AN ALGEBRAIC FORMULA FOR THE GYSIN HOMOMORPHISM FROM G/B TO G/P

BY

ERSAN AKYILDIZ¹ AND JAMES B. CARRELL²

The purpose of this note is to prove an algebraic formula for the Gysin homomorphism

$$\pi_*: H^{\bullet}(G/B; \mathbb{C}) \to H^{\bullet}(G/P; \mathbb{C})$$

associated to the canonical map $\pi: G/B \to G/P$ from a flag manifold to an algebraic homogeneous space. In addition, we obtain a formula for

$$\int_X : H^{2n}(X; \mathbb{C}) \to \mathbb{C}$$

when X is a homogeneous space of dimension n. Our formula shows π_* is a sum of residues, a consequence of the fact that one can compute the Gysin homomorphism f_* associated to a smooth connected surjective morphism $f: X \to Y$ between compact algebraic manifolds as a sum of residues on the zeros of a holomorphic vector field V on X with isolated zeros.

1. Statement of the main results

We begin with a list of notation:

- G a semi simple linear algebraic group
- *B* a Borel subgroup of *G*
- H a maximal torus in B with group of characters X(H).
- $h \subset g$ The Lie algebras of H and G
- $\Delta \qquad \text{the root system of } H \text{ in } G, \ \Delta \subset \mathbb{A}^*$
- Δ_+ the positive roots associated to B
- Σ a basis of Δ
- Δ_{θ} the set of positive roots that are linear combinations of roots in $\theta \subset \Sigma$.

Received July 29, 1985

¹Partially supported by UPM Research Project MS/Action/86.

²Partially supported by a grant from N.S.E.R.C. of Canada.

^{© 1987} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

- P_{θ} the parabolic containing B associated to $\theta \subset \Sigma$.
- W the Weyl group of H in G: W = N(H)/H
- $\begin{array}{ll} W_{\theta} & \text{ the subgroup of } W \text{ generated by all reflections} \\ \sigma_{\alpha} \ (\alpha \in \theta). \end{array}$

Suppose $R = \text{Sym}(k^*)$ with the canonical W-action $w \cdot f(v) = f(w^{-1} \cdot v)$, where $w \cdot v$ denotes the usual action of W on k. A classical result of Borel says that the assignment

$$\alpha \in X(H) \to c_1(L_{\alpha}) \in H^2(G/B; \mathbb{C}),$$

where L_{α} is the line bundle on G/B canonically associated to α , induces algebra homomorphisms

$$\phi: R \to H^{\bullet}(G/B; \mathbb{C}) \text{ and } \phi_{\theta}: R^{W_{\theta}} \to H^{\bullet}(G/P_{\theta}; \mathbb{C})$$

for any $\theta \subset \Sigma$ which induce ring isomorphisms

$$\Phi: R/RR^W_+ \to H^{\bullet}(G/B; \mathbb{C})$$
 and $\Phi_{\theta}: R^{W_{\theta}}/R^{W_{\theta}}R^W_+ \to H(G/P_{\theta}; \mathbb{C})$

 $\mathscr{G} \subseteq W$ and $R_{+}^{\mathscr{G}} = \{ f \in R^{\mathscr{G}} | f(0) = 0 \}$ where $R^{\mathscr{G}}$ is the ring of invariants of \mathscr{G} . Let d_{θ} denote $\prod_{\alpha \in \Delta_{\theta}} \alpha$, and $R_{d_{\theta}}$ denote the localization of R at d_{θ} . Consider the (symmetrization) operator $M_{\theta} : R \to R_{d_{\theta}}$ where

$$M_{\theta}(f) = \sum_{q \in W_{\theta}} \frac{\det(q)q \cdot f}{d_{\theta}}$$

We shall prove:

THEOREM 1. In fact (a) $M_{\theta}(R) \subseteq R^{W_{\theta}}$, and (b) the diagram

commutes, where π_* denotes the Gysin homomorphism. Consequently, the induced map $\tilde{M}_{\theta}: R/RR^W_+ \to R^{W_{\theta}}/R^{W_{\theta}}R^W_+$ is the Gysin homomorphism.

 \tilde{M}_{θ} is well defined because M_{θ} is $R^{W_{\theta}}$ (hence R^{W})-linear. We also obtain the following integral formula for G/P. **THEOREM 2.** Let P be a parabolic in G, say $P = P_{\theta}$. Then for all $f \in R^{W_{\theta}}$,

$$\int_{G/P} \Phi_{\theta}(\bar{f}) = \sum_{q \in W_{\theta}^{\perp}} \frac{\det(q)q \cdot f}{\prod_{\alpha \in \Delta \setminus \Delta_{\theta}} \alpha}$$

where W_{θ}^{\perp} denotes the set of all $w \in W$ so that $w \cdot \theta \subset \Delta_+$. In particular, if $\overline{f} = 0$ in $(R^{W_{\theta}}/R^{W_{\theta}}R^{W}_+)_m$, the residue classes of degree $m = \dim G/P$, for example if f is homogeneous of degree different from m, then

$$\sum_{q \in W_{\theta^{\perp}}} \frac{\det(q) q \cdot f}{\prod_{\alpha \in \Delta \setminus \Delta_{\theta}} \alpha} = 0$$

Similarly, one can give an explicit formula for

$$\pi_*: H^{\boldsymbol{\cdot}}(G/P_{\theta'}; \mathbb{C}) \to H^{\boldsymbol{\cdot}}(G/P_{\theta}; \mathbb{C})$$

for $\theta \subset \theta'$.

2. The Gysin homomorphism and zeros of holomorphic vector fields [3]

Assume that X is a compact algebraic manifold of dimension n with a holomorphic vector field V having isolated zeros Z. Consider Z as the variety with structure sheaf $\mathcal{O}_Z = \mathcal{O}_X/i(V)\Omega_X^1$. Recall that by [5] there exists a filtration

$$H^0(X; \mathcal{O}_Z) = F_n(V) \supset F_{n-1}(V) \supset \cdots \supset F_1(V) \supset F_0(V)$$

such that $F_i(V)F_i(V) \subset F_{i+i}(V)$ and graded ring isomorphisms

$$H^{\bullet}(X; \mathbb{C}) = \bigoplus H^{2i}(X; \mathbb{C}) \cong \bigoplus F_i(V)/F_{i+1}(V)$$

Now suppose $f: X \to Y$ is a smooth, connected, surjective morphism of relative dimension r between compact algebraic manifolds. Then there exists a unique holomorphic vector field V_* on Y so that $f_*V = V_*$. Moreover, V_* has isolated zeros and zero $(V_*) = f(Z)$. The main result of [3] is the definition of a residue morphism

$$\operatorname{Res}(V) = \operatorname{Res}_{X|Y}(V) \colon H^0(X; \mathcal{O}_Z) \to H^0(Y; \mathcal{O}_{f(Z)}),$$

where

$$\mathcal{O}_{f(Z)} = \mathcal{O}_Y / i(V_*) \Omega_Y^1,$$

having the properties that (a) $\operatorname{Res}(V)(F_p(V)) \subset F_{p-r}(V_*)$ and (b) the diagram

is commutative. This amounts to the computation of f_* on Z.

We will now compute $\operatorname{Res}(V)$ when V has only simple zeros. Note first that V is tangent to the fibre X_{ξ} of f over a zero ξ of V_* . Letting \tilde{V} denote the restriction of V to X_{ξ} note also that the Lie derivative $L(\tilde{V})_{\xi}: T_{\xi}(X_{\xi}) \to T_{\xi}(X_{\xi})$ is an isomorphism for any zero ξ of \tilde{V} since $L(\tilde{V})_{\xi} = L(V)_{\xi}|T_{\xi}(X_{\xi})$ and $L(V)_{\xi}: T_{\xi}(X) \to T_{\xi}(X)$ is an isomorphism, ξ being a simple zero of V.

Since V and, consequently, V_* have only simple zeros and $f(Z) = zero(V_*)$, it follows easily that

$$H^0(X; \mathcal{O}_Z) \cong \mathbb{C}^Z$$
 and $H^0(Y; \mathcal{O}_{f(Z)}) \cong \mathbb{C}^{f(Z)}$,

where \mathbb{C}^A denotes the ring of complex valued functions on A. Thus we need to compute $\operatorname{Res}(V)(s)(\tilde{\zeta})$ for any $s \in H^0(X; \mathcal{O}_Z)$ and $\tilde{\zeta} \in f(Z)$.

PROPOSITION 1. With the above notation,

$$\operatorname{Res}(V)(s)(\tilde{\xi}) = \sum_{\zeta \in f^{-1}(\tilde{\xi}) \cap Z} \frac{s(\zeta)}{\det L(\tilde{V})_{\zeta}}$$

Proof. By assumption, X has local coordinates (u, v) near any $\zeta \in f^{-1}(\zeta)$ $\cap Z$ so that $\zeta = (0, 0)$ and f(u, v) = u. In terms of these coordinates,

$$V = \sum_{i=1}^{n-r} a_i(u) \frac{\partial}{\partial u_i} + \sum_{j=1}^r b_j(u,v) \frac{\partial}{\partial v_j}$$

and

$$\tilde{V} = \sum_{j=1}^{r} b_j(0, v) \frac{\partial}{\partial v_j}$$

Now by definition of $\operatorname{Res}(V)$ (cf. [3]),

$$\operatorname{Res}(V)(s)(\tilde{s}) = \sum_{\zeta \in f^{-1}(\tilde{\zeta}) \cap Z} \operatorname{Res} \left[\begin{array}{c} s(\zeta) \ dv_1 \wedge \cdots \wedge dv_r \\ b_1(0, v), \dots, b_r(0, v) \end{array} \right]_{v=0}$$

Writing

$$b_i(0, v) = \sum_{j=1}^r \lambda_{ij} v_j$$
 + higher order terms

and using the fact that $det(\lambda_{ij}) \neq 0$ and the standard algorithm for computing Grothendieck residues, it follows that

$$\operatorname{Res}(V)(s)(\tilde{\varsigma}) = \sum_{\zeta} \frac{s(\zeta)}{\det(\lambda_{ij})} = \sum_{\zeta} \frac{s(\zeta)}{\det L(\tilde{V})_{\zeta}}$$

which proves the proposition.

3. The residue morphism on G/B

Recall that a vector $v \in \mathbb{A}$ is said to be regular if $(G/B)^{\exp(tv)} = (G/B)^H$. Equivalently, v is regular if $\alpha(v) \neq 0$ for any $\alpha \in \Delta$. If v is regular, the holomorphic vector field V on G/B generated by v has zero set $Z = \{w \cdot B | w \in W\} \cong W$, where $w \cdot B$ denotes the Borel gBg^{-1} where $g \in N(H)$ is a representative of ω . Moreover, all zeros of V are simple. Thus $H^0(G/B; \mathcal{O}_Z) \cong \mathbb{C}^W$. Let $P_{\theta} \supset B$ denote the standard parabolic corresponding to $\theta \subset \Sigma$ and V_* the vector field $\pi_* V$ on G/P_{θ} where $\pi : G/B \to G/P_{\theta}$ is the natural map. Clearly,

$$H^0(G/P_{\theta}; \mathcal{O}_{\pi(Z)}) \cong \mathbb{C}^{W/W_{\theta}},$$

due to the fact that $\pi: Z \to \operatorname{zero}(\pi_* V)$ induces the natural map $W \to W/W_{\theta}$. We will first compute $\operatorname{Res}(V)$.

PROPOSITION 2. For any $s \in \mathbb{C}^W$ and $\overline{w} \in W/W_{\theta'}$.

$$\operatorname{Res}(V)(s)(\overline{w}) = \sum_{q \in W_{\theta}} \frac{\operatorname{det}(q)s(wq)}{\prod_{\alpha \in -\Delta_{\theta}} (w \cdot \alpha(v))}$$

Proof. By Proposition 1, it suffices to show that for any $q \in W_{\theta'}$

$$\det L(\tilde{V})_{wq} = \frac{1}{\det(q)} \Big(\prod_{\alpha \in -\Delta_{\theta}} w \cdot \alpha(v) \Big)$$

where \tilde{V} denotes the restriction of V to $\pi^{-1}(wP_{\theta}) = w \cdot P_{\theta}/B$.

316

LEMMA. The set of eigenvalues of $L(\tilde{V})_{wq}$ is $\{wq \cdot \alpha(v) | \alpha \in -\Delta_{\theta}\}$.

Proof. It suffices to consider the case where $G = w \cdot P_{\theta}$ and to show that the eigenvalues for V at $w \in W$ are of the form $(w \cdot \alpha)(v)$ where $\alpha \in -\Delta_+$. Since $(w \cdot \alpha)(v) = \alpha(w^{-1} \cdot v)$, it even suffices to show that the set of eigenvalues of V at e = B is $\{\alpha(v) | \alpha \in -\Delta_+\}$. To do this, recall that the natural map $G \to G/B$ induces an isomorphism

$$T_B(G/B)\cong\bigoplus_{\alpha\in-\Delta_+}\mathscr{G}_{\alpha}$$

where \mathscr{G}_{α} is the tangent space at e to the unique 1-parameter subgroup $u_{\alpha}: \mathbb{C} \to \mathscr{G}$ such that $hu_{\alpha}(z)h^{-1} = u_{\alpha}(\alpha(h)z)$ for $h \in H$ and $z \in \mathbb{C}$. Let $y_{\alpha} \in \mathscr{G}_{\alpha}$ denote

$$\frac{d}{dz}\Big|_{z=0}u_{\alpha}(z).$$

Then

$$\begin{bmatrix} V, y_{\alpha} \end{bmatrix} = \frac{d}{dt} \Big|_{t=0} \operatorname{Ad}(\exp tv) y_{\alpha}$$
$$= \frac{d}{dt} \Big|_{t=0} \frac{d}{dz} \Big|_{z=0} (\exp tv) u_{\alpha}(z) (\exp(-tv))$$
$$= \frac{d}{dt} \Big|_{t=0} \frac{d}{dz} \Big|_{z=0} u_{\alpha}(t\alpha(v)z)$$
$$= \alpha(v) y_{\alpha}$$

This completes the proof of the lemma.

Hence,

$$\det L(\tilde{V})_{wq} = \prod_{\alpha \in -\Delta_{\theta}} wq \cdot \alpha(v) = \det(q) \prod_{\alpha \in -\Delta_{\theta}} w \cdot \alpha(v).$$

Since $det(q) = \pm 1$, we are done with the proof of Proposition 2.

4. The proofs

We will begin by proving Theorem 1, employing induction on degree. Thus, let $R_p = \{ f \in R | f \text{ is homogeneous of degree } p \}$. Since $M_{\theta}(1) = 0$ (it is well known that for a finite reflection group $G, \sum_{q \in G} \det(q) = 0$) the result is trivial for p = 0. Letting $n = \dim G/B$ and $l = \dim P_{\theta}/B$, we assume that the theorem holds when $f \in R_{p-1}$ where $p \le n$. Since

$$H^0(G/P_{\theta}; \mathcal{O}_{\pi(Z)}) \cong \mathbb{C}^{W/W_{\theta}},$$

which is induced from the algebra homomorphism $\Psi: R \to \mathbb{C}^W$ determined by the condition that

$$\Psi(\alpha)(w) = -w \cdot \alpha(v)$$

for all $\alpha \in \mathbb{A}^*$, where v is the regular element of \mathbb{A} generating V. By [1], Ψ_{θ} induces an isomorphism

$$\overline{\Psi}_{\theta} \colon R_{P}^{W_{\theta}} / \left(R^{W_{\theta}} R_{0}^{W} \right)_{p} \to F_{p}(\pi_{*} V) / F_{p-1}(\pi_{*} V)$$

and by (2), there exists a unique map M_{θ}^* such that the following diagram commutes:

$$(3) \qquad \begin{array}{c} R_{p}/(RR_{0}^{W})_{p} & \xrightarrow{\overline{\Psi}} F_{p}(V)/F_{p-1}(V) \\ & \downarrow \\ R_{\theta}^{*} & \downarrow \\ R_{p-l}^{W_{\theta}}/(R^{W_{\theta}}R_{+}^{W})_{p-l} & \xrightarrow{\overline{\Psi}_{\theta}} F_{p-l}(\pi_{*}V)/F_{p-l-1}(\pi_{*}V) \end{array}$$

Now suppose that $f \in R_p$. Then

$$\operatorname{Res}(V)\overline{\Psi}(f)(\overline{w}) = \sum_{q \in W_{\theta}} \frac{\operatorname{det}(q)\overline{\Psi}(f)(wq)}{\prod_{\alpha \in -\Delta_{\theta}} w \cdot \alpha(v)}$$
$$= (-1)^{p} \sum_{q \in W_{\theta}} \frac{\operatorname{det}(q)(wq \cdot f)(v)}{\prod_{\alpha \in \Delta_{\theta}} (-w \cdot \alpha(v))}$$
$$= (-1)^{p-l} \frac{1}{d_{\theta}(w^{-1} \cdot v)} \Big(\sum_{q \in W_{\theta}} \operatorname{det}(q)q \cdot f\Big)(w^{-1} \cdot v).$$

Since for $g \in R_{p-l}^{W_{\theta}}, \Psi_{\theta}(g)(\overline{w}) = (-1)^{p-l}g(w^{-1} \cdot v)$, it follows, by composing with $\overline{\Psi}_{\theta}^{-1}$ to get M_{θ}^* , that for each $f \in R_p$ there exists a $g \in (RR_+^W)_p$ so that

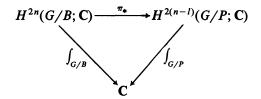
$$M_{\theta}^{*}(f+g) = \sum_{q \in W_{\theta}} \frac{\det(q)q \cdot (f+g)}{d_{\theta}} = M_{\theta}(f+g)$$

is a polynomial. However, by the fact that M_{θ} is R^{W} -linear, the induction assumption implies $M_{\theta}(g) \in R^{W_{\theta}}$. Consequently, $M_{\theta}(f) \in R^{W_{\theta}}$ and part (a)

318

is verified. But part (b) now follows immediately from the above computation, in view of the commutativity of (2) and (3).

We will next prove Theorem 2. First consider the commutative diagram



Now by Theorem 1, $\int_{G/B}$ is the map

$$M_{\Sigma}(f) = \sum_{w \in W} \frac{\det(w)w \cdot f}{\prod_{\alpha \in \Delta_{+}} \alpha}$$

while π_* is given by $M_{\theta}(f)$. Since π_* is surjective, the result follows from the fact that

$$\sum_{r \in W_{\theta^{\perp}}} \frac{\det(r)r}{\prod_{\alpha \in \Delta_{+} \setminus \Delta_{\theta}}} (M_{\theta}(f)) = \sum_{r \in W_{\theta^{\perp}}} \sum_{q \in W_{\theta}} \frac{\det(rq)rq}{\prod_{\alpha \in \Delta_{+}}} = M_{\Sigma}(f)$$

since every $w \in W$ has a unique decomposition w = rq where $r \in W_{\theta^{\perp}}$ and $q \in W_{\theta}$.

5. Closing remarks

1. In fact, one can prove somewhat more about the Gysin homomorphism. Namely, if τ denotes the element of W_{θ} of maximal length, then $M_{\theta} = A_{\tau}$, where, for any $w \in W$, A_w denotes the differential operator employed in [4] and [6] to study H'(G/B; C). In case $\theta = \Sigma$, this assertion is Lemmé 4 of [6]. Similarly, if w_0 is the element of W of maximal length, then $\int_{G/P_{\theta}}$ is A_{w_1} , where $w_1 = w_0 \tau$. This is due to the fact that $A_{w_0} = A_{w_1}A_{\tau}$ since $w_0 = w_1\tau$ is a reduced expression for w_0 .

2. In the case of $G = SL_n$, B is the group of upper triangular matrices in G, and P the parabolic subgroup of G containing B such that G/P is the Grassmann manifold $G_{k,n}$ of k-planes in \mathbb{C}^n . One can use the Gysin homomorphism of $\pi: SL_n/B \to G_{k,n}$ to give a direct derivation of the basic theorems on the structure of $H'(G_{k,n})$ (i.e., the basis theorem, Pieri's formula, and the determinantal formula). This approach has been carried out in [2].

References

- 1. E. AKYILDIZ, Vector fields and cohomology of G/P, Lecture Notes in Math., no. 956, Springer-Verlag, New York, pp. 1-9.
- 2. ____, Gysin homomorphism and Schubert calculus, Pacific J. Math., vol. 115 (1984), pp. 257-266.
- E. AKYILDIZ and J.B. CARRELL, Zeros of holomorphic vector fields and the Gysin homomorphism, Proc. Symp. Pure Math. Summer Institute of Singularities (Arcata, 1981), vol. 40, Part 1, Providence, 1983, pp. 47-54.
- 4. I.N. BERNSTEIN, I.M. GEL'FAND AND S.I. GEL'FAND, Schubert cells and cohomology of the space G/P, Russian Math. Surveys, vol. 28 (1973), pp. 1–26.
- 5. J.B. CARRELL and D.I. LIEBERMAN, Vector fields and Chern numbers, Math. Ann., vol. 225 (1977), pp. 263-273.
- 6. M. DEMAZURE, Invariant symmétriques entiers des groupes de Weyl et torsion, Invent. Math. vol. 21 (1973), pp. 287-301.
 - UNIVERSITY OF PETROLEUM AND MINERALS DHAHRAN, SAUDI ARABIA
 - THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B.C., CANADA