 is that there is a P2 <

2 such that

(9) M <_ K/2-1/v < 1

for p [P2, 2-1. That is just what we need in order to make the local result,
Lemma 2.2, yield the global one, the theorem.

Set Po max (pt, P2). Then Po < 2, and, in fact, (5) holds for all (#, x, p)
in C x A x [Po, 2]. To see this, it suffices to observe that (5) holds when
(#, x, p) is in C x tr x I-Po, 2]. Now, on the one hand, if x U a, then (5)
follows from Lemma 2.2. If, on the other hand, x a\U, then we have
f(#, x; p)< f(#, x, 2)< M, for, fixed V and x, f(#, x, .) is.either constant or
strictly increasing. This time (5) follows from (9). That, however, completes
the proof of (b), and thus the proof of the theorem. //

3. Related results

We first point out that the Riesz-Thorin convexity theorem implies a more
general version of Theorem 1, where we initially take p > 1 and then replace
2 by q with q > p. We leave the precise statement of this variant of Theorem
1 and its proof to the reader. Consequently, we now direct our attention to
the form Theorem 1 can be made to assume when G is abelian, for then we
have the use of the Fourier transform.
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Let G be a finite abelian group, let F be its dual, and let 0 denote the
identity of F. We take as the Haar measure on F ordinary counting measure.
This means we have the Plancherel theorem at our disposal, and thus we
may write

g(, x) (I ()I 1)I (y)I,
,F

where and/ are the transforms of x and #, respectively. When g is written
in this form, the set of functions where it vanishes is particularly transparent.
Consequently, Theorem 1 may be formulated in terms of the Fourier trans-
form as follows.

THEOREM 2. (a) If # P(G), where G is a finite abelian group with dual
group F, then there is a p < 2, dependent on #, such that (1) holds for every
x Lt’(G) if, and only/f, ()1 4: l for r\{0}.

(b) For 1 > 6 > O, there is a p < 2, dependent on 6, such that (1) holds for
each x in LP(G) and each I in P(G) with t/() -< c for 1-’\{0}.
The results of Theorem 1 and Theorem 2 may be construed as a qualitat-

ive answer to an analog for finite groups of the problem raised by Stein in
[8! of characterizing positive measures that convolve L’ into/_Y with q > p. A
quantitative answer here would evidently shed some light on Stein’s problem,
but even in the context of finite cyclic groups, to obtain quantitative results
appears to be difficult. A few special ,cases are known. For instance, when
G Z/2Z {0, 1}, precise results are known; see [3-1, [1], and [9]. The
general problem for Z/kZ appears to be unsolved, however. Finally, to give
an idea of how Theorem 1 itself applies to Stein’s problem, we note that it
may be used to show that the Cantor-Lebesgue measures on the circle con-
structed on Cantor sets built with constant rational ratio of dissection are
L’-improving [7].

Remark. Using quite different methods from ours, W. Beckner, S. Janson,
and D. Jerison have independently obtained a variant of Theorem valid for
finite abelian groups [2]. By private communication, D. Jerison has pointed
out to us that the general interpolation theorem that is the key to the proof
of the variant in [2-1 actually yields our Theorem 1.
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