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CONVERGENCE RATES FOR FUNCTION CLASSES
WITH APPLICATIONS TO THE EMPIRICAL

CHARACTERISTIC FUNCTION

BY

J.E. YUKICH

1. Introduction

Let (S, 5a, p) be a probability space and let Xi, i> 1, be independent,
identically distributed (i.i.d.) S-valued random variables with common law P.
We shall consider the X, > 1, to be the coordinates for a countable product
(S r, 5ar, pr) of copies of (S, 5a, p). Let the n th empirical measure for P be
defined by

where i is the unit mass at x S.
Recent research has yielded new limit theorems for the empirical process

where " is a class of measurable functions on S. We refer the reader to [5],
[7], [10], [11], [22], [25] where attention is focused on the empirical process
indexed by a single class of functions -. Related research has concentrated
on the empirical process indexed by a sequence of classes of functions, say
n >_ 1. For example, see [14], [21], [28], [31].

In recent work [31], the author has used randomization techniques and
metric entropy methods to study the limit behavior of

where fin, n > 1, is a sequence of function classes on (S, 6a, P). Under weak
metric entropy and growth conditions on ,, n > 1, it is shown in [31], that
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there exist non-zero finite constants C1 and C2 such that

(1.2) C < limsup sup
n.-- oo g" fn fg(dP.- dP) <C a.s. (PN),

where a(n), the rate of convergence, is closely connected to the metric entropy
of the classes ff, n > 1.
Taking x if2 ,,, a(n) =- 1, and C C2 0, and by consid-

ering (1.1) as a stochastic process with values in (l(ff), II I1) (the Banach
space of bounded real functions on if, equipped with the sup norm), we see
that (1.2) becomes an infinite dimensional law of large numbers. In this
context, (1.2) has been characterized by Hoffmann-Jorgensen [12], Gin6 and
Zinn [10], and also by Talagrand [23].

In this article we shall only concern ourselves with the majorization part of
(1.2); we shall first improve and reformulate an earlier result of the author (cf.
Theorem 2.2 [31]) guaranteeing the existence of the upper bound C2 in (1.2).
Our improved version (see Theorem 2.1 below), which constitutes one of the
main results of this article, shows that the author’s previous sufficient condi-
tions involving a double summation [29] may essentially be replaced by an
elegant metric entropy integral condition. In this way we obtain a rate of
convergence theorem which fits in nicely with existing limit theorems for the
function indexed empirical process; it should be noted that we are, in effect,
determining rates of convergence for the infinite dimensional strong law of
large numbers. Finally, as in [31], we will reveal the close connection between
the rate of convergence a(n) and the metric entropy of the underlying classes
of functions.

Additionally, we will show that our sufficient metric entropy integral condi-
tion is essentially the weakest possible. This is done by considering the log log
behavior of the empirical characteristic function. See Theorem 2.3 below.
By way of important application, we show that our main result yields new

and improved rates of uniform a.s. convergence of the empirical characteristic
function over intervals expanding with n. Perhaps more significantly, by
relating metric entropy to the tail behavior of the underlying distribution, we
are able to essentially characterize rates of uniform a.s. convergence in terms
of elegant integral conditions involving the tail behavior (see Corollary 2.4
below). The results considerably extend and generalize upon previous work in
this area; for example, see [2], [3], [4], [13], [17], [19], [28], [31].

This paper is organized as follows. The remainder of this section is devoted
to terminology and notation. Section 2, provides statements of the main
results, as announced in Theorem 2.1, Corollary 2.2, Theorem 2.3 and Corollary
2.4. The proof of Theorem 2.1 occupies Section 2 where in fact a slightly
stronger result is obtained. Theorem 2.3 is proved in Section 3 and Corollary
2.4 is proved in Section 5.
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Basic preliminaries.
space

For definiteness we take as our underlying probability

(S, SaN, pN) (a, N, Q),

where (fl, X, Q) is a probability space independent of (S, 6", P). This en-
larged space will accommodate certain randomization techniques. In particular
we will consider a Rademacher sequence ei, > 1, on (f, Y., Q), i.e., the ei,
> 1, are i.i.d, with Q(e 1) Q(e -1) 1/2. We will also consider an

orthogaussian sequence gi, > 1, on (f, , Q), i.e., the gi are i.i.d. N(0,1). In
this context E, and Es denote integration with respect to Q and Ex denotes
integration with respect to P. Also, since the supremum of the empirical
process over an uncountable class of functions may not be measurable, this
will necessitate use of outer probability measure. Let Pr .’= pr x Q and let

Pr*(B) =inf{Pr(C)’CDB}, B c SN x f.

For every real-valued function f on S define the upper integral

E*f:= inf( fgdP g >_ f, g is 6emeasurable}.
Throughout, let fin, n > 1, be a sequence of classes of functions on

(S, S’, P). As in [10], we assume that the quantities

sup ((ag(X)-bEg(X))}, a,bR,nN/

gfn i-" l

are Pr-completion measurable. For all j, k N/, let

IlSkll sup
k

E ( g( X,) Eg( X,))

As previously indicated, this article studies growth rates for the normed sums
IISll.

Given g , let Ilgll denote the essential supremum of g and Ilgll, the
’r(P) norm of g. Define the respective maximal sup and .La norms by

2(1.3) B(n) := sup Ilglloo and V(n).’= sup Ilgll2.

When understood we write B and V for B(n) and V(n), respectively.
Let (T, p) be a metric or pseudo-metric space. The coveting number

N(e, T, 0), e [0, TI], where TIo denotes the diameter of (T, 0), is defined
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as

N(e, T, p) min(n" :It1,..., n T such that

min p (t, i) <_ e for all T }.
The metric entropy H(e, T, p) is defined as H(e, T, p) log N(e, T, p).

If f and g are functions in a2(S, 6a, p), let

ev( f g) f(f g dP
1/2

denote their .Z’ 2(p) distance.
If f and g are functions in .Z’(S, 5a, P) and if ( X } ’= is a sample from

P, we may consider the random distances

d,,,p(f, g) := n- If(X,) g(g)I
i-1

O<p< o.

The associated coveting numbers for a class ’c .W(S, 6a, P) are defined by

N,,,,(e, ,’) N(e, ’, d,,,,).
We note that the N,, p are random coveting numbers and are not necessarily
measurable.
Given a pair of functions f, g" S ---, R, define their bracket by

[f,g] (h" SR such that f(x) < h(x) < g(x) for all

x S and h is measurable).

As in [5], [7], given ’cLt’(S, 6a, p) and e > 0, let 4(e, -, P) be a
collection of minimum cardinality of brackets [f-, f/] such that

’c 13 [if, f+],
[y-,f+]

where IIf+- f-I1 < e. Let

N l(e, ’) card uV’(e, ’, P) and H ](e, ") log N ](e, ’).

In the case that - consists of complex valued functions, let

N ](e, -) := card df/’(e, ’0, P)

where o-0 is the collection (Re(f)" f " } u (Im(f)" f " }.
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Finally, we note that all a.s. statements are meant to be a.s. statements with
respect to Pr*.

2. The main results

As indicated, we shall be concerned with optimal a.s. growth rates for the
normed partial sums IISnlln; in order that our results may be stated in their
fullest generality, let denote the collection of functions h:R+ R+ such
that

(i) as x $ O, f(x)/h(f(x)) is monotonically increasing whenever f: R/

R/ is monotonically increasing,
(ii) h(x) O(x1/2) as x ’ o and
(iii) log log x O(h (x)).

Throughout, B(n)and V(n) are as in (1.3).

THEOREM 2.1. Let fgn, n > 1, be a sequence of classes of functions on
(S, 6",P). Assume that II Sllj <- II Sll for all j < n. Suppose that there is an
h and constants CI > 0 and eo such that for all 0 < e < eo and all n > 1,

(2.1) C2h’) < N l(e, f,,) < 2h")N(e),

where N(e) is some continuous, monotonically increasing function satisfying

f0( lg N(e2))1/2(2.2) h(log N(e2))
de < o.

If h(n)V(n)/n O(1) and if sup,xB(n)/(V(n)C:) < 1 for some finite con-
stant C:, then there is a finite constant U such that

1 ) 1/2(2.3) limsup h. V. n IIS.II. -< gx aoS.

In general, as shown by Theorem 2.1 of [31], the growth rate provided by
(2.3) is essentially the best possible; more precisely, under weak additional
hypotheses (2.3) may be bounded below by a strictly positive constant.
We immediately deduce the following result.

COROLLARY 2.2. Let ft,, n 1, be a sequence of classes of functions
satisfying all the conditions of Theorem 2.1 with N(e) equal to N[ ](e, G); i.e.,
for all O < e <_ eo and all n >_ l,

(2.4) c2h") < N 1( e, f,,) < 2h"Nt l(e,
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and also

fo
log N

h(log N

Then (2.3) holds.

Let us see how Theorem 2.1 and Corollary 2.2 fit in with existing limit
theorems for the function indexed empirical process. Recall, for example, that
if h is a constant function in (2.5) then f is a P-Donsker class of functions
[7], [20]; also, if fgx c .’i(S, 5", P) satisfies the total boundedness condition
N ](e, f) < oo for all e > 0 then

1
lim sup 11Sll 0

i.e., (2.3) is satisfied with h(n) n, V constant and U1 0. See [7]. It has also
been shown [30] that if Nt(])(e, f) denotes metric entropy with bracketing in
the .o2(p) norm, then the condition

log Nt(]) (e, f#) )f0 log log log Nt(]) (

1/2

implies that f satisfies a bounded law of the iterated logarithm (abbreviated
BLIL), i.e.,

1 )1/2(2.6) limsup n loglogn IIS, I[ < o a.s.
n

This latter result extends and generalizes a similar result of Kuelbs and
Dudley [16]. Seen in the context of the above remarks, the integral conditions
(2.2) and (2.5) appear as very natural ones.
We may actually show that the entropy condition (2.5) cannot be substan-

tially weakened; this will be done (see Theorem 2.3 below) by considering the
class of functions

(2.7) ,’:= (x eitx" [-1/2,1/2])

together with the function

H" x ---, x log-" loglog 0<x<e-1.
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Also, a probability measure P on R is said to satisfy (.) if

( ) P has a density/(x) and (f(x) + f( x)) is decreasing for x large.

As we will see later, the following theorem also has importance in the study
of the empirical characteristic function.

TaEOEM 2.3. Let P satisfy (.) and assume that the entropy function

satisfies at least one of the two regularity conditions: either H l(e) O(Hl(e))
or Hl(e) O(H l(e)) as e0. If : satisfies the BLIL, then

H

and therefore for all > O,

1/2

(2.8)
(log log log N

Returning to Theorem 2.1, we see that its significance lies with its generality
and relatively easy applications. While it is often possible to determine rates of
convergence for particular function classes, each class usually requires differ-
ent techniques. Theorem 2.1, however, requires only estimations of N l(e, ,)
and there are many function classes for which such estimates are readily
available; see [6], [7], [15]. In this way, the above provides a unified approach
to the rate of convergence problem. As general as it is, Theorem 2.1 cannot
possibly furnish exact rates of convergence; it does, however, yield improved
rates of convergence in many instances. They are, for example, straightforward
applications of (2.3) to non-parametric density estimation; we postpone a
discussion of this and discuss only a.s. rates of uniform convergence of the
empirical characteristic function.
We will see that Theorem 2.1 enables us to significantly extend and

generalize known results [3], [4], [28] concerning limit theorems for the
empirical characteristic function. In fact, Theorem 2.3, along with results in
[17], [27], [30] and the forthcoming Corollary 2.4, essentially characterize most
forms of the limiting behavior of the empirical characteristic function on Rd,
d > 1. If P is the underlying distribution, we will see that the limiting
behavior can be closely connected to integral conditions on the tail function
[27], [31] defined by

(2.9) Me(e) =inf(M: M>landP(llXII >M) <e}, O<e<l.
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Before proceeding to our main result in this area, we first recall some basic
preliminaries.

Given a probability measure P on the real line, let c(t) denotes its
characteristic function fe itx dP(x) and c(t) the empirical characteristic func-
tion fe itx dPn(x ). Recently, considerable attention has been given to determin-
ing rates of convergence for suptilcn(t ) -c(t)l, where I c R is a fixed
interval; more generally, I may depend upon n [3], [4], [28], [29]. It is known
[4], [28], for example, that if I(n) exp(n/a(n)), exp(n/a(n))] with
a(n) oo, then

(2.10) limsup sup [c,(t) c(t)l 0 a.s.
n o tl(n)

for all P; however, in general, this fails when I(n) is replaced by the entire
real line.
Our next result shows how to deduce rates of convergence for

suplc,(t) c(t)l

in terms of integral conditions on the tail function Me(e) Although we
confine our attention to the real line for the sake of simplicity, it should be
clear that Corollary 2.4 can be stated in the context of probability measures on
general Euclidean spaces Ra, 1 < d < o.

COROLLARY 2.4. Let P be a probability measure on
lim supt_.. Re c(t) < 1. Suppose that there is an h o such that

R satisfying

(2.11) h(log Mp(e)) de < o.

Then there is a finite constant U such that

n ) 1/2(2.12) limsup sup h(n) Ic.(t) c(t) < U1
n Ill--<2h(n)

a,So

At this point, a few remarks are in order. When working with the integral
condition (2.11) in the context of Theorem 2.1, we require the bound h(x)
O(x/2). We conjecture that Corollary 2.4 remains true without this asymp-
totic condition.

It should be noted that under (,) the integral condition of Theorem 2.3
implies the tail condition [29]

log Me(e2) )
1/2

(2.13) fo (logloglog Mp(e2)) l+’r de < for all ’r > 0.
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Thus the integral condition (2.11) cannot, in general, be substantially weakened.
The reader should also recall [27], [18] that if

(2.14) f0(log <

then the normalized empirical process

C,(t) nl/2(cn(t) c(t)), [-1/2,1/2],

converges weakly to a Gaussian process on the space of continuous, complex
valued functions on [- 1/2,1/2]; moreover, under (,), (2.14) is actually
necessary for weak convergence. Finally, the integral condition (2.13), with
z 0 there, implies that C,(t), [- 1/2, 1/2], satisfies a compact law of the
iterated logarithm [29]; this follows from [17] and the relation

Me(e) >_ e2N(3e, ,’, 1[ I[1)
of [271.
When taken together, these results clearly show that the various forms of the

limiting behavior of C,(t), [-1/2,1/2], can essentially be characterized
through integral conditions on the tail function Me(e); this general conclu-
sion is worth noting and serves as a focal point around which existing
theorems for C(t) may be studied. Finally, as indicated earlier, only trivial
modifications are needed in order that the above results apply equally well to
empirical characteristic functions on general Euclidean spaces Ra, d > 1.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 will follow from the following stronger, albeit
more cumbersome result.

THEOREM 3.1.
that

Let f,, n > 1, be a sequence of classes offunctions; assume

Sll II Sll for allj < n.

Assume that there are constants e > 0 and .’= "r(e) > 0 and a decreasing
function s" R+ R+ with Ej(s(j))1/2= M < o such that
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Letting H := H(n) := H l(e, if,,) suppose that

H(n)V(n)/n 0(1), loglogn O(H(n))

and sup,>_tB(n)/(V(n)C2) < 1 for some finite constant C2. Then there is a

finite constant U2 such that

1 ) t/2lim sup sup H. V. n II S, II -< U2
n-.oo gf.

a.So

Remarks. This result represents a slight improvement over Theorem 2.2 of
[31], in which the function s(j) equals j-4.
Without loss of generality we may assume that log(l/e) is integral.
We note that the minimal growth rate condition on H implies the existence

of K := K(e) such that

(3.2)

using this K the proof of Theorem 3.1 will show that U2 can be as small as

(3.3) 8(2(K + 1)t/: + 12M(yC:)t/).

Equipped with Theorem 3.1, the proof of Theorem 2.1 now becomes quite
easy.

Proof of Theorem 2.1. Using conditions (i) and (ii) it is easily verified that
(2.1) and (2.2) imply the existence of a function s: R+--) R+ with Ej(s(j))1/2
< O0, and an integer Jo such that for all j > Jo and n N+,

Cx2n(") < N 1(2 -J, ft.) < 2h(,,)2(i),():.
Using the function s(.), condition (iii) and the above inequality, it is also
easily verified that given e0 there are constants e > 0, 0 < e < e0, and , :=

,(e) > 0 satisfying (3.1). The proof is completed by noting for fixed e,
0 < e < e0, that H(n) < 2h(n) for n large. Q.E.D.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. First assume that H(n)V(n)/n o(1). The proof in
this case is a straightforward modification of the proof of Theorem 2.2 of [31].
There, we note that the function j j-4 used in the chaining argument was
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chosen only because of its convenient summability .,j(j-4)l/2 < o. In fact, a
close reading of the proof of Theorem 2.2 [31] reveals that the function
j j-4 call be replaced by any function s: j s(j) satisfying Z.j(s(j))1/2 <
oo; the proof remains unchanged, save for the appearance of new constants.
Let us briefly show how this may be done.
Find fixed values for e > 0, y .’= y(e) > 0, and K .’= K(e) such that condi-

tions (3.1) and (3.2) are satisfied. Throughout we will write, for fixed g
S,,(g) .’= E’_I(g(X/)- Eg(Xi)). For each bracket [g-, g+] in .J/’(e, n, P)
find a [g-, g+] N ,. Denote the finite collection (g} by ,. Let fl
12(C2Y)l/2M. Let 0 < # < 1 and find n o .’= (e,/) such that for all n > n o

B(3H(K + 1)/nV)/ <_ I and B(HV/n)/ < 4e.

Let A ,= ((2 + )(K + 1))1/2. As in [31], the proof is centered around the
following basic inequality:

Pr*{ sup ]Sn(g)] > (A + fl)(HnV)1/}
(3.4) < Pr*{ ma. [S(g)[ > A(HnV)1/}

+Pr*{[ ma. [S,,(g)l- sup [S,,(g)[[ > ,8(HnV)I/2).
The proof consists of two main steps. The first consists of fixing n, n > n 0,

and bounding the fight hand side of (3.4) by
m

(3.5) + 2 E
j-In(I/e)

Nt21 (2 -j-l, if,,)(N l( e, if,,)) -v(j)2

where m .’= [1 + log2((n/VH)l/2}]. The second step consists of applying a
maximal inequality with n 2k, the Borel-Cantelli Lemma, and letting/ tend
to zero.
Now carry out the proof exactly as on pp. 82-85 of [31].
Finally, the case H(n)V(n)/n -- constant may be handled in an analogous

way via trivial modifications of Theorem 2.3 in [31]. Q.E.D.

4. Proof of Theorem 2.3

The proof of Theorem 2.3 consists of two steps. Assuming that - satisfies
the BLIL, the first step is to a.s. approximate the random distances d,2( f, g),
f, g ’, by the non-random distance e,(f, g). The second step consists of
finding necessary random entropy conditions (in terms of N,,2) and then,
using the first step, replacing the random entropy N, 2 by N 1"



92 J.E. YUKICH

Now by considering real parts, it is clear that if " satisfies the BLIL, then
so does (cos tx: [- 1/2, 1/2]}. By stationarity and the relation

sin2(tx) (1 cos 2tx)/2,

the class ,.’= ((f- g)2.f, g ) also satisfies the BLIL, i.e.,

lim sup sup log log n
no h,"

1/2 n

E (h(X,) eh(X,))
i=1

_< C a.s.,

where here and elsewhere, C denotes a positive, finite constant possibly
changing from line to fine. Thus for n > n o there are measurable sets fin such
that Pr(fn) 1 as n o and

sup Id 2 (lgn)/2,,2(f, g) e2e(f, g)l <
f, g. n for all

Thus, for all f, g " and for all n > n o,

eEe(f, g)<d2 (lg n )/2",2(f’ g) + n for all o f,.

Therefore, for all e > 0 and for all n > n o this implies

(4.1) N( ( e2 + ( lg n ) l/2) 1/2 )" ee < N(e ’) for all o f]

where we suppress the index 2 on N, 2 for notational convenience.
Letting u n -1/5 and u0 n-/, (4.1) implies for all e > 0 and for all

u < uo that

N((e2 + u2)x/2 " ep) < N,,-(e, .) for all f.-

Taking logarithms and expectations for u0 small enough we obtain for all
U __< U0

(4.2) log N((e2 + u2)x/2) < 2E,log N-(e, ’),

where we have suppressed the arguments " and ep in N.
Now if - satisfies the BLIL, then a straightforward application of Lemma

2.9 of [10] shows that

(4.3) sup EEgsup
n> no o,

1 )1/2 n

n log log n
-, gif(Xi)



CONVERGENCE RATES FOR FUNCTION CLASSES 93

Combining this with Fernique’s minorization for stationary Gaussian processes
[91 gives

fol( lg Nn(e, ’) ) 1/2sup E log log nn>_n

de<_C.

Letting u n
yields

-1/5 and using Fubini’s theorem and (4.2) in that order, (4.3)

1/2

o<u_<Uo lglg(u-5)
de < C.

Under condition (,), Lemma 1 of [27] shows that

x2N[ ](3x 2, ’) O(N(x, ’, ep))

and thus the above inequality remains valid with log N(.)1/2 replaced by
log N 1(’), i.e.,

o<,<o log ig(--i’) de < C.

Under the conditions of Theorem 2.3 we may actually verify that (4.4) holds
if and only if

H ](x) O(HI(X)) as x $0.

To see this, let

l(t, u, f):= fot( f(e2 + u2))1/2 de

for all functions f: R+ R+ and for all > 0, u > 0. If (4.5) holds, then the
decomposition

I(t, U, H[ ]) you + fut
shows that

1 1/2)o((1o 1o ; t
for small enough.
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Conversely, suppose that HI satisfies (4.4) but not (4.5). From now on "all
> 0" means all > 0 such that log log (1/ -t) is defined. For all > 0

define u := u(t) such that for all u u(t),

1
>_ " loglogu

For all0<u<u and all0<x<tset

we may assume without loss of generality that , is continuous on [0, t]. Note
that ,u(x) becomes arbitrarily large when x2+ u2 becomes small. By the
Mean Value Theorem (e.g., see [23], pp. 123-124) we have for all > 0 and
O<u<ut,

(4.6)
I(t, u, H 1)
I(t, u, Ht)

fothU(e)(Ht(e2 + u9-))/2 de

f0t(nl(82 q- U2))1/2 de

for some 0 < < t. By taking and u arbitrarily small, it is clear that the ratio
(4.6) can be made arbitrarily large.

But this leads to a contradiction, since for all > 0 and all 0 < u < ux, we
have by definition of u,

2 deI(t, u, Hx) > nx(e + u ))/

>2[(logl_og’ul)/2-(loglog1 )/2l
>_ logloguu

and thus, by (4.4) we obtain for all > 0,

I(t, u, H 1)
sup I(t, u, Hx) < C.

O<u<u

This contradiction shows that Htl satisfies (4.5), completing the proof of
Theorem 2.3. Q.E.D.
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5. Proof of Corollary 2.4

The proof of Corollary 2.4 simply reduces to verifying that the function
classes

f ,= {x ---, eit" lt < 2h("l}, n > 1

satisfy the hypotheses of Theorem 2.1. Noting that condition (2.11) implies

h(log(Me(e2)/e2)) de< o,

we conclude that it is enough to verify condition (2.1) with N(e) 16M,(e)/e;
in fact it suffices to show that there is an eo such that for all 0 < e < eo and all
n>l,

(5.1) C2’) < N ](, ft,) _< 16.2n")M,, -5 "
The first inequality in (5.1) may be seen as follows [31].
By hypothesis, there is an eo and a constant M .’= M(e0) > 0 such that for

all m>M we have f(1-cosmx)dP>2eo. Let j and k be any reals
belonging to [-2h(n), 2h(n)] such that IJ kl > M. Then

fie ei dP > fll e11-kl dP

>_ f(a cos(ij- klx)) dP

> 2eo.

Thus there are at least 2.2h(")/M functions of the form fk(X) e
that for all j q= k, f lf fk[ dP > 2e0, showing that

ikx such

N[ l(e, ft.) >_ N(2e, f., II IIx) 2.2h"/M for all 0 < e eo.

To establish the second inequality in (5.1) we observe that for all 0 < e < e0,

Nt 1( e, ’n) < 2nt")Nt 1( e, ’) -< 16" 2h{")Me -5

where " is as in (2.7) and where the second inequality follows from [27].
Q.E.D.
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