A THEOREM ON MODULAR ENDOMORPHISM RINGS

BY
J.A. Green
In memory of Irving Reiner

1. Introduction

The object of this note is to present a new version ${ }^{1}$ (Theorem (4.2)) of R. Brauer's well-known "reciprocity theorem" for modular decomposition numbers [2, p. 257], [4, p. 434], and to show its application to a theorem of G.D. James (see Section 5).

Let R be a complete discrete valuation ring with quotient field K, maximal ideal πR, and residue class field $F=R / \pi R$. Both K and F can be regarded as R-modules. If k is one of K, F, and if M is any object which (like Λ and X, see below) is a free, finitely-generated R-module, we shall write $k M$ for the k-space $k \otimes_{R} M$, and $\theta_{k}: M \rightarrow k M$ for the R-map which takes $m \rightarrow 1_{k} \otimes m$ $(m \in M)$. The map θ_{K} is injective, and may be used to identify M with a sub- R-module of $k M$. The map θ_{F} is surjective and has kernel πM; hence $F M \cong M / \pi M$. It is clear that

$$
\begin{equation*}
\operatorname{dim}_{K} K M=\operatorname{dim}_{F} F M, \tag{1.1}
\end{equation*}
$$

both sides of (1.1) being equal to the R-rank of M.
Now let Λ be an R-order, i.e., Λ is an R-algebra with 1 , which is free and finitely-generated as R-module. Then $k \Lambda$ is naturally a k-algebra ($k \in$ $\{K, F\}) ; \Lambda$ is usually regarded as a subring of $K \Lambda$ via $\theta_{K}: \Lambda \rightarrow K \Lambda$. A (left) Λ-lattice is, by definition, a (left) Λ-module X which is free and finitely-generated as R-module. Then $k X$ is naturally a finitely-generated (left) $k \Lambda$-module.

We shall need the following notation and terminology.

[^0]Notation. If X, Y are Λ-lattices, then $(Y, X)_{R},(Y, X)_{\Lambda}, E(Y)$ denote $\operatorname{Hom}_{R}(Y, X), \operatorname{Hom}_{\Lambda}(Y, X), \operatorname{End}_{\Lambda}(Y)$, respectively. If $k \in\{K, F\}$ and if X^{\prime}, Y^{\prime} are $k \Lambda$-modules, then $\left(Y^{\prime}, X^{\prime}\right)_{k},\left(Y^{\prime}, X^{\prime}\right)_{k \Lambda}, E\left(Y^{\prime}\right)$ denote $\operatorname{Hom}_{k}\left(Y^{\prime}, X^{\prime}\right)$, $\operatorname{Hom}_{k \Lambda}\left(Y^{\prime}, X^{\prime}\right), \operatorname{End}_{k \Lambda}\left(Y^{\prime}\right)$, respectively; also $e\left(Y^{\prime}\right):=\operatorname{dim}_{k} E\left(Y^{\prime}\right)$.

Components. A Λ-lattice Y_{1} is said to be a component of Y, if it is isomorphic to a direct Λ-summand of Y. A similar definition holds for components of $k \Lambda$-modules.
R-forms. If \mathbf{X} is any finitely-generated $K \Lambda$-module, it is always possible to find a Λ-lattice X such that $K X \cong \mathbf{X}$ as $K \Lambda$-modules; such a Λ-lattice X is called an R-form of \mathbf{X}. (See [4], pp. 409, 410, or [12], p. 55. If X is contained in \mathbf{X}, Curtis and Reiner call it a full Λ-lattice in \mathbf{X}.)

From now on we assume that $K \Lambda$ is a semisimple K-algebra. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{t}$ be a full set of simple ($=$ irreducible) left $K \Lambda$-modules, and let E_{1}, \ldots, E_{a} be a full set of simple left $F \Lambda$-modules. Take fixed suffices $i \in\{1, \ldots, t\}$, $\alpha \in\{1, \ldots, a\}$. We choose an R-form X_{i} of \mathbf{X}_{i}, and an indecomposable component Λ_{α} of the left Λ-lattice ${ }_{\Lambda} \Lambda$ which covers E_{α}-this means that $F \Lambda_{\alpha}$, which is an indecomposable component of the left $F \Lambda$-module ${ }_{F \Lambda} F \Lambda$, satisfies $F \Lambda_{\alpha} / \operatorname{rad} F \Lambda_{\alpha} \cong E_{\alpha}$ (see [4], pp. 130-132 or [12], p. 11).

Brauer's proof. It will be useful to review Brauer's proof of his theorem. This rests on the equation

$$
\begin{equation*}
\operatorname{dim}_{K}\left(K \Lambda_{\alpha}, \mathbf{X}_{i}\right)_{K \Lambda}=\operatorname{dim}_{F}\left(F \Lambda_{\alpha}, F X_{i}\right)_{F \Lambda} \tag{1.2}
\end{equation*}
$$

(see [2], (8), p. 257). The left side of (1.2) is easily calculated using Schur's lemma, since the $K \Lambda$-module $K \Lambda_{\alpha}$ is semisimple: it is equal to $\delta_{i \alpha}^{*} \cdot e\left(\mathbf{X}_{i}\right)$, where $\delta_{i \alpha}^{*}$ denotes the multiplicity of \mathbf{X}_{i} as component of $K \Lambda_{\alpha}$, and $e\left(\mathbf{X}_{i}\right)$ $:=\operatorname{dim}_{K} E\left(\mathbf{X}_{i}\right)\left(E\left(\mathbf{X}_{i}\right):=\operatorname{End}_{K \Lambda}\left(\mathbf{X}_{i}\right)\right)$. Since $F \Lambda_{\alpha}$ is a projective cover of E_{α}, we may calculate also the right side of (1.2) [3, Thm. (54.19), p. 376]: it is equal to $\delta_{i \alpha} \cdot e\left(E_{\alpha}\right)$, where $\delta_{i \alpha}$ denotes the multiplicity of E_{α} as composition factor of the $F \Lambda$-module $F X_{i}$, and $e\left(E_{\alpha}\right):=\operatorname{dim}_{F} E\left(E_{\alpha}\right)\left(E\left(E_{\alpha}\right):=\operatorname{End}_{F \Lambda}\left(E_{\alpha}\right)\right)$. Therefore (1.2) gives Brauer's "reciprocity theorem"

$$
\begin{equation*}
\delta_{i \alpha}^{*} \cdot e\left(\mathbf{X}_{i}\right)=\delta_{i \alpha} \cdot e\left(E_{\alpha}\right) \quad \text { for } i \in\{1, \ldots, t\}, \alpha \in\{1, \ldots, a\} . \tag{1.3}
\end{equation*}
$$

This shows incidentally that the decomposition number $\delta_{i \alpha}$ is independent of the R-form X_{i} of \mathbf{X}_{i} which has been used to define it, because the left side of (1.3) depends only on the $K \Lambda$-isomorphism class of \mathbf{X}_{i}.

2. F-endostable Λ-lattices

Our "new version" of Brauer's theorem comes by replacing the Λ-lattice ${ }_{\Lambda} \Lambda$ by an arbitrary (non-zero) Λ-lattice Y which is F-endostable, in the sense now to be defined.

If Y, X are Λ-lattices then $(Y, X)_{\Lambda}$ is an R-pure sublattice of the R-lattice $(Y, X)_{R}$, and it follows easily that, for $k \in\{K, F\}$, the k-isomorphism

$$
k(Y, X)_{R} \rightarrow(k Y, k X)_{k}
$$

which takes $c \otimes f \rightarrow c\left(\operatorname{Id}_{k} \otimes f\right)\left(c \in k, f \in(Y, X)_{R} ; \operatorname{Id}_{k}\right.$ denotes the identity map on k) induces a k-map

$$
\begin{equation*}
\psi_{k}: k(Y, X)_{\Lambda} \rightarrow(k Y, k X)_{k \Lambda} \tag{2.1}
\end{equation*}
$$

which is injective. If $k=K$, then (2.1) is always an isomorphism, so that

$$
\begin{equation*}
K(Y, X)_{\Lambda} \cong(K Y, K X)_{K \Lambda} \quad \text { as } K \text {-spaces } \tag{2.2}
\end{equation*}
$$

(see [12] Lemma 14.5, p. 57, or [4] (2.39), p. 36).
In general, ψ_{F} is not surjective. If it is, then

$$
F(X, Y)_{\Lambda} \cong(F X, F Y)_{F \Lambda} \text { as } F \text {-spaces, }
$$

and we say that the pair Y, X is F-stable. This is clearly equivalent to the condition that the map

$$
\begin{equation*}
\phi_{F}:(Y, X)_{\Lambda} \rightarrow(F Y, F X)_{F \Lambda} \tag{2.3}
\end{equation*}
$$

which takes $f \rightarrow \operatorname{Id}_{F} \otimes f\left(f \in(Y, X)_{\Lambda}\right)$ should be surjective. Notice that in any case ϕ_{F} has kernel $\pi(Y, X)_{\Lambda}$, for it is the composite of ψ_{F} with the natural map $\theta_{F}:(Y, X)_{\Lambda} \rightarrow F(Y, X)$.

The proof of the next lemma is an easy exercise.
(2.4) Lemma. Let X, Y be Λ-lattices.
(i) If the pair Y, X is F-stable, then so also is the pair Y_{1}, X_{1}, where Y_{1}, X_{1} are any components of Y, X, respectively.
(ii) If Y is projective, the pair Y, X is F-stable for any X.

Definition. We say that a Λ-lattice Y is F-endostable if the pair Y, Y is F-stable, i.e., if the map $\phi_{F}: E(Y) \rightarrow E(F Y)$ (see (2.3)) is surjective.

It is clear that $Y={ }_{\Lambda} \Lambda$ is F-endostable. And if $\Lambda=R G$, for a finite group G, then any permutation $R G$-lattice Y is F-endostable [13], [12, p. 174].

From now on we assume that Y is a non-zero F-endostable Λ-lattice. Then we have $E(F Y) \cong E(Y) / \operatorname{Ker} \phi_{F}=E(Y) / \pi E(Y)$; and by (2.2) we may re-
gard $E(Y)$ as an R-order in the K-algebra $E(K Y)$. Also $E(K Y)$ is a semisimple K-algebra, since $K Y$ is a $K \Lambda$-module, and $K \Lambda$ is by assumption a semisimple algebra. Let $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{s}$ be a full set of simple $E(K Y)$-modules, and let S_{1}, \ldots, S_{l} be a full set of simple $E(F Y)$-modules. Then we may define decomposition number $d_{i \lambda}$ as the multiplicity of S_{λ} as an $E(F Y)$-composition factor of $F Z_{i}$, where Z_{i} is an R-form for $\mathbf{Z}_{i}(i \in\{1, \ldots, s\}, \lambda \in\{1, \ldots, l\})$. By the argument used in the last section, we have

$$
\begin{equation*}
d_{i \lambda} \cdot e\left(S_{\lambda}\right)=\operatorname{dim}_{F}\left(\bar{e}_{\lambda} E(F Y), F Z_{i}\right) \tag{2.5}
\end{equation*}
$$

where $e\left(S_{\lambda}\right)=\operatorname{dim}_{F} E\left(S_{\lambda}\right), Z_{i}$ is any R-form of \mathbf{Z}_{i}, and \bar{e}_{λ} is a primitive idempotent of $E(F Y)$ so chosen that

$$
\begin{equation*}
\bar{e}_{\lambda} E(F Y) / \operatorname{rad} \bar{e}_{\lambda} E(F Y) \cong S_{\lambda} \tag{2.6}
\end{equation*}
$$

Because the discrete valuation ring R is complete, we may "lift" each \bar{e}_{λ} to a primitive idempotent $e_{\lambda} \in E(Y)$ such that $\phi_{F}\left(e_{\lambda}\right)=\bar{e}_{\lambda}$ [4, Thm. (6.7), p. 123]. A standard theorem [4, Prop. (6.17), p. 130] now tells us that

$$
\begin{equation*}
e_{1} E(Y), \ldots, e_{l} E(Y) \tag{2.7}
\end{equation*}
$$

is a full set of indecomposable projective right $E(Y)$-lattices.

3. The functor (Y,)

The transition from Λ-lattices to $E(Y)$-lattices is most easily made by means of the familiar functor

$$
T=(Y, \quad): \bmod \Lambda \rightarrow \bmod E(Y)^{\mathrm{op}}
$$

Here $\bmod \Lambda$ and $\bmod E(Y)^{\mathrm{op}}$ denote the categories of left Λ-lattices and right $E(Y)$-lattices, respectively. T takes any $X \in \bmod \Lambda$ to $T(X):=(Y, X)_{\Lambda}$, which has a natural structure of right $E(Y)$-lattice: $h \in E(Y)$ acts on $f \in$ $(Y, X)_{\Lambda}$ to give $f h \in(Y, X)_{\Lambda} . \quad T$ takes any Λ-map $\xi: M \rightarrow X$ to the $E(Y)$ map

$$
T(\xi):(Y, M)_{\Lambda} \rightarrow(Y, X)_{\Lambda}
$$

given by $T(\xi)(g)=\xi g\left(g \in(Y, M)_{\Lambda}\right)$. Also T is an R-functor, which means that, for any $M, X \in \bmod \Lambda$, the map

$$
T_{M, X}:(M, X)_{\Lambda} \rightarrow\left((Y, M)_{\Lambda},(Y, X)_{\Lambda}\right)_{E(Y)}
$$

which takes $\xi \rightarrow T(\xi)$, is R-linear. It follows that T commutes with finite direct sums.

Let add Y denote the full subcategory of $\bmod \Lambda$ whose objects are all the components of finite direct sums of copies of Y. Since $T(Y)=(Y, Y)=$ $E(Y)_{E(Y)}$, it is clear that $T(M)$ is a projective right $E(Y)$-lattice, for all $M \in$ add Y. The next proposition is well known (see M. Auslander [1], Prop. 27(d), p. 193 or [4], Prop. (6.3), p. 120), and follows easily from Lemmas (3.2), (3.3) below.
(3.1) Proposition. The functor T induces a category equivalence between add Y and the category $\mathfrak{P}\left(E(Y)^{\mathrm{op}}\right)$ of all finitely generated projective right $E(Y)$-lattices.
(3.2) Lemma. If $M \in \operatorname{add} Y$, then the R-map $T_{M, X}$ is bijective, for all $X \in \bmod \Lambda$.

Proof. First verify that $T_{Y, X}$ is bijective, which is easy. One then shows that $T_{M, X}$ is bijective for any component M of Y [7, Lemma (2.1a), p. 249]; the lemma follows.
(3.3) Lemma. If e is an idempotent in $E(Y)$, then $T(e(Y))=(Y, e(Y))_{\Lambda}$ is isomorphic, as right $E(Y)$-lattice, to $e(Y, Y)_{\Lambda}=e E(Y)$.

Proof. Let $p: Y \rightarrow e(Y)$ (resp. $i: e(Y) \rightarrow Y$) be the projection (resp. inclusion) map. Check that $g \rightarrow i g\left(g \in\left(Y, e(Y)_{\Lambda}\right)\right.$ defines an $E(Y)$-isomor$\operatorname{phism}(Y, e(Y))_{\Lambda} \rightarrow e(Y, Y)_{\Lambda}$, with inverse $f \rightarrow p f\left(f \in e(Y, Y)_{\Lambda}\right)$.

Now let e_{1}, \ldots, e_{l} be the primitive idempotents of $E(Y)$ which figure in (2.7). Then for any indecomposable component Y^{\prime} of Y, there is precisely one $\lambda \in\{1, \ldots, l\}$ such that $\left(Y, Y^{\prime}\right)_{\Lambda} \cong e_{\lambda} E(Y)$ as right $E(Y)$-lattices (the $E(Y)$ lattice $\left(Y, Y^{\prime}\right)_{\Lambda}$ is indecomposable by (3.1)), hence such that $Y^{\prime} \cong e_{\lambda}(Y)$ as Λ-lattices $\left(\operatorname{since}\left(Y, Y^{\prime}\right)_{\Lambda} \cong\left(Y, e_{\lambda}(Y)_{\Lambda}\right)\right.$ by (3.3), and this implies $Y^{\prime} \cong e_{\lambda}(Y)$ by (3.1)). Therefore

$$
e_{1}(Y), \ldots, e_{l}(Y)
$$

is a full set of indecomposable components of Y. This can be restated as the following proposition.
(3.4) Proposition. If Y_{1}, \ldots, Y_{l} is a full set of indecomposable components of Y, then $\left(Y, Y_{1}\right)_{\Lambda}, \ldots,\left(Y, Y_{l}\right)_{\Lambda}$ is a full set of indecomposable projective right $E(Y)$-modules; in fact the Y_{λ} can be so numbered that

$$
\begin{equation*}
\left(Y, Y_{\lambda}\right)_{\Lambda} \cong e_{\lambda} E(Y) \text { as right } E(Y) \text {-lattices, } \tag{3.5}
\end{equation*}
$$

for all $\lambda \in\{1, \ldots, l\}$.

All the preceding discussion of the functor (Y, \quad) holds good for the functor $(k Y, \quad): \bmod k Y \rightarrow \bmod E(k Y)^{\mathrm{op}}(k \in\{K, F\})$; one has only to replace Y by $k Y$, and "lattice" by "finitely-generated module", throughout. For $k=$ K, F, an argument analogous to that of Proposition (3.4) gives:
(3.6) If U_{1}, \ldots, U_{r} is a full set of indecomposable components of the $k \Lambda$ module $k Y$, then $\left(k Y, U_{1}\right)_{k \Lambda} \cdots,\left(k Y, U_{r}\right)_{k \Lambda}$ is a full set of indecomposable projective right $E(k Y)$-modules.

Returning to the case $k=F$, suppose that Y_{1}, \ldots, Y_{l} are as in Proposition (3.4). Then we find

$$
\begin{equation*}
\left(F Y, F Y_{\Lambda}\right)_{F \Lambda} \cong \bar{e}_{\lambda} E(F Y), \quad \text { for all } \lambda \in\{1, \ldots, l\} \tag{3.7}
\end{equation*}
$$

For our assumption that Y is F-endostable, together with (2.4)(i), shows that the maps $\phi_{F}: e_{\lambda} E(Y) \rightarrow \bar{e}_{\lambda} E(F Y)$ and $\phi_{F}:\left(Y, Y_{\lambda}\right)_{\Lambda} \rightarrow(F Y, F Y)_{F \Lambda}$ are both surjective (remember that $\phi_{F}\left(e_{\lambda}\right)=\bar{e}_{\lambda}$). Thus

$$
\left(F Y, F Y_{\lambda}\right)_{F \Lambda} \cong\left(Y, Y_{\lambda}\right)_{\Lambda} / \pi\left(Y, Y_{\lambda}\right)_{\Lambda} \cong e_{\lambda} E(Y) / \pi e_{\lambda} E(Y) \cong \bar{e}_{\lambda} E(F Y)
$$

Finally, combining (3.7) with (2.6) we have

$$
\begin{equation*}
\left(F Y, F Y_{\lambda}\right)_{F \Lambda} / \operatorname{rad}\left(F Y, F Y_{\lambda}\right)_{F \Lambda} \cong S_{\lambda}, \quad \text { for all } \lambda \in\{1, \ldots, l\} \tag{3.8}
\end{equation*}
$$

Any one of the (equivalent) conditions (3.5), (3.7), (3.8) serves to show how the numbering of the components Y_{λ}, is 'compatible' with that of the simple $E(F Y)$-modules S_{λ}.

4. The theorem

From now on we arrange the simple $K \Lambda$-modules $\mathbf{X}_{1}, \ldots, \mathbf{X}_{t}$ (see Section 1) so that $\mathbf{X}_{1}, \ldots, \mathbf{X}_{s}$ are components of $K Y$, while for $i>s, \mathbf{X}_{i}$ is not a component of $K Y$. Then (remembering that both $K \Lambda$ and $E(K Y)$ are semisimple K-algebras) $\mathbf{X}_{1}, \ldots, \mathbf{X}_{s}$ is a full set of indecomposable $K \Lambda$-components of $K Y$, so by (3.6),

$$
\left(K Y, \mathbf{X}_{1}\right)_{K \Lambda}, \ldots,\left(K Y, \mathbf{X}_{s}\right)_{K \Lambda}
$$

is a full set of simple right $E(K Y)$-modules. Write $\mathbf{Z}_{i}=\left(K Y, \mathbf{X}_{i}\right)_{k \Lambda}(i \in$ $\{1, \ldots, s\}$), and use this numbering to define the decomposition numbers $d_{i \lambda}$ of Section $2(\lambda \in\{1, \ldots, l\})$.

Suppose now that Y_{λ} is an indecomposable Λ-component of Y such that $Y_{\lambda} \cong e_{\lambda}(Y)$ (see (3.3)). Then $K Y_{\lambda}$ is a $K \Lambda$-component, in general not indecomposable, of $K Y$.
(4.1) Definition. For any $i \in\{1, \ldots, s\}, \lambda \in\{1, \ldots, l\}, d_{i \lambda}^{*}$ is the multiplicity of \mathbf{X}_{i} as component of $K Y_{\lambda}$.

We are now at last in a position to state our theorem.
(4.2) Theorem. Let Λ be an R-order in a semisimple K-algebra $K \Lambda$, and let Y be a non-zero F-endostable Λ-lattice. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{s}$ be a full set of simple $K \Lambda$-modules which are components of $K Y$. Let S_{1}, \ldots, S_{l} be a full set of simple $E(F Y)$-modules. Then the numbers $d_{i \lambda}, d_{i \lambda}^{*}$ defined above are connected by the equation

$$
\begin{equation*}
d_{i \lambda}^{*} \cdot e\left(\mathbf{X}_{i}\right)=d_{i \lambda} \cdot e\left(S_{\lambda}\right) \tag{4.3}
\end{equation*}
$$

for all $i \in\{1, \ldots, s\}, \lambda \in\{1, \ldots, l\}$. Here

$$
e\left(S_{\lambda}\right):=\operatorname{dim}_{F} E\left(S_{\lambda}\right) \quad \text { and } \quad e\left(\mathbf{X}_{i}\right):=\operatorname{dim}_{K} E\left(\mathbf{X}_{i}\right)
$$

Proof (E.C. Dade). Since $Y \cong e_{\lambda}(Y)$, it follows from (3.5) and (2.6) that $\left(Y, Y_{\lambda}\right)_{\Lambda}$ is a projective $E(Y)$-lattice which covers the simple $E(F Y)$-module S_{λ}. So if we replace $\Lambda, \mathbf{X}_{i}, \Lambda_{\alpha}, E_{\alpha}$ in Brauer's formula (1.3) by $E(Y), \mathbf{Z}_{i}$, $\left(Y, Y_{\lambda}\right)_{\Lambda}, S_{\lambda}$, respectively, we get

$$
\begin{equation*}
\delta_{i \lambda}^{*} \cdot e\left(\mathbf{Z}_{i}\right)=\delta_{i \lambda} \cdot e\left(S_{\lambda}\right) \tag{4.4}
\end{equation*}
$$

where $\delta_{i \lambda}$ is exactly the decomposition number $d_{i \lambda}$ defined in Section 2, and $\delta_{i \lambda}^{*}$ is the multiplicity of $\mathbf{Z}_{i}=\left(K Y, \mathbf{X}_{i}\right)_{K \Lambda}$ as a component of $K\left(Y, Y_{\lambda}\right)_{\Lambda} \cong$ $\left(K Y, K Y_{\lambda}\right)_{K \Lambda}$. But the functor

$$
(K Y, \quad): \bmod K \Lambda \rightarrow \bmod E(K Y)^{\mathrm{op}}
$$

induces an equivalence of categories add $K Y \rightarrow \bmod E(K Y)^{\text {op }}$, by the analog of Proposition (3.1) (all $E(K Y)^{\text {op }}$-modules are projective, of course). From this follows at once that $\delta_{i \lambda}^{*}$ equals the multiplicity $d_{i \lambda}^{*}$ of \mathbf{X}_{i} as component of $K Y_{\lambda}$; also that $e\left(\mathbf{Z}_{i}\right)=e\left(\mathbf{X}_{i}\right)$. Therefore (4.4) is the required formula (4.3).

Remarks 1. If $Y={ }_{\Lambda} \Lambda$, we have $E(Y) \cong \Lambda^{\text {op }}$, and theorem (4.2) reverts to Brauer's theorem (1.3) in its original form.
2. If K is a splitting field for $K \Lambda$ and if F is a splitting field for $E(F Y)$, then $e\left(\mathbf{X}_{i}\right)=1, e\left(S_{\lambda}\right)=1$ for all i, λ and hence (4.3) reduces to

$$
\begin{equation*}
d_{i \lambda}^{*}=d_{i \lambda} \quad(i \in\{1, \ldots, s\}, \lambda \in\{1, \ldots, l\}) . \tag{4.5}
\end{equation*}
$$

3. Even in a case where Y is not a projective Λ-lattice, it may happen that some indecomposable component Y_{λ} of Y is projective. Then $Y_{\lambda} \cong \Lambda_{\alpha}$ for
some $\alpha \in\{1, \ldots, a\}$ (see Section 1) and $d_{i \lambda}^{*}=\delta_{i \alpha}^{*}$ for $1 \leq i \leq s$, while for $s<i \leq t, \delta_{i \alpha}^{*}=0$, since \mathbf{X}_{i} is not a component of $\Lambda_{\alpha} \cong Y_{\lambda}$. We may now use Brauer's theorem (1.3),

$$
\delta_{i \alpha}^{*} \cdot e\left(\mathbf{X}_{i}\right)=\delta_{i \alpha} \cdot e\left(E_{\alpha}\right) .
$$

Comparing this with (4.3) we have a relation between decomposition numbers, namely

$$
\begin{equation*}
\delta_{i \alpha} \cdot e\left(E_{\alpha}\right)=d_{i \lambda} \cdot e\left(S_{\lambda}\right) \quad \text { for all } i \in\{1, \ldots, s\} \tag{4.6}
\end{equation*}
$$

In particular, if F is a splitting field for both $F \Lambda$ and $E(F Y)$, then the λ-th column of the decomposition matrix $\left(d_{i \lambda}\right)$ for $E(Y)$ coincides, as far as the rows $1, \ldots, s$ are concerned, with the α-th column of the decomposition matrix $\left(\delta_{i \alpha}\right)$ for Λ. The example in the next section provides a striking illustration of this phenomenon.

5. James's theorem

In this section we assume that char $K=0$, and that $\operatorname{char} F=p>0$.
Let n, r be positive integers with $r \leq n$, let E be a free R-module with basis e_{1}, \ldots, e_{n}, and let $Y=E^{\otimes r}$ be the r-fold tensor product $E \otimes_{R} \cdots \otimes_{R} E$. Then Y can be regarded as right $R G$-lattice, where G is the symmetric group on $\{1, \ldots, r\}$, acting by 'place permutations' [8, p. 28]. We shall use notations from [8] (with slight modifications) without further comment. However, since we start with a right $R G$-lattice Y, we must transpose 'left' and 'right' in Theorem (4.2), in order to apply it to the present case. This gives little trouble; the functor

$$
(, Y): \bmod \Lambda^{\mathrm{op}} \rightarrow \bmod E(Y)
$$

takes the place of $(Y, \quad$), so that we regard (X, Y) as a left $E(Y)$-module, etc. We can identify $E(Y), E(K Y), E(F Y)$ with the corresponding Schur algebras $S_{R}(n, r), S_{K}(n, r), S_{F}(n, r)$. Since Y is a permutation $R G$-lattice, Y is F-endostable. The Weyl modules $\left\{V_{\lambda, K}: \lambda \vdash r\right\}[8$, p. 65] form a full set of simple $S_{K}(n, r)$-modules, and the unique simple factor modules $\left\{F_{\lambda, F}: \lambda \vdash r\right\}$ of the 'characteristic p ' Weyl modules $V_{\lambda, F}$ [8, p. 71] form a full set of simple $S_{F}(n, r)$-modules. The decomposition number $d_{\lambda \mu}$ (corresponding to $d_{i \lambda}$ in equation (4.3)) is the multiplicity of $F_{\mu, F}$ as a composition factor in $V_{\lambda, F}$. Moreover $e\left(F_{\mu, K}\right)=1$, from the fact that $F_{\mu, F}$ is generated by its μ-weight space, which has dimension one [8, (5.4a), (5.4b), p. 71].

In [6], [9] and [11] it is proved (in three very different ways!) that, for any field k, a full set of indecomposable $k G$-components of $k Y=(k E)^{\otimes r}$ can be
labelled $U_{\lambda, k}(\lambda \vdash r)$ in such a way that for each pair $\lambda, \mu \vdash r$ with $\mu \triangleright \lambda$ (see [10], p. 23 for the definition of the partial order \triangleright) there exists a non-negative integer $a_{\lambda, \mu}(c)$ depending only on the characteristic c of k, so that

$$
\begin{equation*}
M_{\lambda, k} \cong U_{\lambda, k} \oplus \sum_{\mu \triangleright \lambda}^{\oplus} a_{\lambda, \mu}(c) U_{\mu, k} \tag{5.1}
\end{equation*}
$$

for all $\lambda \vdash r$; here $M_{\lambda, k}$ is the permutation $k G$-module $k_{G_{\lambda}}^{G}$ where G_{λ} is the Young subgroup [10, p. 16] corresponding to λ. It is clear from the KrullSchmidt theorem that the indecomposable $k G$-modules $U_{\lambda, k}$ are determined up to isomorphism by these equations (5.1); therefore $U_{\lambda, k}$ is isomorphic to the module denoted V_{λ} in [9], p. 12, and also to James's $I_{\lambda, k}$ (see [11], Theorem 3.1(i); note that James's fields K and F are our F and K, respectively!).

It is proved in [9], Remark 6, pp. 14-16, that the simple $G L_{n}(k)$-module (or $S_{k}(n, r)$-module) $F_{\lambda, k}$ is associated by the Brauer-Fitting theorem to the components of $k Y$ of type $U_{\lambda, k}$, which means precisely that

$$
\begin{equation*}
\left(U_{\lambda, k}, k Y\right)_{k G} / \operatorname{rad}\left(U_{\lambda, k}, k Y\right)_{k G} \cong F_{\lambda, k} \tag{5.2}
\end{equation*}
$$

(James proves an equivalent result in [11], but a little less directly.)
By 'idempotent lifting' we find a full set $\left\{Y_{\lambda}: \lambda \vdash r\right\}$ of indecomposable $R G$-components of $Y=E^{\otimes r}$ such that $F Y_{\lambda} \cong U_{\lambda, F}(\lambda \vdash r)$. Equations (5.2) give

$$
\left(F Y_{\lambda}, F Y\right)_{F G} / \operatorname{rad}\left(F Y_{\lambda}, F Y\right)_{F G} \cong F_{\lambda, F}
$$

and so our labelling Y_{λ} is compatible (see (3.8)) with the labelling of the simple $E(F Y)=S_{F}(n, r)$-modules $F_{\lambda, F}$.

Now take $k=K$ in (5.1) and (5.2). Equations (5.1) show that the (simple) $K G$-module $U_{\lambda, K}$ has character ζ^{λ} in standard notation (see [10], §2.2). So we may take $U_{\lambda, K}$ to be the Specht module S_{K}^{λ} over K [10, p. 396]. Another classical result says that $e\left(S_{K}^{\lambda}\right)=1$ [3, Exercise 3, p. 206]. The full set $\left\{S_{K}^{\lambda}\right.$: $\lambda \vdash r\}$ of simple $K G$-modules corresponds to $\left\{\mathbf{X}_{1}, \ldots, \mathbf{X}_{t}\right\}$ in our general notation, so that (definition) $d_{\lambda \mu}^{*}$ is the multiplicity of S_{K}^{μ} in $K Y_{\lambda}$. All the S_{K}^{λ} appear as components of $K Y$, so that $s=t$ in the notation of Section 4; but we must be sure to label the simple $E(K Y)=S_{K}(n, r)$-modules \mathbf{Z}_{λ} so that

$$
\mathbf{Z}_{\lambda} \cong\left(S_{K}^{\lambda}, K Y\right)_{K G}
$$

(this corresponds to $\mathbf{Z}_{i}=\left(K Y, \mathbf{X}_{i}\right)_{K \Lambda}$ in Section 4). Fortunately (5.2) gives

$$
\left(S_{K}^{\lambda}, K Y\right)_{K G} \cong\left(U_{\lambda, K}, K Y\right)_{K G} \cong F_{\lambda, K} \cong V_{\lambda, K}
$$

So we may take $\mathbf{Z}_{\lambda}=V_{\lambda, K}$, which means that the $d_{\lambda \mu}$ have the meaning announced earlier in this section, and Theorem (4.2) gives James's Theorem 3.4(ii) [11] namely

$$
d_{\lambda \mu}^{*}=d_{\lambda \mu} \text { for all } \lambda, \mu \vdash r .
$$

Finally we may recover an earlier theorem of James involving the decomposition numbers $\delta_{\lambda \mu}$ for G, namely

$$
\delta_{\lambda \mu}=d_{\lambda \mu}
$$

for all $\lambda \vdash r$, and all column p-regular $\mu \vdash r$ (see [11], Section 1). For it can be shown that Y_{μ} (or, what comes to the same thing, $F Y_{\mu}$) is projective if and only if μ is column p-regular; now we may apply Remark 3 of the last section.

References

1. M. Auslander, Representation theory of Artin algebras I, Comm. Algebra, vol. 1 (1974), pp. 177-268.
2. R. Brauer, On modular and p-adic representations of algebras, Proc. Nat. Acad. Sci. U.S.A., vol. 25 (1939), pp. 252-258.
3. C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, John Wiley \& Sons, New York, 1962.
4. \qquad , Methods of representation theory I, John Wiley \& Sons, New York, 1981.
5. L. Dornhoff, Group representation theory, Part B, M. Dekker, New York, 1972.
6. J. Grabmeier, Unzerlegbare Moduln und Vertices in durchschnitts/ und konjugationsstabilen Systemen von Untergruppen, Preprint, University of Bayreuth, 1984.
7. J.A. Green, On a theorem of H. Sawada, J. London Math. Soc. (2), vol. 18 (1978), pp. 247-252.
8. _, Polynomial representations of $G L_{n}$, Lecture Notes in Math., No. 830, Springer, New York, 1980.
9. __, Functor categories and group representations, Portugaliae Mathematica, vol. 43 (1985-1986), pp. 3-16.
10. G.D. James and A. Kerber, The representation theory of the symmetric group, AddisonWesley, Reading, Mass., 1981.
11. G.D. James, Trivial source modules for symmetric groups, Arch. Math., vol. 41 (1983), pp. 294-300.
12. P. Landrock, Finite group algebras and their modules, London Math. Soc. Lecture Note Series, No. 84, Cambridge, 1983.
13. L.L. Scott, Modular permutation representations, Trans. Amer. Math. Soc., vol. 175 (1973), pp. 101-121.

[^0]: Received October 8, 1987.
 ${ }^{1}$ In the original version of this paper, Theorem (4.2) was described as a "generalization" of Brauer's theorem. However, E.C. Dade has kindly pointed out that Theorem (4.2) is deducible from Brauer's formula (1.3). I am indebted to Professor Dade for permission to use his proof of Theorem (4.2), which is shorter than mine.

