
ILLINOIS JOURNAL OF MATHEMATICS
Volume 31, Number 2, Summer 1987

NA.TURAL SHEAVES
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DAVID J. Ec

Natural vector bundles have been investigated, with some variation in the
exact definition, by various people in the last few years. (For example,
[3],[4],[7],[1].) A natural vector bundle is a functor, V, on some category of
manifolds which assigns to each manifold, M, a vector bundle, V(M), over M
and to each map f: M --, N a vector bundle map V(f): V(M) --, V(N) such
that the diagram

V(M) V(f )
.V(N)

M f N

commutes. The basic examples are tensor bundles and bundles formed from
them by taking k-jets of sections.

In this paper, following [7], we will fix an integer n and denote by n the
category of n-dimensional C manifolds and maps between them which are
diffeomorphisms onto their images. A natural vector bundle (NVB) will always
mean a functor on this category with the properties listed above. We also
assume that the fiber dimension of all vector bundles is finite. It is known that
any such NVB has a smooth structure: V(M) is a CO vector bundle and the
maps V(f) are C. From now on, all maps and manifolds will be assumed to
be in the category n unless specifically stated otherwise.
The category IR" includes all transition functions between charts on a

manifold. To the extent that physics is the study of coordinate-independent
quantities, NVB’s provide a natural language for doing physics. This point of
view is discussed in [1], which deals with a generalization of NVB’s that
involves gauge-invadance as well as coordinate-invariance. Most of what is
said below about natural sheaves can be similarly generalized.

There is a very neat classification of NVB’s and the natural morphisms
between them. The study of these objects can be reduced to the study of
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representations of certain Lie groups .and equivariant maps between such
representations. (See [7].) Unfortunately, these methods are, by their nature,
capable of dealing only with local properties: Although an NVB is defined for
all n-manifolds, it is completely determined by what goes on in an infinitesi-
mal neighborhood of 0 in R.

Nevertheless, important global questions are closdy related to NVB’s. For
example, the most basic example of a morphism between NVB’s is the exterior
derivative d, which is intimately connected with the deRahm cohomology. To
form the cohomology, one must take the image and the kernal of d. Each of
these is a subset of the set of sections of a NVB, but there is no way to deal
with such subsets in the Lie group approach mentioned above. We need to
expand the category of NVB’s to include such objects.
Our solution is to forget about the bundle and concentrate on the set of

sections. This will lead to the concept of natural sheaves. For the definitions of
sheaves and pre-sheaves, see [8]. We will use the definition of a sheaf as a
certain kind of pre-sheaf, rather than a topological space. The definition of
natural sheaves is an obvious extension of this definition of sheaves.

DEFINITION. A natural pre-sheaf (on n-manifolds) is a contravariant func-
tor from the category , defined above, to the category of R-vector spaces.
A natural sheaf is a natural pre-sheaf whose restriction to each manifold is a
sheaf.

For example, the constant sheaf Jg, such that (M) R for each mani-
fold M and g’(f) is the identity for each map f, is a natural sheaf. The same
example with 9g’(f) 0 for each f is a natural pre-sheaf which is not a sheaf.
The sheaf CO of R-valued Coo functions is also a natural sheaf if for a
function f: M N, Coo(f): Coo(N) Coo(M) is the induced map f*(g)
g o f. Since Coo(M) is a ring and Coo(f) is a ring homomorphism, Coo is
actually a natural sheaf of tings.

Less trivial examples can be obtained from NVB’s. Let V be a NVB. We
define the associated natural sheaf, , by

Coo sections of V(M) )
and

:(/) v(/-,)o,o/

for s ’(N) and f: M --, N. (Note that V(f-x) is well-defined since f is a
diffeomorphism onto its image and the effect of V is locally determined.)
Now, e" has some additional structure: ’(M) is a module over the ring
C(M) and ’(f) is a (relative) homomorphism. That is, for g C(N),

’(f)(g s) (f’g). Y/’(f )(s).
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We summarize this by saying that " is a C-module, and we note that
Y:(R) is actually a finitely-generated C(R)-module. The next proposition
shows that this property characterizes those natural sheaves that are associated
to NVB’s.

PROPOSITION. If :Y" is a natural sheaf such that /’(R) is a finitely-gener-
ated Coo(R)-module, then there is a NVB V, unique up to equivalence, such that

is equivalent to the associated sheaf of sections of V.

Proof Let { st,..., Sm} be a generating set of C(R") of minimal cardinal-
ity. We will show that (R) is a free module on these generators.

Let U be an open subset of R" and let i: U ---, R" be the inclusion map. We
will write slU for (i)(s). We first show that the set {sIU,...,SmlU}
generates ’(U) over C(U). Choose a locally finite cover of U by open sets
with compact closure in U, and let q: U--, R be a Coo partition of unity
subordinate to this cover. Let s ’(U).
Now, there is an s g’(Rn) for each a such that s,l U q0. s. (By the

properties of a sheaf, we can define s by this equation and the equation
s 0 on R supp(p,).) Thus, we can write

m

where g C(R)

m. (goi)’sjlU.

We can easily arrange that the supports of the functions gJ for all j and a,
form a locally finite set. But then

S q0a S

E
j,a

J

which shows that ( sjl U, j 1,..., rn } generates (U). (The infinite sums are
admissable since dements of a sheaf may be defined locally, and locally the
sums are finite.)
We can now show that ’(R) is in fact free on the generators (st,..., sm }.

For suppose not. Then there are functions gj . C(R") such that Egj. sj 0
and some gj, say gin, is not identically zero. Choose a Rn such that
gin(a) O. Let U be an e-ball around a on which gm does not vanish, and i:
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U --* Rn the inclusion map. Restricting to U, we have 0 E(gj i) (i)(sj).
By the above, ’(i)(sx),..., (i)(s,) generate ’(U). But gmo is invertible
in C(U), so in fact, ’(U) is generated by (i)(st),..., (i)(s,_t). Now,
U is diffeomorphic to Rn, so (U) is isomorphic to (R). Thus, we have a
contradiction to the assumed minimality of m. So, (R) must in fact be free.

It follows immediately that ’(R) is isomorphic as a sheaf over R" to the
sheaf of sections of a vector bundle of fiber dimension m. We can construct
the NVB V directly by setting the fiber

v(u) 

where x M and mx is the ideal of C(M) of functions vanishing at x.
Given f: M N, there is an induced isomorphism

Y/’(N)/ml(x). (N) Y/’(M)/m Y/’(M)

and we take V(f) M to be the inverse of this map. All considerations being
local, it is easy to check that this defines a NVB and that " is equivalent to its
sheaf of sections. And since a vector bundle can always be recovered, as
above, from its sheaf of sections, it is clear that V is unique up to equivalence.

Remark. If V is a NVB and k < oo, there is a Coo-module .k given by
’k(M) {Ck sections of V(M)}. ’k(R) is not finitely generated over
C(R). More generally, any of the section functors discussed in [6] can be
applied to a NVB to give a Coo-module. If is a natural sheaf obtained in
this way, then ’(M) will be a topological space, and (R") will contain a
dense sub-module which is finitely generated over COO(R’), namely the set of
CO sections of the corresponding NVB. Conversely, if is a "topological
C-module" such that ’(R) has a dense, finitely-generated sub-module, the
proposition shows that r can be obtained by applying some sort of "section
functor" to the usual associated bundle of some NVB.

From now on, we will be concerned with sub-sheaves of sheaves associated
to NVB’s. Such sheaves can be given the COO topology, and when we mention
continuity, we will be implicitely using this topology.
The morphisms we will deal with are equivalent in the case of associated

sheaves to linear natural differential operators. (See [7] for the definition.) The
use of the name in the more general case will be justified below.

DEFINITION. Let V and W be NVB’s and let 5a and 7- be natural
sub-sheaves of the associated sheaves of sections. A linear natural differential
operator (LNDO), D, from
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of continuous, Rn-linear maps such that for any f: M ---, N, the diagram

commutes.

PROPOSITION. Let V and Wbe NVB s. Let S and oq" be natural sub-sheaves
of the associated sheaves of sections. Let D be a LNDO from S to q’. Then
there is a k < oo such that for all M, for all s S(M), and for all x M,
(O(M)(s))(x) depends only on the k-jet, jk(S)x, of S at x. Thus D really is a

differential operator.

Proof. Define f: 6a(Rn) W(R’)o by f(s) (D(R’)(s))(0). Then f com-
pletely determines D, since for any q: R --, M and s Sa(M),

(Ds)(q0(0))-- W(cp-1)( f(5’(cp)(s))).

Now, clearly f(s) depends only on the germ, [S]o, of s at 0, so we might as
well extend f to be defined on the set

6a (s e (R")l[S]o [g]o for some S

Let 6’ k ( s e 6a oo Jk(s) o 0} for k < oo. Then

is a decreasing sequence of subspaces of W(R’)o It must stabilize. Say
f(Sa) f(Sa / 1) We will prove the theorem if we show that f(6a)

{0).
Let w f(s’k). Now, for k, k + 1,..., there is an s e 5’ such that

w f(s). But wc can find R-valued functions g on R" such that g 1 on a
neighborhood of 0 and gs --, 0 in the Coo topology. (Scc the proof of Lcmma
1.4 in [7].) Since [s] o [gsi] o, we see that

w lim f(s,) lim f(g,s,) f(lim g,s,) 0.

We can now turn to the reasons for introducing natural sheaves. The
following obvious remark is important enough to state as a proposition.
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PROPOSITION. If D is a LNDO from 6a to ’, then ker(D) is a natural
sub-sheaf of 5’, and image(D) is a natural sub-presheaf of ’, where

(ker(D))(M) {s Y’(M)IDs O}

and

(image(D))(M) {t Y’(M)It Ds for some s 6a(M)}.

Furthermore, the sheaf generated by image(D) is a natural sub-sheaf of 7-.

The sheaf ker(D) of solutions of D is the object that we often want to
study. One way to try to study it is to introduce sheaf cohomology with
coefficients in ker(D). We now explain why cohomology with coefficients in a
natural sheaf is especially useful.

Recall that given any sheaf 6a over a manifold M, the cohomology with
coefficients in 6" is defined as follows. Let

be a fine, torsionless resolution of 5a. (See [8] for definitions.) Then H *(M, 6a)
is the cohomology of the sequence of global sections

0 --*Y’(M) "-*Y’I(M) Y’9_(M)

The cohomology is independent of the resolution chosen, and for a sheaf over
a Co manifold, there is a particularly useful resolution. Let CP, p 0,1,..., n,
be the sheaves of p-forms on M. If 5a is a sheaf over M, then

is the resolution in question. Now, the di are themselves natural sheaves, so
that if 5a is natural and f: M ---, N, we get a commutative diagram

0 --,Sa(M) ---} 5’(M) @ d’(M) ---} ---, 5’(M) @ d’"(M) ---} 0

0 oq’(N) --} 5’(N) (R) d(N) Y’(N) (R) ozn(N) --* 0

and thus we get induced maps f *: H *(N, Sa(N)) H *(M, 6a(M)). We see
that cohomology with coefficients in 6a is functorial with respect to the maps
in the category ’". Note in particular that the group of diffeomorphisms of
M acts on H’(M, S/’(M)) for each p. It is also easy to see that any LNDO D
from Y’ to " induces a natural transformation of the associated cohomolo-
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gies, and that each of the induced maps H’(M, 5’(M)) HP(M, ff’(M)) is
a homomorphism of Diffeo(M)-spaces.

It should be noted that H(M, Y’(M))= 5(M), and that if f: M N,
the induced map from H(N, Y’(N)) to H(M, Y’(M)) is just (f). In
particular, if 2’ is the natural sheaf associated to some NVB, then all the
higher cohomology groups are trivial, and we have introduced nothing new.

Before closing, we discuss one problem with the approach outlined above:
LNDO’s are not very common. Most interesting natural differential operators
are non-linear. However, we should also note that if D is any natural
differential operator defined on a subset of a natural sheaf ’, then

9’(M) (s Y/’(M)IDs 0}

defines a natural sheaf of sets which in turn generates a natural subsheaf (of
vector spaces) of if we take R-linear combinations. One could try to study
D by studying this sheaf.
More important, perhaps, are applications to Riemannian and to affine

manifolds. For Riemannian manifolds, there is a sort of Einsteinian equiv-
alence principle which can be stated for our purposes as follows:

Let /" and C be natural sheaves. Let DO be an tP(n)-invaxiant linear map
from ’(Rn) to 3//’(Rn). Let be the sheaf (of sets) of Riemannian metrics.
Then there is a natural differential operator D from //" such that:

(1) If/t o is the usual metric on R", then for s (R), D(s, it0) Do(s ).
(2) If tt is a metric on M, then the map (M) 3(M) given by

s D(s, #) is a linear differential operator which is natural with respect to
isometrics of M.

(3) If # is a metric on M, and q: R M gives normal coordinates at a
point x 9(0) of M, and s (M), then

D(s, #)(x) YW(-X)(Do(Y(cp))(s)).

Property 2 gives us a linear differential operator between sheaves over a
Riemannian manifold M, and we can form the cohomology of M with
coefficients in the kemal of this operator. The resulting cohomology groups
will be representations of the group of isometrics of M.

Similar statements can be made about aftine manifolds if the orthogonal
group tP(n) is replaced by the general linear group Gl(n). A possible applica-
tion of these ideas would be to the "differential hyperforms" introduced
recently by P. Olver ([5]), which are higher order Gl(n)-invariant linear
operators between tensor bundles on R whose extension to affine or Rieman-
nian manifolds should be interesting.
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