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QUANTIZATION AND AN INVARIANT FOR UNITARY
REPRESENTATIONS OF NILPOTENT LIE GROUPS

BY

C. BENSON AND G. RATCLIFF

1. Introduction

Let G be a simply connected nilpotent Lie group with Lie algebra (R). Given
a co-adjoint orbit (C) c @*, the dual of @, the authors have defined a
cohomology invariant i((C)) H2q+l((), where dim (C) 2q [1] (see Section
2 for details).
We now provide an interpretation of this invariant via the machinery of

geometric quantization [6]. There is an Hermitian line bundle L over the orbit
(C) with a natural connection and G-action. A specific model for this "prequan-
tization bundle" L is developed in Section 3. Let T(L) be the unit circle
bundle in L with respect to the Hermitian structure. The action of G on L
yields a G-invariant map : G T(L), and hence a map

(Here (H(T(L)) denotes the G-invariant (real) cohomology of T(L).) The
connection in L yields a distinguished element IV] in Hq+ I(T(L )). In
Section 4 we show that i((C)) ?*([V]).
The prequantization model used allows us to relate H(T(L)) to Lie

algebra cohomology. In particular, we show that H2q+ I(T(L)) is one-dimen-
sional, generated by [V], so that i((C)) 0 if and only if

*. Hq+I(T(L)) H2q+((R))

is the zero map.
We remark that geometric quantization uses the Hermitian structure, G-

action and connection in L to determine the representation o of G corre-
sponding to the coadjoint orbit (C). The invariant i((C)) is a composite derived
from this geometric data, and can be regarded as an invariant for the
representation o. As such, it should also detect properties of the representa-
tion theory of G. We discuss some of these properties in Section 5.
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2. Lie algebra cohomology and the invariant for an orbit

Let G be a connected Lie group with Lie algebra @. Let @* be the linear
dual of 6. G acts on 6" by the co-adjoint representation Ad*. If G is
nilpotent, by the theory of Kirillov [5], the orbits in @* under this action are
in one-one correspondence with the irreducible unitary representations of G.
The left G-invariant forms Gfl(G) on G yield asubcomplex of the de Rham

complex f](G) which can be identified with the exterior algebra A(6*). The
cohomology of this complex is denoted by H*().

Let (C) 6" be a co-adjoint orbit. As (C) is a symplectic manifold, it has
dimension 2q for some q [5]. Given f (C), we halve shown in [1] that
f A (df)q in A2q+l(() is a closed form, and that [f A (df)q] is independent
ofthe choice of f. We define i((C)) in n2q+ 1(() by

i() [/ A (df )q]. (2.1)

See [1] for examples where i((C)) is non-trivial.

Relative Lie algebra cohomology Let Ad* and ad* be the co-adjoint actions
on A(@*) of G and respectively. For X , the substitution operator

i(X)" A(*) Ak-:(*)

is given by (i(X)a)(Y:,...,Yk_I)fa(X,Y:,...,Yk_:) for Y/ 6, i--
1,...,k- 1.

Let H be a closed subgroup of G with Lie algebra . If

9= {aA(ff6*)" i(X)a=OforallX),

the subcomplexes of H-basic and -basic elements of A(6*) are defined by

(Aq6*)n n {a A(@*)" Ad*h(a) a for all h H} (2.2)

and

(A@*) O {a A(@*)" ad*X(a) 0 for all X )}. (2.3)

These complexes yield the relative cohomology theories H*(6, H) and
H*( 6, ). If r is the projection r: G G/H, then (A6") r*(Gf(G/H)),H
so that H*(6, H) corresponds to the cohomology of G-invariant forms on
G/H. When H is connected, H*(, H) H*(, ), but this is not true in
general. If ) is an ideal in q6, then H*(q6, ) H*(/).
The three cohomology algebras H*(), H*(q6) and H*(q6, )) are related

by the Hochschild-Serre spectral sequence [4]. This is a first quadrant spectral
sequence that provides an algebraic analogue of the Serre spectral sequence for
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the fibration H ’--} G G/H. The E0 and E terms of the spectral sequence
can be identified as

E’J --- AJ(),A((/)*)) and E’j --- HJ(t,Ai((/t)*)).The latter cohomology involves coefficients in the -module A((/t)*)
(under the ad*-action). We refer the reader to [4]. The E2 term can be difficult
to compute, however E,--- Hi(, t) and Eg’j can be identified with a
submodule of Hi({). Moreover, when ) is an ideal in , one has

If, in addition, @/ acts trivially on HJ() via ad*, then

-- n’( ) (R) m( ).

The spectral sequence converges to Eoo, which is related to H*(@) by a
filtration in the usual manner. In particular, H(@) +_,E.

Suppose now that G is simply connected and nilpotent. It is known that if G
has a co-compact discrete subgroup F then H*(@)--H*(F\ G), the real
cohomology of a compact manifold [8]. In particular, such subgroups exist
whenever @ has rational structure constants. In general, one always has the
following result.

2.4 LEMM. If @ is nilpotent, then H*( g) satisfies Poincar duality. In
particular, H’(g) -- R where n dim(@).

This is known more generally for any unimodular Lie algebra [3]. Using
Lemma 2.4 together with the spectral sequence one obtains a relative version.

2.5 LEg_M. Let be nilpotent and a subalgebra of gfi. Then

HS( @, ) =- R where s dim(@/).

Proof. We must have either HS(@,)=0 or H’(@,)---R since
A’(@*) is one dimensional. Let v A’(@*) be non-zero (a left-invariant
volume form). We need only show that v is not exact in the complex A(@*).

Let r dim() and/ Ar(*) be a volume form. The element

(R) g E,’= A’(,A(({/)*))

generates E’r -- R. Denoting the differential in Ek by dk one has d0(/ (R) v)
d/ (R) v 0. Thus we obtain a class [/ (R) v] E,r.
Assume that v is exact in A(@*); v dfl where fl A-1((*). We

obtain elements/ (R) fl E-1, and [# (R) fl] E-1, as before. One com-
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putes

dl([ ) ]) [/ t d] [ ( P].

It follows that E]’r= 0 and hence Eg r= 0. Let n s + r dim((R)). One
sees trivially that E, b 0 for a + b n if either a > s or b > r. Hence

/-/"(*)-= E
a+b=n

This contradicts Lemma 2.4.

2.6 COROLLARY. Let G be nilpotent with H G a closed subgroup. Then
HS( @, H) R where s dim(G/H).

Proof A generator v for As(b*)n is given by a left invariant volume form
on G/H. We have an inclusion of complexes, A(@*)n c A(.@*). Since v is
not exact in A((R)*), it is certainly not exact in A((R)*) t. rq

3. Prequantization

Let G be simply connected and nilpotent and (C) c t* a coadjoint orbit
with canonical symplectic form 0 f2((C)). Geometric quantization on the
symplectic manifold ((C), o) produces an irreducible unitary representation of
G [6]. The first step involves constructing a complex line bundle L over (C)
with an Hermitian structure ( ) and a compatible connection a with
curvature 0. In our setting, such a prequantization bundle exists, and is
unique up to a strong notion of equivalence [6]. Moreover, there is an action of
G on L that preserves ( ) and a, and coincides with the coadjoint action
of G on (C).

Let L* be the bundle of non-zero vectors in L and

T(L) (v L: (o,o) 1}.

L* is the principal bundle for L with fibre C* C \ (0), and T(L) is a circle
bundle over (C) which completely determines ( ) on L. The connection a,,a complex-valued one-form on L is compatible with ( ) in the sense
that a is the extension of a real-valued connection form on T(L).
To describe an explicit model for (L, ( ), ct), we need only construct a

circle bundle T(L) over (C) with connection form ct f]t(T(L)). If p: T(L) ---,

(C) is the projection, then a has curvature form . (That is, da p*(0).)
Choose f (C) and let Gf (g G: Ad*g(f) f }. (C) is identified with

G/Gf, so that the coadjoint action of G on (C) becomes the usual action of G
on G/Gf. For G simply connected and nilpotent, Gf is connected and

Gf exp((R)f), where @f (X @: ad*X(f) 0) [5].
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Assume f 4: 0. One obtains a character Xy: G/ T defined by xf(exp X)
e 2’i/(x) for X (R)f. Let K/= Ker X/. K/is a normal subgroup of Gf and, as

X/ is surjective, G//K/-- T. The Lie algebra of Kf is f= Ker(fl(R)f) and
exp(f) is the identity component of Kf. The following fact is easily verified.

3.1 LEMMA. f is in AI(@*)Kz, and hence/yields a G-invariant 1-form a on

G/K
Consider the bundle

This is a circle bundle in view of the identification G//Kf =- T. The right action
of T on G/K/is given by (gK/, goK/) ggoKf. Note that this is well defined
since K/is normal in Gy. It is not hard to show that a is invariant under this
right T-action. Given R, regarded as the Lie algebra of T, choose X0 (R)f
with f(Xo) t. Then the vertical vector field V on G/Gf is the left invariant
vector field Xo + /, and a(Vt)= t. These remarks prove the following
lemma.

3.2 LEMM.
bundle

The form a from Lemma 3.1 is a connection form in the circle

G/K/->> G/G/.

3.3 LEMMA. Let o be the symplectic form on (C) G/Gf. Then curv(a) o.

Proof Let r/" G G/Gf and ,f" G G/Kf be the usual projection
maps. Then o is uquely deterned by the identity (w) df in A2(*)
c 2(G). On the other hand, cu(a) is characterized by p*(curva) da.
We see that

:(cu) :*(cu)

d:()
df (by definition of a)

Since r/is a submersion, curv a o.
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Together, Lemmas 3.2 and 3.3 show the following.

3.4 TH.OM. The bundle Gf/K! "--) G/K! G/G! together with the one-

form f in A(gb*)tc_ is a model for (T(L), a)--the circle bundle with connection
/

given by prequanttzation.

Our model for L is the associated complex line bundle

G/I{ c =- G xo, c,

whose dements are equivalence classes [g, c] where (gg0, c)- (g, xf(go)c)
for all go Gy, g G, and c C. The Hermitian structure on G X C is
just ([g, c], [g, c’]) cg’. A model for L* is given by G C*. The connec-
tion a n T(L) gives a complex-valued connection in L* by prolongatxon. This
is the unique form on L* whose lift to G C* is

1
a=f+  Taz/z.

This is the model for the prequantization bundle that can be found in [6].
Notice that the structures ( ) and a are invariant under the obvious left

G-actions on G C and G C*. These actions extend the left action of G
on G/K and are compatible wla the G-action on G/Gf --- 3 n the sense that
the projection maps are all G-equivariant.

4. The invariant via prequantization

Let (L, ( ), a) be a prequantization bundle over a co-adjoint orbit
(C) c @* of dimension 2q. The G-action on L preserves ( ) and hence
T(L). Writing Ls: T(L) T(L) for the action of g G on T(L), one has

G(T(L)) { (T(L))" L’,8 8 for all g G },
the complex of left G-invariant forms on T(L). We will denote the cohomol-
ogy of this complex by H(T(L)).
Choose Po T(L) and define : G T(L) by (g) Ls(po). This is a

lifting of r: G (C) to T(L), where or(g)= Ad*g(p(po)). (Recall that p is
the projection p" T(L) (C).) Since is G-equivariant, we obtain a map

,,:

and hence a map r*: Hff(T(L)) H*().

*: H(T(L))---)H*(gb) does not depend on the choice of
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Proof Let Po, P T(L) be two chosen points used to construct 0 and
1" G T(L). As can be seen from the explicit model of T(L) given in
Section 3, G acts transitively on T(L) so that we must have P ’P0 for some, G. We thus have a commutative diagram

where Rg: G G is right multiplication. This dualizes to a diagram of
complexes

O(T(L)) Ad*()

This shows that the maps ?0" and x* in cohomology H*(T(L)) --> H*((R))G
differ by Ad*(,)" H*() ---, H*(). It is well known that for G connected,
the co-adjoint representation on H*(6) is trivial [2]. ra

Moreover, the entire construction *" H(T(L)) --, H*(@) is unique up to
isomorphism.

4.2 LEMMA. If (L1, < >x, ax) and (L2, ( >2, a2) are two prequanti-
zation bundles for (C), then there is an isomorphism *" H* (T(LI)) --,

H(T(L2)) such that the diagram

H(T(Lx)) H(T(L2))

H*(b )

commutes.

Proof. The prequantization bundle is unique in a strong sense [6]. There is
a vector bundle isomorphism : L2

---, L such that:
(i) <’(v), v(w)> <v, w>z; v, w
(ii) ’?’*(al) a2; (4.3)
(iii) v(Lsv) Lsz(v), v e L2, g e G.

In view of (i), yields an isomorphism of T-bundles z" T(L2) ---> T(L1) which
is G-equivariant by (iii). If p L2 is any chosen point then we use p and
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(p) to construct the maps

72"GT(Lg_) and ’GT(L).

Clearly z 2 and z*" H(T(L)) H*o (T(L2)) is a suitable isomor-
phism.

We remark that the isomorphism z* in Lemma 4.2 is essentially canonical.
If ’0, ’1:L2 L1 both satisfy conditions 4.3, then

Tlq’0
-’1" L L

preserves ( ), a and the G-action on Lx. It follows that q comes from
the fight action R of some fixed element T on T(L) [6]. This shows that
o* and z* can only differ by the fight action of T on H(T(L)).
The differential form V= a A (dot) q 2q+I(T(L)) is G-invariant since a

is invariant, and closed since dim(T(L)) 2q + 1. We obtain a cohomology
class

[V] H2q+1 (4.4)

Notice that we can also write V= a A p*(60q) where w 2((C)) is the
symplectic form. Since toq is a volume form on (C) and a is non-zero on
vectors tangent to the fibres of T(L), we see that V is a volume form on T(L).
On can regard a as a contact structure that gives rise to the volume form V.

4.5 LEMMA. The class [V] H2Gq+I(T(L)) is well defined up to the isomor-
phism * in Lemma 4.2.

Proof If (L1, ( )1, al), (L2, ( )2, a2) are two prequantization
bundles then the isomorphism *: H(T(L)) -o H(T(L2)) is induced by a
G-equivariant map : T(L2) -o T(L) with the property that *(al) a2. m

Lemmas 4.1, 4.2 and 4.5 show that the class *([V]) H2q+l(() does not
depend on the choice of prequantization bundle (L, ( ), a) or on the
choice of Po T(L) used to define : G-o T(L). We now return to the
specific model for (L, ( ), a) described in Section 3. In particular, we take
T(L) G/K/ for some f (C). Using eKf (where e G is the identity
element) as the point Po, : G G/K/becomes the usual projection (g)
gKf. Since a is characterized by *(a) f, one also has 7"(V) f A (df)q.
This proves the following theorem.

4.6 THEOREM. Let (C) be any co-adjoint orbit and (L, (
tization bundle for (C). Then i((C)) *([V]).

), a) a prequan-
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The model G/Kf for T(L) also gives us a way of computing H(T(L)).
Indeed, f(G/Kf) is a model for (T(L)) and the former can be identified
with A(@*)rz via ,?*. We see that H(T(L)) -- H*((R), Kf). In particular

nq+l(z(t)) R

in view of Corollary 2.6.

4.7 THEOREM. There is an isomorphism H(T(L))=-H*((R), Kf). More-
over, nq+l(T(Z)) R, generated by [V].

4.8 COROLLARY. The following are equivalent:
(a) i((C)) 0.
(b) #*: Hq+I(T(L)) n2q+l(@) is the zero map.
(c) The map H2q+l(( gf) ---> H2q+l(() induced by the inclusion A((R)*)

’--, A(@*) is the zero map.

We remark that for computational purposes, it is often easier to work with
H*(@, ) The map H*((R),K)H*((R),) arising from
A(@*) need not be an isomorphism, since K, need not be connected.
However, in the top dimension 2q + 1, we dJo have n2q+l((, gf)
H2q+ 1((, f) _= R as was shown in Lemma 2.5 and Corollary 2.6. In particu-
lar, i((C)) 0 if and only if n2q+ 1(, f) H2q+ 1(() is the zero map. This
observation allows one to use the Hochschild-Serre spectral sequence E, for
the pair (@, f) to study vanishing of the invariant. The map H((R), f)
H(@) can be written in terms of the spectral sequence as a composition

This shows that i((C)) 0 if and only if Eq+ 1,o (0).

5. Square integrable representations

Suppose that t is an irreducible unitary representation of G corresponding
to a co-adjoint orbit (C) c @*. Then p is square-integrable modulo the center
Z(G) of G if and only if Gf Z(G) for f (C) [7].

5.1 THEOREM. If G has one-dimensional center and p is square integrable
modulo the center, then i( (C)o) O.

Proof. We need only show that H2q+ 1(, f) > n2q+ 1(() is not the
zero map. In the present case, y= {0) since it is a codimension-one
subalgebra of f. El
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Theorem 5.1 was also proved in [1] using different methods. When
dim(Z(G)) > 0, one can obtain useful information by studying the spectral
sequence for (qb, f). Since f is a subalgebra of Z(q6), is an ideal in
and acts trivially (via ad*) on H*(;). As noted in Section 2, the E,term
in the spectral sequence is thus tame, E, = Hi((/f) .@.HJ(f). In fact,
H(R[)= A(R) since R! is abelian. Note that E’J= (0) for j>
dim(Z(G)) and hence Eo Edim(Z(a))+ t. In particular, the invariant vanishes
if and 2q+l 0only ff Edim(Z[G)) + (0)"
The differential d2: E,x --, E+2’ is given by

dz([a] (R) [h])=(-1)’[a^d] forh? and[a]

where/ @* is any linear functional extending h to @ (that is, I/= h).
This can be written as d2([a (R) [h]) z([h]). [a], where
H2((/f) is given by ’r([h]) [d].

5.2 TH.ORM. Let p be square integrable modulo the center Z(G) of G where
dim(Z(G)) > 1. Let (C) be the corresponding orbit andf (C). If : HI(f)
HZ((/f) is not the zero map, then i(#) O. Moreover, if dim(Z(G)) 2,
then this condition is also necessary for the vanishing of i(o).

Proof E32q+1’0 (0) if and only if [V] n2q+l((/f) E22q+l,0 is in
the image of d2. Equivalently, we must be able to write [V] in the form
([h]). [a] for some [h] Ht(/), [a] n2q((/f). Since q6/y is a

nilpotent Lie algebra of dimension 2q + 1, H*(qb/y) satisfies Poincar6
duality and E32q+1’0 (0) if and only if ([h]) 4:0 for some [h] Hl(f).
The condition E32q+l’0 (0) implies Eq+l’0 (0) and thus i(0)= 0.

If dim(Z(G)) 2 then one has Eo E so that i(0)---0 if and only if
4:0. El

We remark that for square integrable, ; is an ideal in q6 and hence
independent of f (C) chosen. It follows that the condition in Theorem 5.2
makes reference to an invariant that depends only on (the equivalence class
of) the representation 0.
The content of Theorem 5.2 can be clarified by carrying out computations

using explicit bases. Suppose that q6 has basis { Zt, Z2, Xt,..., X, } where
{ Z, Z2 } is a basis for Z(). Suppose that is square integrable modulo
Z(G) and corresponds to an orbit (C) with f (C). Let (hl, 2, al,’’’, an) be
the dual basis for @*. We must have flZ() 4= 0, so that flZ(@) aht + b,
where a 4= 0 or b 4: 0. Hence, ! (bZ aZ) and ]’ is generated by
bh ah 2. According to Theorem 5.2, i(0) 0 if and only if b d, a dh
4= 0 in H(@/(bZ1 aZ)).
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As an example, consider the Lie algebra with basis

(Z1, Z2, Xx, X2, Yx, Y2} where [Xx, Y] Zx [X2, Y2]

and all other brackets vanish (this is the Lie algebra for the direct product of a
Heisenberg group with R). Let { Xx, 2, vx, v2,/x,/2 } be the dual basis and
f ,x. Then xx Z() so that (C) (C)x is square integrable. Since d, 2

0, we must have i()) 4: 0. Indeed, i((C)) is represented by the form

2h A A v A 2 A v2

which is not exact in A(*). Next consider @’, the Lie algebra obtained by
introducing another non-zero bracket: IXx, Y2] Z2. As before, (C) (C)xa is
square integrable but now d2 =/2 A v 4: 0. In fact [dX2] 4:0 in

H:( X:,

so that we now must have i((C)) 0. Indeed, one has

2hxA/x1AvlA#2Av2=d(2,Ah2A/xAv2) inA(@’*).

In general, (C) ah +bh2 C (/* is square integrable for any a, b R, with a 4: 0,
and i((iah+bh2) 0. These are the orbits of maximal dimension in (R)’*. In
addition, there are two dimensional (non-square integrable) orbits

(tah2+bv2+cti (ah 2 + xv + by2 + cl + xl 2" x, y R), a 4: 0,

with

i( )aX2+bv2+cl) a 2[X 2 A /.t 2 A v] * O.

The remaining orbits in @’* are single points in the subspace (v,/)2, 1,
and correspond to characters.
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