ON THE UNIFORM CONVEXITY OF L^{p} SPACES, $1<p \leq 2$

BY
A. Meir

1. A normed linear vector space E is called uniformly convex (Clarkson [1]) or uniformly rotund (Day [2]) if for every $\varepsilon, 0<\varepsilon<2$,

$$
\delta(\varepsilon)=\delta_{E}(\varepsilon) \doteq \inf \left\{1-\left\|\frac{1}{2}(x+y)\right\|:\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \varepsilon\right\}
$$

is positive. The function $\delta(\varepsilon)$ is called modulus of rotundity. It was proved by Clarkson [1] (see also Köthe [5], pp. 358-362 and Day [2], pp. 144-149) that the classical real or complex Lebesgue spaces L^{p} are uniformly convex for $1<p<\infty$. Both the proof of this result as well as the explicit determination of the modulus $\delta_{p}(\varepsilon)$ is easy when $p \geq 2$. For, in this case, elementary arguments yield that for $\|x\|_{p} \leq 1,\|y\|_{p} \leq 1$ we have

$$
\begin{equation*}
\left.\|x+y\|\right|_{p} ^{p}+\|x-y\|_{p}^{p} \leq 2^{p} \tag{1.1}
\end{equation*}
$$

Hence, if $\|x-y\|_{p} \geq \varepsilon$,

$$
\left\|\frac{1}{2}(x+y)\right\|_{p}<1-\frac{1}{p}\left(\frac{\varepsilon}{2}\right)^{p} .
$$

The proofs given in [1], [3], [5] for the uniform convexity of L_{p} and for the calculation of $\delta_{p}(\varepsilon)$, when $1<p \leq 2$, are much more complicated. In a recent paper Jakimovski and Russell [4] established an inequality which (when $\lambda=1 / 2)$ is of the same form as (2.1) but with $p(p-1) / 8$ replaced by an unknown constant. When $1<p \leq 2$, the inequality of [4] yields the uniform convexity of L^{p} but not the evaluation of $\delta_{p}(\varepsilon)$. The purpose of this paper is to prove for $1<p \leq 2$, a more precise inequality by a much simpler argument. As a corollary it yields not only the uniform convexity of L^{p} for $1<p \leq 2$, but also a very simple proof of Hanner's result [3], namely, that

$$
\delta_{p}(\varepsilon)=(p-1) \varepsilon^{2} / 8+O\left(\varepsilon^{3}\right), \quad \text { as } \varepsilon \rightarrow 0 .
$$

2. We shall prove the following:

Received January 18, 1982.

Theorem 1. Let $1<p \leq 2$ and let L^{p} denote the real or complex Lebesgue space over a measure space Ω. Then for every $f, g \in L^{p}$, we have

$$
\begin{align*}
&\left\|\frac{1}{2}(|f|+|g|)\right\|_{p}^{2-p}\left\{\frac{1}{2}\|f\|_{p}^{p}+\frac{1}{2}\|g\|_{p}^{p}-\left\|\frac{1}{2}(f+g)\right\|_{p}^{p}\right\} \tag{2.1}\\
& \geq \frac{p(p-1)}{8}\|f-g\|_{p}^{2}
\end{align*}
$$

Corollary 1. If $1<p \leq 2,\|f\|_{p} \leq 1,\|g\|_{p} \leq 1$, then

$$
\begin{equation*}
\left\|\frac{1}{2}(f+g)\right\|_{p} \leq 1-\frac{p-1}{8}\|f-g\|_{p}^{2} \tag{2.2}
\end{equation*}
$$

i.e.,

$$
\delta_{p}(\varepsilon) \geq \frac{p-1}{8} \varepsilon^{2}
$$

Moreover, this estimate for $\delta_{p}(\varepsilon)$ is asymptotically best possible, as $\varepsilon \rightarrow 0$.
Remark. (i). Inequalities (2.1) and (2.2) become trivial for $p=1$. Indeed, there exist $f, g \in L^{1}[0,1]$ such that

$$
\|f\|_{1}=\|g\|_{1}=\left\|\frac{1}{2}(f+g)\right\|_{1}=1 \quad \text { and } \quad\|f-g\|_{1}=1
$$

Remark (ii). From (2.1) one can deduce also the inequality

$$
\begin{equation*}
2\|f\|_{p}^{2}+2\|g\|_{p}^{2}>\|f+g\|_{p}^{2}+\frac{p(p-1)}{2}\|f-g\|_{p}^{2} \tag{2.3}
\end{equation*}
$$

for every $f, g \in L^{p}, 1<p \leq 2$. Observe that for $p=2$, the equality sign holds in (2.3), as well as in (2.1).
3. Proof. For the proof we shall need only the following simple facts:

If $-1 \leq u \leq 1$ and $1<p \leq 2$, then

$$
\begin{equation*}
\frac{1}{2}(1+u)^{p}+\frac{1}{2}(1-u)^{p} \geq 1+\frac{p(p-1)}{2} u^{2} \tag{3.1}
\end{equation*}
$$

If α, β are complex numbers, then

$$
\begin{equation*}
|\alpha-\beta|^{2}+|\alpha+\beta|^{2}=(|\alpha|-|\beta|)^{2}+(|\alpha|+|\beta|)^{2} \tag{3.2}
\end{equation*}
$$

If $0 \leq v \leq 1$ and $1<p \leq 2$, then

$$
\begin{equation*}
\frac{1}{p}\left(1-v^{p}\right) \geq \frac{1}{2}\left(1-v^{2}\right) . \tag{3.3}
\end{equation*}
$$

If F, G, H are non-negative functions in $L^{p}, p>1$, and $F^{1-r} G^{r} \geq H$ everywhere, with some $r, 0<r<1$, then

$$
\begin{equation*}
\|F\|_{p}^{1-r} \cdot\|G\|_{p}^{r} \geq\|H\|_{p} \tag{3.4}
\end{equation*}
$$

The inequalities (3.1) and (3.3) can be proven by calculus; (3.2) is the parallelogram rule and (3.4) follows from Hölder's inequality applied to $F^{p(1-r)} G^{p r}$.

In order to prove (2.1), let $f, g \in L^{p}, 1<p \leq 2$. We set

$$
u=\frac{|f|-|g|}{|f|+|g|}, \quad v=\frac{|f+g|}{|f|+|g|}, \quad w=\frac{|f-g|}{|f|+|g|}
$$

if $|f|+|g|>0$, otherwise $u=v=w=1$. Then we clearly have $-1 \leq u \leq 1$, $0 \leq v \leq 1$ and, by (3.2), $u^{2}+1=v^{2}+w^{2}$. Hence, by (3.1),

$$
\begin{aligned}
\frac{1}{2}(1+u)^{p}+\frac{1}{2}(1-u)^{p} & \geq 1+\frac{p(p-1)}{2} u^{2} \\
& \geq 1+\frac{p(p-1)}{2} w^{2}-\frac{p(p-1)}{2}\left(1-v^{2}\right) \\
& \geq 1+\frac{p(p-1)}{2} w^{2}-(p-1)\left(1-v^{p}\right)
\end{aligned}
$$

where we used (3.3) in the last inequality. Thus we obtained

$$
\begin{equation*}
\frac{1}{2}(1+u)^{p}+\frac{1}{2}(1-u)^{p}-\left[2-p+(p-1) v^{p}\right] \geq \frac{p(p-1)}{2} w^{2} \tag{3.5}
\end{equation*}
$$

and, a fortiori,

$$
\begin{equation*}
\frac{1}{2}(1+u)^{p}+\frac{1}{2}(1-u)^{p}-v^{p} \geq \frac{p(p-1)}{2} w^{2} \tag{3.6}
\end{equation*}
$$

since $0 \leq v \leq 1$.
Substitution of u, v, w into (3.6) and multiplication of both sides by $\frac{1}{4}(|f|$ $+|g|)^{2}$ yields

$$
\left(\frac{1}{2}|f|+\frac{1}{2}|g|\right)^{2-p} \cdot\left[\frac{1}{2}|f|^{p}+\frac{1}{2}|g|^{p}-\left|\frac{1}{2}(f+g)\right|^{p}\right] \geq \frac{p(p-1)}{8}|f-g|^{2}
$$

Taking square root on both sides, applying (3.4) to the left hand product with $r=p / 2$, and then squaring both sides, we obtain (2.1).

Proof of Corollary 1. If $\|f\|_{p} \leq 1,\|g\|_{p} \leq 1$, then, by (2.1),

$$
1-\left\|\frac{1}{2}(f+g)\right\|_{p}^{p} \geq \frac{p(p-1)}{8}\|f-g\|^{2}
$$

Since $p(1-c) \geq 1-c^{p}$ for $0 \leq c \leq 1$, the last inequality implies (2.2). In order to prove that the estimate for $\delta_{p}(\varepsilon)$ is best possible, we let $\Omega=[0,1]$ with the usual Lebesgue measure, $f(2)=1$ for $0 \leq t \leq 1$ and for given $\varepsilon>0$,

$$
g(t)= \begin{cases}1+\varepsilon, & 0 \leq t \leq 1 / 2 \\ 1-\eta, & 1 / 2 \leq t \leq 1\end{cases}
$$

where $\eta>0$ is so chosen that $(1+\varepsilon)^{p}+(1-\eta)^{p}=2$. Then it is easy to see that

$$
\eta=\varepsilon+O\left(\varepsilon^{2}\right) \text { and }\left\|\frac{1}{2}(f+g)\right\|_{p}^{p}=1-\frac{p(p-1)}{8} \varepsilon^{2}+O\left(\varepsilon^{3}\right)
$$

as $\varepsilon \rightarrow 0$. This proves our claim.

Remark (iii). Inequality (2.1) could be somewhat strengthened by using (3.5) instead of the weaker inequality (3.6). We then obtain for every $f, g \in L^{p}$, $1 \leq p \leq 2$,

$$
\begin{array}{r}
\left\|\frac{1}{2}(|f|+|g|)\right\|_{p}^{2-p} \cdot\left[\frac{1}{2}\|f\|_{p}^{p}+\frac{1}{2} \left\lvert\,\|g\|_{p}^{p}-(p-1)\left\|\frac{1}{2}(f+g)\right\|_{p}^{p}\right.\right] \\
\geq(2-p)\left\|\frac{1}{2}(|f|+|g|)\right\|_{p}^{2}+\frac{p(p-1)}{8}\|f-g\|_{p}^{2}
\end{array}
$$

Remark (iv). Inequality (2.1) remains valid also if f and g are Hilbert space valued functions over a measure space Ω and the L^{p}-norm is defined by $\left(\int_{\Omega}\|f\|_{H}^{p}\right)^{1 / p}$. This follows from the fact that the only property of the complex numbers used in the proof is (3.2), which is true in a Hilbert space if absolute values are replaced by the Hilbert space norms.
4. By a mild modification of the proof we can obtain the following, more precise version of Theorem 1 in [4] for the case $1<p \leq 2$:

Theorem 2. Let $1<p \leq 2,0<\lambda<1$. Then for every $f, g \in L^{p}$ we have

$$
\begin{array}{r}
\left\|\frac{1}{2}(|f|+|g|)\right\|_{p}^{2-p} \cdot\left\{\lambda\|f\|_{p}^{p}+(1-\lambda)\|g\|_{p}^{p}-\|\lambda f+(1-\lambda) g\|_{p}^{p}\right\} \\
\geq \frac{1}{4} p(p-1)\|f-g\|_{p}^{2} \cdot \min (\lambda, 1-\lambda)
\end{array}
$$

We omit the proof.

Corollary. If $\|f\|_{p} \leq 1,\|g\|_{p} \leq 1,\|f-g\|_{p} \geq \varepsilon$, then

$$
\|\lambda f+(1-\lambda) g\|_{p}<1-\frac{p-1}{4} \mu \varepsilon^{2}
$$

where $\mu=\min (\lambda, 1-\lambda)$.
We conjecture that this estimate is asymptotically best possible as $\varepsilon \rightarrow 0$, $\lambda \rightarrow 0$. Note that for $\lambda=1 / 2$ it reduces to our earlier inequality (2.2)

References

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., vol. 40 (1936), pp. 396414.
2. M. M. Day, Normal linear spaces, Springer Verlag, New York, third ed., 1973.
3. O. Hanner, On the uniform convexity of L^{p} and l^{p}, Ark. Mat., vol. 3 (1956), pp. 239-244.
4. A. Jakimovski and D. C. Russell, An inequality for the L^{D}-norm related to uniform convexity, C.R. Math. Rep. Acad. Sci. Canada, vol. 3 (1981), pp. 23-27.
5. G. Köthe, Topologische lineare Räume, Springer Verlag, Berlin, 1960.

University of Alberta
Edmonton, Alberta

