ON POLYFREE GROUPS

BY
David Meier ${ }^{1}$

1. Introduction

A group with a subnormal series $R: 1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k-1} \triangleleft N_{k}=$ G whose factor groups $F_{i}=N_{i} / N_{i-1}$ are free groups of finite rank r_{i} is called a polyfree group and R a polyfree series of G.

We proved in [2] that the length k and $c=\prod_{i=1}^{k}\left(r_{i}-1\right)$, the so called Euler characteristic of G, are independent of the chosen polyfree series of G, and we gave examples which show that the ranks r_{i} are not independent of the choice of the polyfree series of G.

The free abelian group G on two generators x and y is a polyfree group of length 2 . Let N_{i} be the subgroup of G generated by $x y^{i}, i \in \mathbf{Z}$. Then N_{i} and G / N_{i} are infinite cyclic, i.e. free of rank 1. If $i \neq j$, then $N_{i} \neq N_{j}$. The group G has therefore infinitely many polyfree series $R_{i}: 1 \triangleleft N_{i} \triangleleft G$. A non-abelian example of a polyfree group with infinitely many polyfree series is Example 26 in [2]. In both cases the polyfree series contain infinite cyclic factors, or equivalently, the groups involved have Euler characteristic $c=0$. In this note we consider polyfree groups of Euler characteristic $c \neq 0$. We show that in this case the number N of distinct polyfree series of a fixed group G is finite, and we give an upper bound for N which depends only on the invariants c and k.

On the other hand we give an example of a polyfree group $G_{n}(n=1,2$, $3, \ldots$) of length 2 and Euler characteristic $c G_{n}=2 n-1$ with 2^{n} polyfree series and an example of a polyfree group $G_{k}(k=1,2, \ldots)$ of length k and Euler characteristic 1 with k ! polyfree series.

I would like to thank the referee for many valuable suggestions and for pointing out corollary 3.

2. Statement and proof of the main theorem

Main Theorem. A polyfree group G of length k and Euler characteristic $c \neq 0$ has only a finite number N of distinct polyfree series and

$$
N \leq(c+1)^{(k-1) c+k^{2}-1} .
$$

[^0]Recall that two polyfree series

$$
R: 1=N_{0} \triangleleft \cdots \triangleleft N_{k}=G \quad \text { and } \quad R^{\prime}: 1=M_{0} \triangleleft \cdots \triangleleft M_{k}=G
$$

are distinct if there exists $i(1 \leq i \leq k)$ such that $M_{i} \neq N_{i}$.
We need two lemmas for the proof.
Lemma 1. Let Q be a finite group of order q and U a subgroup of $Q_{1} \times \cdots$ $\times Q_{n}$, the direct product of n copies of Q, and let $d U=d$ denote the minimum number of generators of U. Assume that U contains for all pairs $i \neq j$ an element $\left(q_{1}, \ldots, q_{n}\right), q_{i} \in Q$ with $q_{i} \neq q_{j}$, then $n \leq q^{d}$.

Proof. Let

$$
g_{1}=\left(u_{11}, \ldots, u_{1 i}, \ldots, u_{1 n}\right), \ldots, g_{d}=\left(u_{d 1}, \ldots, u_{d i}, \ldots, u_{d n}\right), \quad u_{i j} \in Q
$$

be a generating set of U. Since there is an element $\left(q_{1}, \ldots, q_{n}\right)$ in U with $q_{i} \neq q_{j}$ for every pair $i \neq j$, the column vectors

$$
\left(\begin{array}{c}
u_{1 i} \\
\vdots \\
u_{d i}
\end{array}\right)
$$

are distinct for $i=1, \ldots, n$. There exist q^{d} distinct column vectors of length d, and hence $n \leq q^{d}$.

The proof of lemma 1 is similar to an argument used in [3].
Lemma 2. Suppose G is a finitely generated group with minimum number of generators $d G=d$ and $S=\left\{N_{i}, i \in I\right\}$ a set of normal subgroups of G. Let Q be a finite group of order q such that
(i) there exists a surjective homomorphism $G / N_{i} \rightarrow Q$ for all $i \in I$, and
(ii) $\left|G: N_{i} N_{j}\right|<q$ for all pairs $i \neq j$.

Then S is finite and $|S| \leq q^{d}$.
Proof. Suppose that N_{1}, \ldots, N_{n} are n normal subgroups contained in S and

$$
f: G \rightarrow G / N_{1} \times \cdots \times G / N_{n} \rightarrow \underbrace{Q \times \cdots \times Q}_{n}
$$

is the composition of the canonical map $G \rightarrow G / N_{1} \times \cdots \times G / N_{n}$ with the direct product of the maps $G / N_{i} \rightarrow Q$ of (i). We verify that

$$
U=f(G) \leq Q \times \cdots \times Q
$$

satisfies the condition of lemma 1 : Let $i \neq j$, then since $\left|G: N_{i} N_{j}\right|<q$, the order of Q, the image of N_{j} under $f 1: G \rightarrow G / N_{i} \rightarrow Q$ is non-trivial. Let
$n_{i} \in N_{j}$ be such that $f_{i}\left(n_{i}\right) \neq 1$, then $f\left(n_{i}\right) \in U$ has components $\left(q_{1}, \ldots, q_{n}\right)$ where $q_{i}=f_{i}\left(n_{i}\right) \neq 1$ and $q_{j}=1$. Application of lemma 1 gives now $n \leq q^{d}$. Any finite subset of S is therefore of cardinality $\leq q^{d}$, and hence S is finite and $|S| \leq q^{d}$. This completes the proof.

Now let $1 \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k-1} \triangleleft N_{k}=G$ be a polyfree series with finitely generated free factors N_{i} / N_{i-1} of rank r_{i}, then we have for $d G$, the minimal number of generators of G, the equation $d G \leq r_{1}+\cdots+r_{k}$. If we now use the equation $\left(r_{1}-1\right) \cdots\left(r_{k}-1\right)=c$, where c is the Euler characteristic of G, it is easy to see that $r_{1}+\cdots+r_{k} \leq c+2 k-1$, and therefore

$$
\begin{equation*}
d G=d \leq c+2 k-1 \tag{1}
\end{equation*}
$$

For the Euler characteristic of $N_{k-1}, c N_{k-1}$, we have

$$
\begin{equation*}
0 \neq c N_{k-1} \leq c \tag{2}
\end{equation*}
$$

since it divides c.
Proof of the main theorem. We use induction on k.
$k=1 . \quad G$ is then a free group, and since non-trivial finitely generated normal subgroups of a free group are of finite index, $R: 1 \triangleleft G$ is the only polyfree series of G.
$k>1$. Let $S=\left\{N_{k-1, i} \mid i \in I\right\}$ be the set of distinct $(k-1)$ th terms of polyfree series of G. Using property (2) above and induction hypotheses for $N_{k-1, i}$ we get that the number of polyfree series is finite and $\leq(c+1)^{(k-2) c+(k-1)^{2}-1}$ for any $N_{k-1, i}$ and therefore

$$
\begin{equation*}
N \leq|S|(c+1)^{(k-2) c+(k-1)^{2}-1} \tag{3}
\end{equation*}
$$

Now suppose $1=N_{0} \triangleleft \cdots \triangleleft N_{k-1} \triangleleft N_{k}=G$ and $1=M_{0} \triangleleft \cdots \triangleleft M_{k-1}$ $\triangleleft M_{k}=G$ are two polyfree series with $N_{k-1} \neq M_{k-1}$, and let i be such that $N_{i-1} \subseteq M_{k-1}$ but $N_{i} \nsubseteq M_{k-1}$. Then the map $g: N_{i} \rightarrow G / M_{k-1}$ is non-trivial and has a factorisation

$$
\begin{equation*}
g: N_{i} \rightarrow N_{i} / N_{i-1} \rightarrow G / M_{k-1} \tag{4}
\end{equation*}
$$

Since N_{i} sn $G, g\left(N_{i}\right)$ sn G / M_{k-1}. A non-trivial finitely generated subnormal subgroup of a free group is of finite index and the index formula applies for the ranks:

$$
\operatorname{rank}\left(g\left(N_{i}\right)\right)-1=\left|G / M_{k-1}: g\left(N_{i}\right)\right|\left(s_{k}-1\right) \quad \text { where } s_{k}=\operatorname{rank} G / M_{k-1}
$$

i.e.

$$
\left|G / M_{k-1}: g\left(N_{i}\right)\right|=\left(\operatorname{rank}\left(g\left(N_{i}\right)\right)-1\right) /\left(s_{k}-1\right)
$$

Now $\left(s_{k}-1\right) \mid c \neq 0$, therefore $s_{k}-1 \geq 1$, and with (4) above

$$
\operatorname{rank}\left(g\left(N_{i}\right)\right)-1 \leq r_{i}-1 \quad \text { where } r_{i}=\operatorname{rank} N_{i} / N_{i-1} \text { and } r_{i}-1 \leq c
$$

Hence

$$
\begin{equation*}
c \geq\left|G / M_{k-1}: g\left(N_{i}\right)\right|=\left|G: M_{k-1} N_{i}\right| \geq\left|G: M_{k-1} N_{k-1}\right| . \tag{5}
\end{equation*}
$$

Let now Q be the finite cyclic group of order $c+1$. Then
(i) there exists $G / N_{k-1, i} \rightarrow Q$ for all i since $G / N_{k-1, i}$ is free, and
(ii) $\left|G: N_{k-1, i} N_{k-1, j}\right|<c+1$ for $i \neq j$ by (5).

We may therefore apply Lemma 2 and get $|S| \leq(c+1)^{d G}$. Now we use (1) and (3) to get the result:

$$
N \leq(c+1)^{c+2 k+1}(c+1)^{(k-2) c+(k-1)^{2}-1}=(c+1)^{(k-1) c+k^{2}-1} .
$$

COROLlary 3. The automorphism group of a polyfree group G of positive Euler characteristic is residually finite.

Proof. The finite set of polyfree series of G is permuted by Aut G. Therefore Aut G has a normal subgroup P_{1} of finite index such that P_{1} leaves invariant each term of a polyfree series

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G .
$$

Each Aut $\left(N_{i+1} / N_{i}\right)$ is residually finite, as the automorphism group of a finitely generated free group. Hence there is a $P_{2} \triangleleft$ Aut G such that P_{1} / P_{2} is residually finite and P_{2} stabilizes the series. Hence $\left[G,{ }_{k} P_{2}\right.$] $=1$. But the Three Subgroup Lemma shows that $\left[G, P_{2}\right.$] is nilpotent, and of course [G, $\left.P_{2}\right] \triangleleft G$. Since G has positive characteristic, $\left[G, P_{2}\right]=1$ and $P_{2}=1$. Hence Aut G is residually finite.

Remark. Consider the following:
(a) the residual finiteness of free groups;
(b) a subgroup of finite index in a finitely generated group G contains a characteristic subgroup of finite index of G;
(c) if $N \triangleleft G \rightarrow F$ is exact, N finite and F free, then G contains a free subgroup U of finite index such that $U \cap N=1$;

Using (a)-(c) and induction on the length k, it is not difficult to prove that polyfree groups are residually finite. Since they are also finitely generated, their automorphism groups are residually finite by a result of G. Baumslag [1], independent of their Euler characteristic.

Corollary 4. A polyfree group with positive Euler characteristic has a normal subgroup of finite index which has a normal polyfree series.

Proof. The finite set of polyfree series of G is permuted by the inner automorphisms of G. Therefore there is a subgroup U of finite index leaving all of them fixed. The intersection of any polyfree series of G with U is a normal polyfree series of U.

The following example to Corollary 4 shows a polyfree group which has no normal polyfree series. It contains a subgroup of index 2 with a normal polyfree series.

Example 1. Let $X=\left\langle x_{1}, x_{2}\right\rangle, Y=\left\langle y_{1}, y_{2}\right\rangle$ and $U=\langle s, t\rangle$ be free groups of rank 2 . Let $N=X \times Y$ and let U operate on N by $x_{i}^{s}=y_{i}, y_{i}^{s}=x_{i}$, $x_{i}^{t}=x_{i}, y_{i}^{t}=y_{i}, i=1,2$, then the semidirect product $G=N>\sim U$ is a polyfree group of length 3 and Euler characteristic 1. Then

$$
R_{1}: 1 \triangleleft X \triangleleft N \triangleleft G \quad \text { and } \quad R_{2}: 1 \triangleleft Y \triangleleft N \triangleleft G
$$

are polyfree series, but not normal series of G. The following considerations show that R_{1} and R_{2} are the only polyfree series of G. Assume that

$$
R: 1 \triangleleft M_{1} \triangleleft M_{2} \triangleleft G
$$

is any polyfree series of G. Since G is of characteristic $1, G / M_{2}$ is non-cyclic free.

We show first that $N \subseteq M_{2}$: Since $X^{s}=Y$, either both X and Y are in M_{2} or none of them. In the first case, $N \subseteq M_{2}$. The second case leads to a contradiction: Consider $p: G \rightarrow G / M_{2}$, then $p(X)$ and $p(Y)$ are nontrivial finitely generated subnormal subgroups of G / M_{2}. They are therefore of finite index in G / M_{2}. On the other hand $[X, Y]=1$; therefore $p(X) \cap p(Y)$ is abelian, a contradiction.

Now consider $N \triangleleft M_{2} \triangleleft G$. We have G / N and G / M_{2} non-trivial and free. M_{2} / N is a finitely generated normal subgroup of G / N. Since its index is not finite, M_{2} / N is trivial and hence $M_{2}=N$.

A similar consideration shows that either $M_{1}=X$ or $M_{1}=Y$.

3. Two examples

We give an example of a polyfree group of length k and Euler characteristic 1 with k ! distinct polyfree series and an example of a polyfree group of length 2 and Euler characteristic $2 n-1$ which has at least 2^{n} distinct polyfree series.

Example 2. Let $X_{i}=\left\langle x_{i}, y_{i}\right\rangle$ be free groups of rank 2 for $i=1, \ldots, k$, and let

$$
G=X_{1} \times \cdots \times X_{k} .
$$

Then G is polyfree of length k and Euler characteristic 1 . Let $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ be a permutation of $(1,2, \ldots, k)$, then

$$
1 \triangleleft X_{i_{1}} \triangleleft X_{i_{1}} \times X_{i_{2}} \triangleleft X_{i_{1}} \times X_{i_{2}} \times X_{i_{3}} \triangleleft \cdots \triangleleft G
$$

is a polyfree series of G. There are k ! such polyfree series. In fact, these are the only polyfree series of the group G. This can be shown by a consideration similar to that in Example 1.

Example 3. Suppose that f_{1}, \ldots, f_{r} are automorphisms of the free group $\left\langle y_{1}, \ldots, y_{s}\right\rangle$ of rank s. Then the group with the presentation

$$
G=\left\langle x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s} ; y_{j}^{x_{i}}=f_{i}\left(y_{j}\right), i=1, \ldots, r, j=1, \ldots, s\right\rangle
$$

is free by free. More precisely, y_{1}, \ldots, y_{s} freely generate a free normal subgroup N and G / N is free on the images of x_{1}, \ldots, x_{r} under $G \rightarrow G / N$.

Proposition 5. Let G_{n} be the group with the presentation

$$
\left(^{*}\right) G_{n}=\left\langle t, x_{1}, \ldots, x_{n}, s, y_{1}, \ldots, y_{n}\right.
$$

$$
\left.x_{i}^{t}=x_{i}, x_{i}^{s}=x_{i}^{y_{i}}, y_{i}^{t}=y_{i}^{x_{i}}, y_{i}^{s}=y_{i}, 1 \leq i \leq r\right\rangle
$$

Then for any partition $A \cup B$ of $\{1, \ldots, n\}$ the $2 n$ elements $x_{i}, y_{i}, i \in A$ and $x_{j} t^{-1}, y_{j} s^{-1}, j \in B$ freely generate a free normal subgroup N of G whose quotient G / N is free on two generators.

Proof. We have

$$
y_{k}^{t}=y_{k}^{x_{k}} \Leftrightarrow y_{k}=y_{k}^{x_{k} t-1} \Leftrightarrow x_{k} t^{-1}=\left(x_{k} t^{-1}\right)^{y_{k}} \Leftrightarrow\left(x_{k} t^{-1}\right)^{s^{-1}}=\left(x_{k} t^{-1}\right)^{y_{k} s^{-1}}
$$

and similarly

$$
x_{k}^{s}=x_{k}^{y_{k}} \Leftrightarrow\left(y_{k} s^{-1}\right)^{t^{-1}}=\left(y_{k} s^{-1}\right)^{x_{k} t-1} .
$$

Moreover, if we use $x_{k} t=t x_{k}$, we get

$$
y_{k}^{t}=y_{k}^{x_{k}} \Leftrightarrow y_{k}^{t-1}=y_{k}^{x_{k}-1} .
$$

The system $\left({ }^{*}\right)$ of relations is therefore equivalent to $\left({ }^{* *}\right)$:
$(* *)\left\{\begin{array}{lll}x_{i}^{t-1}=x_{i}, & x_{i}^{s^{-1}}=x_{i}^{y_{i}-1} & (i \in A), \\ \left(x_{j} t^{-1}\right)^{t^{-1}}=x_{j} t^{-1}, & \left(x_{j} t^{-1}\right)^{s^{-1}}=\left(x_{j} t^{-1}\right)^{y_{j} s^{-1}} & (j \in B), \\ y_{i}^{t^{-1}}=y_{i}^{x_{i}-1}, & y_{i}^{s^{-1}}=y_{i}, & (i \in A), \\ \left(y_{j} s^{-1}\right)^{t^{-1}}=\left(y_{j} s^{-1}\right)^{x_{j} t^{-1}}, & \left(y_{j} s^{-1}\right)^{s^{-1}}=y_{j} s^{-1} & (j \in B) .\end{array}\right.$
t^{-1} and s^{-1} operate as automorphisms of the subgroup generated by x_{i}, y_{i}, $i \in A$ and $x_{j} t^{-1}, y_{j} s^{-1}, j \in B$ and the result follows therefore by the remark at the begining of the section.

There are 2^{n} such partitions of $\{1, \ldots, n\}$. Therefore G_{n} has 2^{n} free normal
subgroups with free quotients. Since any two of them generate G_{n}, they are distinct. Therefore G_{n} is a polyfree group of length 2 and Euler characteristic $2 n-1$ with at least 2^{n} distinct polyfree series.

References

1. G. Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc., vol. 38 (1963), pp. 117-118.
2. D. Meier, On the homological dimension of poly-locally free groups, J. London Math. Soc. (2), vol. 22 (1980), pp. 449-459.
3. D. Meier and J. Wiegold, Growth sequences of finite groups V, J. Austral. Math. Soc. (Series A), vol. 31 (1981), pp. 374-375.

Southern Illinois University
Carbondale, Illinois
Pilgerwegl
8044 Zurich, Switzerland

[^0]: Received February 5, 1982.
 ${ }^{1}$ Research supported by a grant from the Swiss National Science Foundation.

