QUANTIZATION AND AN INVARIANT FOR UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS

BY
C. Benson and G. Ratcliff ${ }^{1}$

1. Introduction

Let G be a simply connected nilpotent Lie group with Lie algebra ${ }^{\mathfrak{G}}$. Given a co-adjoint orbit $\mathfrak{D} \subset \mathscr{G}^{*}$, the dual of \mathfrak{G}, the authors have defined a cohomology invariant $i(\mathfrak{D}) \in H^{2 q+1}(\mathbb{F})$, where $\operatorname{dim} \mathfrak{D}=2 q[1]$ (see Section 2 for details).
We now provide an interpretation of this invariant via the machinery of geometric quantization [6]. There is an Hermitian line bundle L over the orbit \mathfrak{D} with a natural connection and G-action. A specific model for this "prequantization bundle" L is developed in Section 3. Let $T(L)$ be the unit circle bundle in L with respect to the Hermitian structure. The action of G on L yields a G-invariant map $\tilde{\pi}: G \rightarrow T(L)$, and hence a map

$$
\tilde{\pi}^{*}: H_{G}^{*}(T(L)) \rightarrow H^{*}(\mathfrak{G}) .
$$

(Here ($H_{G}^{*}(T(L))$ denotes the G-invariant (real) cohomology of $T(L)$) The connection in L yields a distinguished element $[V]$ in $H_{G}^{2 q+1}(T(L))$. In Section 4 we show that $i(\mathfrak{D})=\tilde{\pi}^{*}([V])$.
The prequantization model used allows us to relate $H_{G}^{*}(T(L))$ to Lie algebra cohomology. In particular, we show that $H_{G}^{2 q+1}(T(L))$ is one-dimensional, generated by $[V]$, so that $i(\mathfrak{D})=0$ if and only if

$$
\tilde{\pi}^{*}: H_{G}^{2 q+1}(T(L)) \rightarrow H^{2 q+1}(\mathscr{S})
$$

is the zero map.
We remark that geometric quantization uses the Hermitian structure, G action and connection in L to determine the representation σ_{\otimes} of G corresponding to the coadjoint orbit \mathfrak{Q}. The invariant $i(\mathfrak{D})$ is a composite derived from this geometric data, and can be regarded as an invariant for the representation $\sigma_{\mathfrak{Q}}$. As such, it should also detect properties of the representation theory of G. We discuss some of these properties in Section 5.

[^0]
2. Lie algebra cohomology and the invariant for an orbit

Let G be a connected Lie group with Lie algebra ©f. Let ©f* be the linear dual of \mathfrak{G}. G acts on $\mathbb{S S}^{*}$ by the co-adjoint representation Ad^{*}. If G is nilpotent, by the theory of Kirillov [5], the orbits in ©S* under this action are in one-one correspondence with the irreducible unitary representations of G.

The left G-invariant forms ${ }^{G} \Omega(G)$ on G yield a subcomplex of the de Rham complex $\Omega(G)$ which can be identified with the exterior algebra $\Lambda(\mathscr{S} *)$. The cohomology of this complex is denoted by $H^{*}(\mathbb{S})$.
 dimension $2 q$ for some q [5]. Given $f \in \mathfrak{D}$, we have shown in [1] that $f \wedge(d f)^{q}$ in $\wedge^{2 q+1}(\mathscr{S})$ is a closed form, and that $\left[f \wedge(d f)^{q}\right]$ is independent of the choice of f. We define $i(\mathfrak{D})$ in $H^{2 q+1}(\mathscr{F})$ by

$$
\begin{equation*}
i(\Omega)=\left[f \wedge(d f)^{q}\right] \tag{2.1}
\end{equation*}
$$

See [1] for examples where $i(\mathfrak{O})$ is non-trivial.
Relative Lie algebra cohomology Let Ad* and ad* be the co-adjoint actions on $\Lambda\left(\mathbb{S}^{*}\right)$ of G and \mathbb{S} respectively. For $X \in \mathbb{S}$, the substitution operator

$$
i(X): \wedge^{k}\left(\mathscr{S S}^{*}\right) \rightarrow \wedge^{k-1}\left(\sqrt{ }{ }^{*} *\right)
$$

is given by $(i(X) \alpha)\left(Y_{1}, \ldots, Y_{k-1}\right)=\alpha\left(X, Y_{1}, \ldots, Y_{k-1}\right)$ for $Y_{i} \in \mathscr{H}, i=$ $1, \ldots, k-1$.

Let H be a closed subgroup of G with Lie algebra \mathfrak{S}. If

$$
\mathfrak{R}=\left\{\alpha \in \wedge\left(\mathscr{S}^{*}\right): i(X) \alpha=0 \text { for all } X \in \mathfrak{S}\right\}
$$

the subcomplexes of H-basic and \mathfrak{g}-basic elements of $\Lambda\left(\mathscr{S}^{*}\right)$ are defined by

$$
\begin{equation*}
\left(\wedge \mathscr{S S}^{*}\right)_{H}=\Omega \cap\left\{\alpha \in \wedge\left(\mathscr{S}^{*}\right): \operatorname{Ad}^{*} h(\alpha)=\alpha \text { for all } h \in H\right\} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\wedge \mathfrak{S}^{*}\right)_{\mathscr{Q}}=\mathfrak{\Re} \cap\left\{\alpha \in \wedge\left(\mathscr{S}^{*}\right): \mathrm{ad}^{*} X(\alpha)=0 \text { for all } X \in \mathfrak{G}\right\} . \tag{2.3}
\end{equation*}
$$

These complexes yield the relative cohomology theories $H^{*}(\mathbb{S}, H)$ and $H^{*}(\mathfrak{S}, \mathfrak{S})$. If π is the projection $\pi: G \rightarrow G / H$, then $\left(\wedge\left(S^{*}\right)_{H}=\pi^{*}\left({ }^{G} \Omega(G / H)\right)\right.$, so that $H^{*}(\mathbb{G}, H)$ corresponds to the cohomology of G-invariant forms on G / H. When H is connected, $H^{*}(\mathfrak{S}, H)=H^{*}(\mathbb{S}, \mathfrak{Q})$, but this is not true in general. If \mathfrak{G} is an ideal in \mathfrak{S}, then $H^{*}(\mathfrak{S}, \mathfrak{G})=H^{*}(\mathscr{S} / \mathfrak{G})$.

The three cohomology algebras $H^{*}(\mathfrak{G}), H^{*}(\mathbb{S})$ and $H^{*}(\mathfrak{S}, \mathfrak{G})$ are related by the Hochschild-Serre spectral sequence [4]. This is a first quadrant spectral sequence that provides an algebraic analogue of the Serre spectral sequence for
the fibration $H \hookrightarrow G \rightarrow G / H$. The E_{0} and E_{1} terms of the spectral sequence can be identified as

$$
E_{0}^{i, j} \cong \wedge^{j}\left(\mathfrak{E}, \wedge^{i}\left((\mathscr{S} / \mathfrak{G})^{*}\right)\right) \quad \text { and } \quad E_{1}^{i, j} \cong H^{j}\left(\mathfrak{B}, \wedge^{i}\left((\mathscr{S} / \mathfrak{S})^{*}\right)\right)
$$

The latter cohomology involves coefficients in the \mathfrak{g}-module $\Lambda^{i}\left((\mathscr{S} / \mathfrak{G})^{*}\right)$ (under the ad*-action). We refer the reader to [4]. The E_{2} term can be difficult to compute, however $E_{2}^{i, 0} \cong H^{i}(\mathscr{S}, \mathfrak{G})$ and $E_{2}^{0, j}$ can be identified with a submodule of $H^{i}(\mathscr{S})$. Moreover, when \mathfrak{g} is an ideal in \mathscr{S}, one has

$$
E_{2}^{i, j} \cong H^{i}\left(\mathfrak{S} / \mathfrak{S}, H^{i}(\mathfrak{S})\right) .
$$

If, in addition, $\mathscr{S} / \mathfrak{G}$ acts trivially on $H^{j}(\mathfrak{Q})$ via ad*, then

$$
E_{2}^{i, j} \cong H^{i}(\oiint / \mathfrak{G}) \otimes H^{j}(\mathfrak{G})
$$

The spectral sequence converges to E_{∞}, which is related to $H^{*}(\oiint)$) by a filtration in the usual manner. In particular, $H^{n}(\mathbb{S}) \cong \oplus_{i+j=n} E_{\infty}^{i, j}$.

Suppose now that G is simply connected and nilpotent. It is known that if G has a co-compact discrete subgroup Γ then $\left.H^{*}(\oiint)\right) \cong H^{*}(\Gamma \backslash G)$, the real cohomology of a compact manifold [8]. In particular, such subgroups exist whenever \mathbb{E} has rational structure constants. In general, one always has the following result.
2.4 Lemma. If ©s is nilpotent, then $H^{*}(\oiint)$ satisfies Poincaré duality. In particular, $H^{n}(\mathfrak{G}) \cong \mathbf{R}$ where $n=\operatorname{dim}(\mathscr{S})$.

This is known more generally for any unimodular Lie algebra [3]. Using Lemma 2.4 together with the spectral sequence one obtains a relative version.
2.5 Lemma. Let $\mathfrak{C S}$ be nilpotent and \mathfrak{g} a subalgebra of $\mathfrak{E S}$. Then

$$
H^{s}(\mathfrak{F}, \mathfrak{G}) \cong \mathbf{R} \text { where } s=\operatorname{dim}(\mathfrak{S} / \mathfrak{G}) .
$$

Proof. We must have either $H^{s}(\mathscr{G}, \mathfrak{G})=0$ or $H^{s}(\mathscr{G}, \mathfrak{G}) \cong \mathbf{R}$ since $\Lambda^{s}\left(\mathbb{S S}^{*}\right)_{\mathscr{Q}}$ is one dimensional. Let $\nu \in \Lambda^{s}\left(\mathbb{S S}^{*}\right)_{\mathscr{Q}}$ be non-zero (a left-invariant volume form). We need only show that ν is not exact in the complex $\Lambda(\mathbb{S} *)_{\mathscr{q}}$.

Let $r=\operatorname{dim}(\mathfrak{G})$ and $\mu \in \Lambda^{r}\left(\mathfrak{S}^{*}\right)$ be a volume form. The element

$$
\mu \otimes \nu \in E_{0}^{s, r}=\Lambda^{r}\left(\mathfrak{E}, \Lambda^{s}\left((\mathfrak{S} / \mathfrak{G})^{*}\right)\right)
$$

generates $E_{0}^{s, r} \cong \mathbf{R}$. Denoting the differential in E_{k} by d_{k} one has $d_{0}(\mu \otimes \nu)$ $=d \mu \otimes \nu=0$. Thus we obtain a class $[\mu \otimes \nu] \in E_{1}^{s, r}$.

Assume that ν is exact in $\Lambda\left(\mathbb{S}^{*}\right)_{\S} ; \nu=d \beta$ where $\beta \in \Lambda^{s-1}\left(\mathscr{S}^{*}\right)_{\S}$. We obtain elements $\mu \otimes \beta \in E_{0}^{s-1, r}$ and $[\mu \otimes \beta] \in E_{1}^{s-1, r}$ as before. One com-
putes

$$
d_{1}([\mu \otimes \beta])=[\mu \otimes d \beta]=[\mu \otimes \nu]
$$

It follows that $E_{2}^{s, r}=0$ and hence $E_{\infty}^{s, r}=0$. Let $n=s+r=\operatorname{dim}(\mathscr{S})$. One sees trivially that $E_{0}^{a, b}=0$ for $a+b=n$ if either $a>s$ or $b>r$. Hence

$$
H^{n}(\mathbb{S}) \cong \sum_{a+b=n} E_{\infty}^{a, b}=E_{\infty}^{s, r}=0
$$

This contradicts Lemma 2.4.
2.6 Corollary. Let G be nilpotent with $H \subset G$ a closed subgroup. Then $H^{s}(\mathfrak{s}, H) \cong \mathbf{R}$ where $s=\operatorname{dim}(G / H)$.

Proof. A generator ν for $\Lambda^{s}\left(\mathscr{S S}^{*}\right)_{H}$ is given by a left invariant volume form on G / H. We have an inclusion of complexes, $\Lambda\left(\mathbb{S G}^{*}\right)_{H} \subset \Lambda\left(\left(G S^{*}\right)_{\S}\right.$. Since ν is not exact in $\Lambda\left(\mathscr{S S}^{*}\right)_{\mathscr{B}}$, it is certainly not exact in $\Lambda\left(\mathbb{S S}^{*}\right)_{\dot{H}}$.

3. Prequantization

Let G be simply connected and nilpotent and $\mathfrak{D} \subset \mathbb{S F}^{*}$ a coadjoint orbit with canonical symplectic form $\omega \in \Omega^{2}(\mathfrak{Q})$. Geometric quantization on the symplectic manifold (\mathscr{D}, ω) produces an irreducible unitary representation of G [6]. The first step involves constructing a complex line bundle L over \mathfrak{D} with an Hermitian structure \langle,$\rangle and a compatible connection \alpha$ with curvature ω. In our setting, such a prequantization bundle exists, and is unique up to a strong notion of equivalence [6]. Moreover, there is an action of G on L that preserves \langle,$\rangle and \alpha$, and coincides with the coadjoint action of G on $\mathfrak{\sim}$.

Let L^{*} be the bundle of non-zero vectors in L and

$$
T(L)=\{v \in L:\langle v, v\rangle=1\} .
$$

L^{*} is the principal bundle for L with fibre $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$, and $T(L)$ is a circle bundle over \mathfrak{O} which completely determines \langle,$\rangle on L$. The connection α, a complex-valued one-form on L^{*}, is compatible with \langle,$\rangle in the sense$ that α is the extension of a real-valued connection form on $T(L)$.

To describe an explicit model for $(L,\langle\rangle,, \alpha)$, we need only construct a circle bundle $T(L)$ over \mathfrak{D} with connection form $\alpha \in \Omega^{1}(T(L))$. If $\rho: T(L) \rightarrow$ \mathfrak{D} is the projection, then α has curvature form ω. (That is, $d \alpha=\rho^{*}(\omega)$.)

Choose $f \in \mathscr{D}$ and let $G_{f}=\left\{g \in G: \operatorname{Ad}^{*} g(f)=f\right\}$. \mathfrak{D} is identified with G / G_{f}, so that the coadjoint action of G on \mathfrak{D} becomes the usual action of G on G / G_{f}. For G simply connected and nilpotent, G_{f} is connected and $G_{f}=\exp \left(\mathscr{S}_{f}\right)$, where $\mathscr{S}_{f}=\left\{X \in \mathfrak{F}: \operatorname{ad}^{*} X(f)=0\right\}[5]$.

Assume $f \neq 0$. One obtains a character $\chi_{f}: G_{f} \rightarrow T$ defined by $\chi_{f}(\exp X)=$ $e^{2 \pi i f(X)}$ for $X \in \mathbb{G}_{f}$. Let $K_{f}=\operatorname{Ker} \chi_{f} . K_{f}$ is a normal subgroup of G_{f} and, as χ_{f} is surjective, $G_{f} / K_{f} \cong T$. The Lie algebra of K_{f} is $\Re_{f}=\operatorname{Ker}\left(f \mid \mathscr{G}_{f}\right)$ and $\exp \left(\Omega_{f}\right)$ is the identity component of K_{f}. The following fact is easily verified.
3.1 Lemma. f is in $\Lambda^{1}\left(\mathscr{S S}^{*}\right)_{K_{f}}$, and hence f yields a G-invariant 1 -form α on G / K_{f}.

Consider the bundle

$$
\begin{aligned}
G_{f} / K_{f} \longleftrightarrow & G / K_{f} \\
& G / G_{f} .
\end{aligned}
$$

This is a circle bundle in view of the identification $G_{f} / K_{f} \cong T$. The right action of T on G / K_{f} is given by $\left(g K_{f}, g_{0} K_{f}\right) \mapsto g g_{0} K_{f}$. Note that this is well defined since K_{f} is normal in G_{f}. It is not hard to show that α is invariant under this right T-action. Given $t \in \mathbf{R}$, regarded as the Lie algebra of T, choose $X_{0} \in \mathscr{G}_{f}$ with $f\left(X_{0}\right)=t$. Then the vertical vector field V_{t} on G / G_{f} is the left invariant vector field $X_{0}+\Re_{f}$, and $\alpha\left(V_{t}\right)=t$. These remarks prove the following lemma.
3.2 Lemma. The form α from Lemma 3.1 is a connection form in the circle bundle

$$
G / K_{f}^{\rightarrow} \underset{\rho}{\rightarrow} G / G_{f} .
$$

Proof. Let $\pi_{f}: G \rightarrow G / G_{f}$ and $\tilde{\pi}_{f}: G \rightarrow G / K_{f}$ be the usual projection maps. Then ω is uniquely determined by the identity $\pi_{f}^{*}(\omega)=d f$ in $\Lambda^{2}\left(\mathbb{S S}^{*}\right)$ $\subset \Omega^{2}(G)$. On the other hand, $\operatorname{curv}(\alpha)$ is characterized by $\rho^{*}(\operatorname{curv} \alpha)=d \alpha$.

We see that

$$
\begin{aligned}
\pi_{f}^{*}(\operatorname{curv} \alpha) & =\tilde{\pi}_{f}^{*} \rho^{*}(\operatorname{curv} \alpha) \\
& =\tilde{\pi}_{f}^{*}(d \alpha) \\
& =d \tilde{\pi}_{f}^{*}(\alpha) \\
& =d f \quad(\text { by definition of } \alpha) \\
& =\pi_{f}^{*}(\omega)
\end{aligned}
$$

Since π_{f} is a submersion, $\operatorname{curv} \alpha=\omega$.

Together, Lemmas 3.2 and 3.3 show the following.
3.4 ThEOREM. The bundle $G_{f} / K_{f} \rightarrow G / K_{f} \rightarrow G / G_{f}$ together with the oneform f in $\Lambda\left(\mathbb{S S}^{*}\right)_{K_{f}}$ is a model for $(T(L), \alpha)$-the circle bundle with connection given by prequantization.

Our model for L is the associated complex line bundle

$$
G / K_{f} \times_{G_{f / K_{f}}} \mathbf{C} \cong G \times_{G_{f}} \mathbf{C}
$$

whose elements are equivalence classes $[g, c]$ where $\left(g g_{0}, c\right) \sim\left(g, \chi_{f}\left(g_{0}\right) c\right)$ for all $g_{0} \in G_{f}, g \in G$, and $c \in \mathbf{C}$. The Hermitian structure on $G \times_{G_{f}} \mathbf{C}$ is just $\left\langle[g, c],\left[g, c^{\prime}\right]\right\rangle=c \bar{c}^{\prime}$. A model for L^{*} is given by $G \times_{G_{j}} \mathbf{C}^{*}$. The connection α in $T(L)$ gives a complex-valued connection in L^{*} by prolongation. This is the unique form on L^{*} whose lift to $G \times \mathbf{C}^{*}$ is

$$
\tilde{\alpha}=f+\frac{1}{2 \pi i} d z / z
$$

This is the model for the prequantization bundle that can be found in [6].
Notice that the structures \langle,$\rangle and \alpha$ are invariant under the obvious left G-actions on $G \times{ }_{G_{f}} \mathbf{C}$ and $G \times{ }_{G_{f}} \mathbf{C}^{*}$. These actions extend the left action of G on G / K_{f} and are compatible with the G-action on $G / G_{f} \cong \mathfrak{D}$ in the sense that the projection maps are all G-equivariant.

4. The invariant via prequantization

Let $(L,\langle\rangle,, \alpha)$ be a prequantization bundle over a co-adjoint orbit $\mathfrak{D} \subset \mathscr{S H}^{*}$ of dimension $2 q$. The G-action on L preserves 〈 , > and hence $T(L)$. Writing $L_{g}: T(L) \rightarrow T(L)$ for the action of $g \in G$ on $T(L)$, one has

$$
{ }^{G} \Omega(T(L))=\left\{\beta \in \Omega(T(L)): L_{g}^{* \beta}=\beta \quad \text { for all } g \in G\right\}
$$

the complex of left G-invariant forms on $T(L)$. We will denote the cohomology of this complex by $H_{G}^{*}(T(L))$.

Choose $p_{0} \in T(L)$ and define $\tilde{\pi}: G \rightarrow T(L)$ by $\tilde{\pi}(g)=L_{g}\left(p_{0}\right)$. This is a lifting of $\pi: G \rightarrow \mathfrak{D}$ to $T(L)$, where $\pi(g)=\operatorname{Ad}^{*} g\left(\rho\left(p_{0}\right)\right)$. (Recall that ρ is the projection $\rho: T(L) \rightarrow \mathfrak{D}$.) Since $\tilde{\pi}$ is G-equivariant, we obtain a map

$$
\tilde{\pi}^{*}:{ }^{G} \Omega(T(L)) \rightarrow{ }^{G} \Omega(G)=\wedge\left(\mathfrak{S H}^{*}\right)
$$

and hence a map $\pi^{*}: H_{G}^{*}(T(L)) \rightarrow H^{*}(\mathbb{F})$.
4.1 Lemma. $\tilde{\pi}^{*}: H_{G}^{*}(T(L)) \rightarrow H^{*}(\oiint)$ does not depend on the choice of $p_{0} \in T(L)$.

Proof. Let $p_{0}, p_{1} \in T(L)$ be two chosen points used to construct $\tilde{\pi}_{0}$ and $\tilde{\pi}_{1}: G \rightarrow T(L)$. As can be seen from the explicit model of $T(L)$ given in Section 3, G acts transitively on $T(L)$ so that we must have $p_{1}=\bar{g} p_{0}$ for some $\bar{g} \in G$. We thus have a commutative diagram

where $R_{\bar{g}}: G \rightarrow G$ is right multiplication. This dualizes to a diagram of complexes

This shows that the maps $\tilde{\pi}_{0}^{*}$ and $\tilde{\pi}_{1}^{*}$ in cohomology $H_{G}^{*}(T(L)) \rightarrow H^{*}(\oiint)$ differ by $\operatorname{Ad}^{*}(\bar{g}): H^{*}(\mathbb{S}) \rightarrow H^{*}(\mathbb{S})$. It is well known that for G connected, the co-adjoint representation on $H^{*}(\mathscr{G})$ is trivial [2].

Moreover, the entire construction $\tilde{\pi}^{*}: H_{G}^{*}(T(L)) \rightarrow H^{*}(\mathbb{S})$ is unique up to isomorphism.
4.2 Lemma. If $\left(L_{1},\langle,\rangle_{1}, \alpha_{1}\right)$ and $\left(L_{2},\langle,\rangle_{2}, \alpha_{2}\right)$ are two prequantization bundles for \mathfrak{D}, then there is an isomorphism $\tau^{*}: H_{G}^{*}\left(T\left(L_{1}\right)\right) \rightarrow$ $H_{G}^{*}\left(T\left(L_{2}\right)\right)$ such that the diagram

commutes.

Proof. The prequantization bundle is unique in a strong sense [6]. There is a vector bundle isomorphism $\tau: L_{2} \rightarrow L_{1}$ such that:
(i) $\langle\tau(v), \tau(w)\rangle_{1}=\langle v, w\rangle_{2} ; v, w \in L_{2}$;
(ii) $\tau^{*}\left(\alpha_{1}\right)=\alpha_{2}$;
(iii) $\tau\left(L_{g} v\right)=L_{g} \tau(v), v \in L_{2}, g \in G$.

In view of (i), τ yields an isomorphism of T-bundles $\tau: T\left(L_{2}\right) \rightarrow T\left(L_{1}\right)$ which is G-equivariant by (iii). If $p \in L_{2}$ is any chosen point then we use p and
$\tau(p)$ to construct the maps

$$
\tilde{\pi}_{2}: G \rightarrow T\left(L_{2}\right) \quad \text { and } \quad \tilde{\pi}_{1}: G \rightarrow T\left(L_{1}\right) .
$$

Clearly $\tilde{\pi}_{1}=\tau \circ \tilde{\pi}_{2}$ and $\tau^{*}: H_{G}^{*}\left(T\left(L_{1}\right)\right) \rightarrow H_{G}^{*}\left(T\left(L_{2}\right)\right)$ is a suitable isomorphism.

We remark that the isomorphism τ^{*} in Lemma 4.2 is essentially canonical. If $\tau_{0}, \tau_{1}: L_{2} \rightarrow L_{1}$ both satisfy conditions 4.3 , then

$$
\bar{\tau}=\tau_{1} \tau_{0}^{-1}: L_{1} \rightarrow L_{1}
$$

preserves $\langle\quad,\rangle_{1}, \alpha_{1}$ and the G-action on L_{1}. It follows that $\bar{\tau}$ comes from the right action R_{t} of some fixed element $t \in T$ on $T\left(L_{1}\right)$ [6]. This shows that $\tau_{0}{ }^{*}$ and τ_{1}^{*} can only differ by the right action of T on $H_{G}^{*}(T(L))$.

The differential form $V=\alpha \wedge(d \alpha)^{q} \in \Omega^{2 q+1}(T(L))$ is G-invariant since α is invariant, and closed since $\operatorname{dim}(T(L))=2 q+1$. We obtain a cohomology class

$$
\begin{equation*}
[V] \in H_{G}^{2 q+1}(T(L)) \tag{4.4}
\end{equation*}
$$

Notice that we can also write $V=\alpha \wedge \rho^{*}\left(\omega^{q}\right)$ where $\omega \in \Omega^{2}(\mathfrak{D})$ is the symplectic form. Since ω^{q} is a volume form on \mathfrak{D} and α is non-zero on vectors tangent to the fibres of $T(L)$, we see that V is a volume form on $T(L)$. On can regard α as a contact structure that gives rise to the volume form V.
4.5 Lemma. The class $[V] \in H_{G}^{2 q+1}(T(L))$ is well defined up to the isomorphism τ^{*} in Lemma 4.2.

Proof. If $\left(L_{1},\langle,\rangle_{1}, \alpha_{1}\right),\left(L_{2},\langle,\rangle_{2}, \alpha_{2}\right)$ are two prequantization bundles then the isomorphism $\tau^{*}: H_{G}^{*}\left(T\left(L_{1}\right)\right) \rightarrow H_{G}^{*}\left(T\left(L_{2}\right)\right)$ is induced by a G-equivariant map $\tau: T\left(L_{2}\right) \rightarrow T\left(L_{1}\right)$ with the property that $\tau^{*}\left(\alpha_{1}\right)=\alpha_{2}$.

Lemmas 4.1, 4.2 and 4.5 show that the class $\tilde{\pi}^{*}([V]) \in H^{2 q+1}(\mathfrak{F})$ does not depend on the choice of prequantization bundle $(L,\langle\rangle,, \alpha)$ or on the choice of $p_{0} \in T(L)$ used to define $\tilde{\pi}: G \rightarrow T(L)$. We now return to the specific model for ($L,\langle\rangle,, \alpha$) described in Section 3. In particular, we take $T(L)=G / K_{f}$ for some $f \in \mathcal{D}$. Using $e K_{f}$ (where $e \in G$ is the identity element) as the point $p_{0}, \tilde{\pi}: G \rightarrow G / K_{f}$ becomes the usual projection $\tilde{\pi}(g)=$ $g K_{f}$. Since α is characterized by $\tilde{\pi}^{*}(\alpha)=f$, one also has $\tilde{\pi}^{*}(V)=f \wedge(d f)^{q}$. This proves the following theorem.
4.6 Theorem. Let \mathfrak{D} be any co-adjoint orbit and $(L,\langle\rangle,, \alpha)$ a prequantization bundle for \mathfrak{D}. Then $i(\mathfrak{D})=\tilde{\pi}^{*}([V])$.

The model G / K_{f} for $T(L)$ also gives us a way of computing $H_{G}^{*}(T(L))$. Indeed, ${ }^{G} \Omega\left(G / K_{f}\right)$ is a model for ${ }^{G} \Omega(T(L))$ and the former can be identified with $\Lambda\left(\mathscr{S S}^{*}\right)_{K_{f}}$ via $\tilde{\pi}^{*}$. We see that $H_{G}^{*}(T(L)) \cong H^{*}\left(\mathbb{S}, K_{f}\right)$. In particular

$$
H_{G}^{2 q+1}(T(L)) \cong \mathbf{R}
$$

in view of Corollary 2.6.
4.7 Theorem. There is an isomorphism $H_{G}^{*}(T(L)) \cong H^{*}\left(\mathfrak{F}, K_{f}\right)$. Moreover, $H_{G}^{2 q+1}(T(L)) \cong \mathbf{R}$, generated by $[V]$.
4.8 Corollary. The following are equivalent:
(a) $i(\cap)=0$.
(b) $\tilde{\pi}^{*}: H_{G}^{2 q+1}(T(L)) \rightarrow H^{2 q+1}(\mathbb{(G)}$ is the zero map.
(c) The map $H^{2 q+1}\left(\mathfrak{G}, K_{f}\right) \rightarrow H^{2 q+1}(\mathfrak{G})$ induced by the inclusion $\Lambda\left(\mathscr{S G}^{*}\right)_{K_{f}}$ $\rightarrow \wedge\left(\mathbb{S}^{*}\right)$ is the zero map.

We remark that for computational purposes, it is often easier to work with $H^{*}\left(\mathfrak{S}, \mathfrak{R}_{f}\right)$. The map $H^{*}\left(\mathbb{F}, K_{f}\right) \rightarrow H^{*}\left(\mathfrak{F}, \mathfrak{\Re}_{f}\right)$ arising from $\Lambda\left(\mathbb{S H}^{*}\right)_{K_{f}} \rightarrow$ $\Lambda\left(\mathscr{S H}^{*}\right)_{\Omega_{f}}$ need not be an isomorphism, since K_{f} need not be connected. However, in the top dimension $2 q+1$, we do have $H^{2 q+1}\left(\mathbb{S}, K_{f}\right) \cong$ $H^{2 q+1}\left(\mathscr{S}, \Re_{f}\right) \cong \mathbf{R}$ as was shown in Lemma 2.5 and Corollary 2.6. In particular, $i(\mathfrak{D})=0$ if and only if $H^{2 q+1}\left(\mathscr{S}, \mathscr{R}_{f}\right) \rightarrow H^{2 q+1}(\mathscr{S})$ is the zero map. This observation allows one to use the Hochschild-Serre spectral sequence E_{r} for the pair $\left(\mathbb{F}, \Re_{f}\right)$ to study vanishing of the invariant. The map $H^{i}\left(\oiint, \Re_{f}\right) \rightarrow$ $H^{i}(\mathscr{S})$ can be written in terms of the spectral sequence as a composition

$$
H^{i}\left(\mathscr{S}, \Re_{f}\right) \cong E_{2}^{i, 0} \rightarrow E_{\infty}^{i, 0} \hookrightarrow H^{i}(\mathscr{(S)}) .
$$

This shows that $i(\mathfrak{D})=0$ if and only if $E_{\infty}^{2 q+1,0}=\{0\}$.

5. Square integrable representations

Suppose that ρ is an irreducible unitary representation of G corresponding to a co-adjoint orbit $\mathfrak{D} \subset\left(S^{*}\right.$. Then ρ is square-integrable modulo the center $Z(G)$ of G if and only if $G_{f}=Z(G)$ for $f \in \mathscr{D}$ [7].
5.1 Theorem. If G has one-dimensional center and ρ is square integrable modulo the center, then $i\left(\mathfrak{D}_{\rho}\right) \neq 0$.

Proof. We need only show that $H^{2 q+1}\left(\mathfrak{F}, \Re_{f}\right) \rightarrow H^{2 q+1}(\mathfrak{F})$ is not the zero map. In the present case, $\Re_{f}=\{0\}$ since it is a codimension-one subalgebra of \mathscr{E}_{f}.

Theorem 5.1 was also proved in [1] using different methods. When $\operatorname{dim}(Z(G))>0$, one can obtain useful information by studying the spectral sequence for ($\left.\mathscr{B}^{\prime}, \Re_{f}\right)$. Since \Re_{f} is a subalgebra of $Z(\mathfrak{F}), \Re_{f}$ is an ideal in (s) and $\mathscr{S S}^{2}$ acts trivially (via ad*) on $H^{*}\left(\Re_{f}\right)$. As noted in Section 2, the E_{2}-term in the spectral sequence is thus tame, $E_{2}^{i, j} \cong H^{i}\left(\mathscr{S} / \Re_{f}\right) \otimes H^{j}\left(\Re_{f}\right)$. In fact, $H^{j}\left(\Omega_{f}\right)=\wedge^{j}\left(\Re_{f}^{*}\right)$ since Ω_{f} is abelian. Note that $E_{2}^{i, j}=\{0\}$ for $j \geq$ $\operatorname{dim}(Z(G))$ and hence $E_{\infty}=E_{\operatorname{dim}(Z(G))+1}$. In particular, the invariant vanishes if and only if $E_{\operatorname{dim}(Z(G))+1}^{2 q+1,0}=\{0\}$.

The differential $d_{2}: E_{2}^{i, 1} \rightarrow E_{2}^{i+2,0}$ is given by

$$
d_{2}([\alpha] \otimes[h])=(-1)^{i}[\alpha \wedge d \tilde{h}] \quad \text { for } h \in \Re_{f}^{*} \text { and }[\alpha] \in H^{i}\left(\mathscr{S} / \Re_{f}\right)
$$

where $\tilde{h} \in \mathscr{S S}^{*}$ is any linear functional extending h to $\mathfrak{S S}$ (that is, $\tilde{h} \mid \Re_{f}=h$). This can be written as $d_{2}([\alpha] \otimes \underset{\sim}{\infty}[h])=\tau([h]) \cdot[\alpha]$, where $\tau: H^{1}\left(\Re_{f}\right) \rightarrow$ $H^{2}\left(\mathscr{S} / \Re_{f}\right)$ is given by $\tau([h])=[d \tilde{h}]$.
5.2 Theorem. Let ρ be square integrable modulo the center $Z(G)$ of G where $\operatorname{dim}(Z(G))>1$. Let \mathfrak{D} be the corresponding orbit and $f \in \mathfrak{D}$. If $\tau: H^{1}\left(\Re_{f}\right) \rightarrow$ $H^{2}\left(\mathscr{S} / \Re_{f}\right)$ is not the zero map, then $i(\rho)=0$. Moreover, if $\operatorname{dim}(Z(G))=2$, then this condition is also necessary for the vanishing of $i(\rho)$.

Proof. $\quad E_{3}^{2 q+1,0}=\{0\}$ if and only if $[V] \in H^{2 q+1}\left(\nless \S / \Re_{f}\right) \cong E_{2}^{2 q+1,0}$ is in the image of d_{2}. Equivalently, we must be able to write $[V]$ in the form $\tau([h]) \cdot[\alpha]$ for some $[h] \in H^{1}\left(\Re_{f}\right),[\alpha] \in H^{2 q}\left(\mathbb{S} / \Re_{f}\right)$. Since \mathscr{G} / \Re_{f} is a nilpotent Lie algebra of dimension $2 q+1, H^{*}\left(\mathbb{S} / \Omega_{f}\right)$ satisfies Poincaré duality and $E_{3}^{2 q+1,0}=\{0\}$ if and only if $\tau([h]) \neq 0$ for some $[h] \in H^{1}\left(\Re_{f}\right)$. The condition $E_{3}^{2 q+1,0}=\{0\}$ implies $E_{\infty}^{2 q+1,0}=\{0\}$ and thus $i(\rho)=0$.

If $\operatorname{dim}(Z(G))=2$ then one has $E_{\infty}=E_{3}$ so that $i(\rho)=0$ if and only if $\tau \neq 0$.

We remark that for ρ square integrable, \mathscr{R}_{f} is an ideal in \mathscr{G} and hence independent of $f \in \mathscr{D}$ chosen. It follows that the condition in Theorem 5.2 makes reference to an invariant τ that depends only on (the equivalence class of) the representation ρ.

The content of Theorem 5.2 can be clarified by carrying out computations using explicit bases. Suppose that ©S has basis $\left\{Z_{1}, Z_{2}, X_{1}, \ldots, X_{n}\right\}$ where $\left\{Z_{1}, Z_{2}\right\}$ is a basis for $Z(\mathbb{B})$. Suppose that ρ is square integrable modulo $Z(G)$ and corresponds to an orbit \mathfrak{D} with $f \in \mathscr{D}$. Let $\left\{\lambda_{1}, \lambda_{2}, \alpha_{1}, \ldots, \alpha_{n}\right\}$ be the dual basis for ©f $*$. We must have $f \mid Z(\mathbb{B}) \neq 0$, so that $f \mid Z(\mathbb{F})=a \lambda_{1}+b \lambda_{2}$ where $a \neq 0$ or $b \neq 0$. Hence, $\Omega_{f}=\left\langle b Z_{1}-a Z_{2}\right\rangle$ and \Re_{f}^{*} is generated by $b \lambda_{1}-a \lambda_{2}$. According to Theorem 5.2, $i(\rho)=0$ if and only if $\left[b d \lambda_{1}-a d \lambda_{2}\right]$ $\neq 0$ in $H^{2}\left(\oiint /\left\langle b Z_{1}-a Z_{2}\right\rangle\right)$.

As an example, consider the Lie algebra $\mathbb{5}$ with basis

$$
\left\{Z_{1}, Z_{2}, X_{1}, X_{2}, Y_{1}, Y_{2}\right\} \quad \text { where }\left[X_{1}, Y_{1}\right]=Z_{1}=\left[X_{2}, Y_{2}\right]
$$

and all other brackets vanish (this is the Lie algebra for the direct product of a Heisenberg group with \mathbf{R}). Let $\left\{\lambda_{1}, \lambda_{2}, \nu_{1}, \nu_{2}, \mu_{1}, \mu_{2}\right\}$ be the dual basis and $f=\lambda_{1}$. Then $\mathscr{S}_{\lambda_{1}}=Z(\mathscr{F})$ so that $\mathfrak{D}=\mathscr{S}_{\lambda_{1}}$ is square integrable. Since $d \lambda_{2}=$ 0 , we must have $i(\mathfrak{D}) \neq 0$. Indeed, $i(\mathfrak{D})$ is represented by the form

$$
2 \lambda_{1} \wedge \mu_{1} \wedge \nu_{1} \wedge \mu_{2} \wedge \nu_{2}
$$

 introducing another non-zero bracket: $\left[X_{1}, Y_{2}\right]=Z_{2}$. As before, $\mathcal{D}=\mathscr{S}_{\lambda_{1}}$ is square integrable but now $d \lambda_{2}=\mu_{2} \wedge \nu_{1} \neq 0$. In fact $\left[d \lambda_{2}\right] \neq 0$ in

$$
H^{2}\left(\mathcal{S}^{\prime} /\left\langle Z_{2}\right\rangle\right)=H^{2}\left(\left\langle Z_{1}, X_{1}, X_{2}, Y_{1}, Y_{2}\right\rangle\right)
$$

so that we now must have $i(\mathscr{D})=0$. Indeed, one has

$$
2 \lambda_{1} \wedge \mu_{1} \wedge \nu_{1} \wedge \mu_{2} \wedge \nu_{2}=d\left(2 \lambda_{1} \wedge \lambda_{2} \wedge \mu_{1} \wedge \nu_{2}\right) \quad \text { in } \wedge\left(\oiint^{\prime *}\right)
$$

In general, $\mathfrak{S}_{a \lambda_{1}+b \lambda_{2}} \subset \mathfrak{G s}^{\prime *}$ is square integrable for any $a, b \in \mathbf{R}$, with $a \neq 0$, and $i\left(\mathcal{D}_{a \lambda_{1}+b \lambda_{2}}\right)=0$. These are the orbits of maximal dimension in $\mathfrak{F S}^{\prime *}$. In addition, there are two dimensional (non-square integrable) orbits

$$
\mathfrak{D}_{a \lambda_{2}+b \nu_{2}+c \mu_{1}}=\left\{a \lambda_{2}+x \nu_{1}+b \nu_{2}+c \mu_{1}+x \mu_{2}: x, y \in \mathbf{R}\right\}, \quad a \neq 0
$$

with

$$
i\left(\mathscr{D}_{a \lambda_{2}+b \nu_{2}+c \mu_{1}}\right)=a^{2}\left[\lambda_{2} \wedge \mu_{2} \wedge \nu_{1}\right] \neq 0
$$

The remaining orbits in $\mathscr{S G}^{\prime *}$ are single points in the subspace $\left\langle\nu_{1}, \nu_{2}, \mu_{1}, \mu_{2}\right\rangle$ and correspond to characters.

References

1. C. Benson and G. Ratcliff, An invariant for unitary representations of nilpotent Lie groups, Michigan Math. J., vol. 34 (1987), pp. 23-30.
2. C. Chevelley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., vol. 63 (1948), pp. 85-124.
3. W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology. Vol. 3, Academic Press, New York, 1976.
4. G. Hochschild and J.P. Serre, Cohomology of Lie algebras, Ann. of Math., vol. 57 (1953), pp. 591-603.
5. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys, vol. 17 (1962), pp. 53-104.
6. B. Kostant, "Quantization and unitary representations" in "Lectures in modern analysis and applications III," C. T. Taam, editor, Lecture Notes in Math., vol. 170, Springer-Verlag, New York, 1970.
7. C. Moore and J. Wolf, Square integrable representation of nilpotent groups, Trans. Amer. Math. Soc., vol. 185 (1973), pp. 445-462.
8. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math., vol. 59 (1954), pp. 531-538.

University of Missouri-St. Louis
St. Louis, Missouri

[^0]: Received June 9, 1986.
 ${ }^{1}$ Both authors were supported by a Weldon Springs research grant from the University of Missouri.

