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ON POLYFREE GROUPS
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DAVID MEIER

1. Introduction

A group with a subnormal series R: N0< N1 < < Nk-1 < Nk
G whose factor groups Fi Ni/N_ are free groups of finite rank r is called
a polyfree group and R a polyfree series of G.
We proved in [2] that the length k and c 1-I= (ri- 1), the so called

Euler characteristic of G, are independent of the chosen polyfree series of G,
and we gave examples which show that the ranks r are not independent of
the choice of the polyfree series of G.
The free abelian group G on two generators x and y is a polyfree group of

length 2. Let N be the subgroup of G generated by xy, Z. Then N and
G/N are infinite cyclic, i.e. free of rank 1. If j, then N :/= N;. The group G
has therefore infinitely many polyfree series R: < N< G. A non-abelian
example of a polyfree group with infinitely many polyfree series is Example
26 in [2]. In both cases the polyfree series contain infinite cyclic factors, or
equivalently, the groups involved have Euler characteristic c 0. In this note
we consider polyfree groups of Euler characteristic c :/= 0. We show that in
this case the number N of distinct polyfree series of a fixed group G is finite,
and we give an upper bound for N which depends only on the invariants c
and k.
On the other hand we give an example of a polyfree group G, (n 1, 2,

3,...) of length 2 and Euler characteristic cGn 2n 1 with 2 polyfree series
and an example of a polyfree group Gk (k 1, 2,...) of length k and Euler
characteristic with k! polyfree series.

I would like to thank the referee for many valuable suggestions and for
pointing out corollary 3.

2. Statement and proof of the main theorem

MAIN THEOREM. A polyfree troup G of lenlth k and Euler characteristic
c =/= 0 has only a finite number N of distinct polyfree series and

N < (c + 1)(k- 1)c+k’- 1.
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Recall that two polyfree series

R: No< .... Nk G and R’: 1 Mo< < Mk G

are distinct if there exists (1 < < k) such that M 4: N.
We need two lemmas for the proof.

LEMMA 1. Let Q be a finite group of order q and U a subgroup of Q1 x
x Qn, the direct product of n copies of Q, and let dU d denote the minimum
number of generators of U. Assume that U contains for all pairs j an
element (q 1,..., qn), qi Q with qi qj, then n < qd.

Proof. Let

v (u, u, u), v (u, u, u), % Q,

be a generating set of U. Since there is an element (q, q) in U with
qi 4 q1 for every pair 4: j, the column vectors

Uli

Udi

are distinct for 1, n. There exist qd distinct column vectors of length d,
and hence n < qa.
The proof of lemma 1 is similar to an argument used in [3].

LEMMA 2. Suppose G is a finitely generated group with minimum number of
generators dG d and S {Ni, it I} a set of normal subgroups of G. Let Q
be a finite group of order q such that

(i)
(ii)

there exists a surjective homomorphism G/N-- Q for all I, and
G" N NI< q for all pairs j.

Then S is finite and lS[< qd.

Proof.
and

Suppose that N, N are n normal subgroups contained in S

f: G G/N1 x x G/N -- Q x x Q

is the composition of the canonical map G G/N x... x G/N, with the
direct product of the maps G/N Q of (i). We verify that

U=f(G)<Q x... x Q

satisfies the condition of lemma 1" Let 4:J, then since G" NNil < q, the
order of Q, the image of N1 under f l: G-G/N-Q is non-trivial. Let
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ni Nj be such that f(ni) 4: 1, then f(ni) U has components (q l, q,)
where q =f(ni):P 1 and qj 1. Application of lemma 1 gives now n < qa.
Any finite subset of S is therefore of cardinality <qa, and hence S is finite
and IS[ < qa. This completes the proof.
Now let NI ""-’ Nk-1 " Nk G be a polyfree series with finitely

generated free factors N/Ni_ of rank r, then we have for dG, the minimal
number of generators of G, the equation dG< rl + + rk. If we now use
the equation (rl 1).. "(rk- 1)= c, where c is the Euler characteristic of G,
it is easy to see that r +"" + rk < c + 2k- 1, and therefore

(1) dG=d<c+2k-1.

For the Euler characteristic of Nk_ 1, CNk-1, we have

(2) 0 CNk_ < c,

since it divides c.

Proof of the main theorem. We use induction on k.
k 1. G is then a free group, and since non-trivial finitely generated

normal subgroups of a free group are of finite index, R" 1- G is the only
polyfree series of G.
k>l. Let S----{Nk_x,lil) be the set of distinct (k-1)th terms of

polyfree series of G. Using property (2) above and induction hypotheses
for Nk-l, we get that the number of polyfree series is finite and
<(c + 1)tk-2)c+tk-1)2-1 for any Nk-l, and therefore

(3) N Sl(c + 1)tk- 2)c+tk- 1)2- 1.

Now suppose 1 No< "’" Nk- <:1 Nk G and Mo’ "’’ Mk-
" Mk G are two polyfree series with Nk_ : Mk-1, and let be such that
Ni- Mk- but Ni Mk- 1. Then the map 9" Ni- G/Mk_ is non-trivial
and has a factorisation

(4) g" Ni- Ni/Ni- G/Mk_ 1.

Since N sn G, g(N)sn G/Mk_ 1. A non-trivial finitely generated subnormal
subgroup of a free group is of finite index and the index formula applies for
the ranks"

i.e.

rank (g(N)) G/Mk_ 1" g(N) (sk 1) where sk rank G/Mk_ 1,

G/Mk- 1" g(N) (rank (g(N)) 1)/(sk 1).

Now (Sk 1)IC 0, therefore Sk > 1, and with (4) above

rank (g(N))- 1 < ri- 1 where ri rank Ni/N_ and ri- < c.
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Hence

(5) c > G/Mk-I" g(Ni)[ [G" Mk-lNil > G" Mk-lNk-1 I.
Let now Q be the finite cyclic group of order c + 1. Then

(i) there exists G/Nk_ 1,-- Q for all since G/Nk_ 1,i is free, and
(ii) [G" Nk-1,Nk-1,j[ < c + 1 for 4: J by (5).

We may therefore apply Lemma 2 and get S I_< (c / 1)a, Now we use (1)
and (3) to get the result"

N < (c + 1)c+2k+l(c + 1)k-)c+k-1)2-1 (c + 1)k-1)+k2-1.

COROLLARY 3. The automorphism lroup of a polyfree #roup G of positive
Euler characteristic is residually finite.

Proof. The finite set of polyfree series of G is permuted by Aut G. There-
fore Aut G has a normal subgroup P1 of finite index such that P1 leaves
invariant each term of a polyfree series

1 No< N1 < "< Nk G.

Each Aut (Ni+l/Ni) is residually finite, as the automorphism group of a
finitely generated free group. Hence there is a P2 " Aut G such that P1/P2 is
residually finite and P2 stabilizes the series. Hence I-G, kP2-1 1. But the
Three Subgroup Lemma shows that [G, P2] is nilpotent, and of course [G,
P2]< G. Since G has positive characteristic, [G, P2-1 and P2 1. Hence
Aut G is residually finite.

Remark. Consider the following"

(a) the residual finiteness of free groups;
(b) a subgroup of finite index in a finitely generated group G contains a
characteristic subgroup of finite index of G;
(c) if N< G--* F is exact, N finite and F free, then G contains a free sub-
group U of finite index such that U N 1;

Using (a)-(c) and induction on the length k, it is not difficult to prove that
polyfree groups are residually finite. Since they are also finitely generated,
their automorphism groups are residually finite b’y a result of G. Baumslag
[1], independent of their Euler characteristic.

COROLLARY 4. A polyfree #roup with positive Euler characteristic has a
normal subgroup offinite index which has a normal polyfree series.
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Proof. The finite set of polyfree series of G is permuted by the inner auto-
morphisms of G. Therefore there is a subgroup U of finite index leaving all of
them fixed. The intersection of any polyfree series of G with U is a normal
polyfree series of U.
The following example to Corollary 4 shows a polyfree group which has

no normal polyfree series. It contains a subgroup of index 2 with a normal
polyfree series.

Example 1. Let X (xl, x2), Y (yl, Y2) and U (s, t) be free
groups of rank 2. Let N X x Y and let U operate on N by x y, y x,
x x, y y, i= 1, 2, then the semidirect product G N-- U is a
polyfree group of length 3 and Euler characteristic 1. Then

R: 1< X<a N< G and R2: l<a Y<a N<a G

are polyfree series, but not normal series of G. The following considerations
show that R and R2 are the only polyfree series of G. Assume that

R: I <a M < M2 <a G

is any polyfree series of G. Since G is of characteristic 1, G/M2 is non-cyclic
free.
We show first that N

_
M2: Since X Y, either both X and Y are in M2

or none of them. In the first case, N
_
M2. The second case leads to a con-

tradiction: Consider p: G--G/M2, then p(X) and p(Y) are nontrivial finitely
generated subnormal subgroups of G/M2. They are therefore of finite index
in G/M2. On the other hand I-X, Y] 1; therefore p(X) p() is abelian, a
contradiction.
Now consider N< M2 G. We have GIN and G/M2 non-trivial and free.

M2/N is a finitely generated normal subgroup of GIN. Since its index is not
finite, M2/N is trivial and hence M2 N.
A similar consideration shows that either M X or M Y.

3. Two examples

We give an example of a polyfree group of length k and Euler character-
istic 1 with k! distinct polyfree series and an example of a polyfree group of
length 2 and Euler characteristic 2n- which has at least 2 distinct
polyfree series.

Example 2.
and let

Let X (x, y) be free groups of rank 2 for i= 1, k,

G X x x Xk.
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Then G is polyfree of length k and Euler characteristic 1. Let (ix, i2," ik) be
a permutation of (1, 2, k), then

Xil Xil x Xi2 Xil x Xi2 x Xi31 G

is a polyfree series of G. There are k! such polyfree series. In fact, these are
the only polyfree series of the group G. This can be shown by a consider-
ation similar to that in Example 1.

Example 3. Suppose that fl, fr are automorphisms of the free group
(Y1,..., Ys) of rank s. Then the group with the presentation

G (x 1, xr, Yl, Ys; Y]’ f/(Yj), i= 1, r, j 1, s)

is free by free. More precisely, Yl, Ys freely generate a free normal sub-
group N and GIN is free on the images of x l, x, under G-- GIN.

PROPOSITION 5. Let G, be the group with the presentation

(*)G, (t, xl,..., x., s, Yl Y.;

Yixi xi, xi xi Y Y’, Yi Yi, 1 < < r
Then for any partition A u B of { 1 n} the 2n elements xi, Yi, . A and
xjr-1, yjs-1, j

_
B freely generate a free normal subgroup N of G whose quo-

tient GIN is free on two generators.

Proof We have

ytk yk Yk Ykt-1 Xk (Xk )yk : (Xk 1)s-1 (X 1)yk$- 1,

and similarly

X X (Yk S- 1)t-I (Yk S- 1)Xkt- 1o

Moreover, if we use Xk txk, we get

ytk yk: ytk-X yk-1.

The system (*) of relations is therefore equivalent to (**)"
,-1 -x y,-1 (i e A),Xi Xi Xi X

(xjt-1)t-1 xjt -1, (Xjt-1)s-1 (xjt-1)yjs-I (j E B),
(**) y-= y’-, y-= yi, (i A),

(yj- x)’- (yjs- )J’-, (yjs- )- yjs- (j ).

t-1 and s-1 operate as automorphisms of the subgroup generated by x, y,
A and Xj t-1, yjs-1, j B and the result follows therefore by the remark

at the begining of the section.
There are 2" such partitions of (1, n). Therefore G. has 2" free normal
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subgroups with free quotients. Since any two of them generate G., they are
distinct. Therefore G, is a polyfree group of length 2 and Euler characteristic
2n- 1 with at least 2" distinct polyfree series.
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