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1. Introduction

The object of this note is to present a new version (Theorem (4.2)) of
R. Brauer’s well-known "reciprocity theorem" for modular decomposition
numbers [2, p. 257], [4, p. 434], and to show its application to a theorem of
G.D. James (see Section 5).

Let R be a complete discrete valuation ring with quotient field K, maximal
ideal erR, and residue class field F R/erR. Both K and F can be regarded as
R-modules. If k is one of K, F, and if M is any object which (like A and X,
see below) is a free, finitely-generated R-module, we shall write kM for the
k-space k (R)R M, and Ok: M -* kM for the R-map which takes m - lg (R) m
(m M). The map 0r is injective, and may be used to identify M with a
sub-R-module of kM. The map 0F is surjective and has kernel rM; hence
FM --- M/erM. It is clear that

dimrKM dimFFM,

both sides of (1.1) being equal to the R-rank of M.
Now let A be an R-order, i.e., A is an R-algebra with 1, which is free and

finitely-generated as R-module. Then kA is naturally a k-algebra (k
{ K, F}); A is usually regarded as a subring of KA via 0r: A KA. A
(left) A-lattice is, by definition, a (left) A-module X which is free and
finitely-generated as R-module. Then kX is naturally a finitely-generated (left)
kA-module.
We shall need the following notation and terminology.
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Notation. If X, Y are A-lattices, then (Y, X)R (Y X)A E(Y) denote
HomR(Y, X), HomA(Y, X), EndA(Y), respectively. If k (K, F} and if
X’, Y’ are kA-modules, then (Y’, X’)k, (Y’, X’),A, E(Y’) denote HOmk(Y’, X’),
Hom,A(Y’, X’), EndkA(Y’), respectively; also e(Y’).’= dimkE(Y’).

Components A A-lattice Y1 is said to be a component of Y, if it is
isomorphic to a direct A-summand of Y. A similar definition holds for
components of kA-modules.

R-forms. If X is any finitely-generated KA-module, it is always possible to
find a A-lattice X such that KX-= X as KA-modules; such a A-lattice X is
called an R-form of X. (See [4], pp. 409, 410, or [12], p. 55. If X is contained in
X, Curtis and Reiner call it a full A-lattice in X.)
From now on we assume that KA is a semisimple K-algebra. Let X1,..., X

be a full set of simple (= irreducible) left KA-modules, and let E,..., E be
a full set of simple left FA-modules. Take fixed suffices i (1,..., t),
et {1,..., a). We choose an R-form X of X, and an indecomposable
component A, of the left A-lattice AA which covers E--this means that
FA,, which is an indecomposable component of the left FA-module FAFA,
satisfies FA/rad FA,, = E (see [4], pp. 130-132 or [12], p. 11).

Brauer’s proof. It will be useful to review Brauer’s proof of his theorem.
This rests on the equation

(1.2) dim ( KA,, X ) KA dimv ( FA,,, FX,) FA

(see [2], (8), p. 257). The left side of (1.2) is easily calculated using Schur’s
lemma, since the KA-module KA is semisimple" it is equal to i*.e(X),
where i* denotes the multiplicity of X as component of KA,, and e(Xi)

dimrE(X) (E(Xi).’= EndrA(X)). Since FA, is a projective cover of E,
we may calculate also the fight side of (1.2) [3, Thm. (54.19), p. 376]" it is equal
to 8i.e(Ea), where denotes the multiplicity of E as composition factor of
the FA-module FXi, and e(E) .’= dimFE(E,O (E(E,O EndFA(E)). There-
fore (1.2) gives Brauer’s "reciprocity theorem"

8i*-e(Xi) =8i.e(E) for (1,.. }, a (1,..., a ).

This shows incidentally that the decomposition number 8 is independent of
the R-form Xi of X which has been used to define it, because the left side of
(1.3) depends only on the KA-isomorphism class of X.
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2. F-endostable A-lattices

Our "new version" of Brauer’s theorem comes by replacing the A-lattice AA
by an arbitrary (non-zero) A-lattice Y which is F-endostable, in the sense now
to be defined.

If Y, X are A-lattices then (Y, X)A is an R-pure sublattice of the R-lattice
(Y, X), and it follows easily that, for k { K, F }, the k-isomorphism

which takes c (R) f c(Id k (R) f) (C k, f (Y, X)R; Id k denotes the identity
map on k) induces a k-map

qk" k(Y, X)A (kY, kX)kA

which is injective. If k K, then (2.1) is always an isomorphism, so that

(2.2) K( Y, X) A =- ( KY, KX) rA as K-spaces

(see [12] Lemma 14.5, p. 57, or [4] (2.39), p. 36).
In general, kF is not surjective. If it is, then

F( X, Y) =- ( FX, FY) as F-spaces,

and we say that the pair Y, X is F-stable. This is clearly equivalent to the
condition that the map

(2.3) : (Y, X)A (FY, FX)vA

which takes f IdF (R) f (f (Y, X)A) should be surjective. Notice that in
any case qv has kernel r(Y, X)A, for it is the composite of F with the
natural map 0: (Y, X)A F(Y, X).
The proof of the next lemma is an easy exercise.

(2.4) LEMMA. Let X, Y be A-lattices.
(i) If the pair Y, X is F-stable, then so also is the pair Ya, X1, where YI, X

are any components of Y, X, respectively.
(ii) If Y is projective, the pair Y, X is F-stab& for any X.

DEFINITION. We say that a A-lattice Y is F-endostable if the pair Y, Y is
F-stable, i.e., if the map qF: E(Y) E(FY) (see (2.3)) is surjective.

It is clear that Y =A A is F-endostable. And if A RG, for a finite group
G, then any permutation RG-lattice Y is F-endostable [13], [12, p. 174].
From now on we assume that Y is a non-zero F-endostable A-lattice. Then

we have E(FY)-- E(Y)/Ker qv E(Y)/rE(Y); and by (2.2) we may re-
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gard E(Y) as an R-order in the K-algebra E(KY). Also E(KY) is a
semisimple K-algebra, since KY is a KA-module, and KA is by assumption a
semisimple algebra. Let Z1,..., Z be a full set of simple E(KY)-modules, and
let $1,..., S be a full set of simple E(FY)-modules. Then we may define
decomposition number dix as the multiplicity of Sx as an E(FY)-composition
factor of FZi, where Z is an R-form for Z (i (1,..., s), (1,..., }).
By the argument used in the last section, we have

dix.e(Sx) dimF(.xE(FY), FZi),

where e(Sx)= dimFE(Sx) Z is any R-form of Z, and x is a primitive
idempotent of E(FY) so chosen that

(2.6) g.xE(FY)/rad xE(FY) Sx.

Because the discrete valuation ring R is complete, we may "lift" each x to
a primitive idempotent ex E(Y) such that CF(eX)= X [4, Thm. (6.7), p.
123]. A standard theorem [4, Prop. (6.17), p. 130] now tells us that

eE(Y),...,etE(Y)

is a full set of indecomposable projective fight E(Y)-lattices.

3. The functor (Y, )

The transition from A-lattices to E(Y)-lattices is most easily made by
means of the familiar functor

T (Y,)" mod A - mod E(Y)p.

Here mod A and mod E(Y)P denote the categories of left A-lattices and fight
E(Y)-lattices, respectively. T takes any X mod A to T(X) (Y, X)A,
which has a natural structure of fight E(Y)-lattice: h E(Y) acts on f
(Y, X)A to give fh (Y, X)A. T takes any A-map : M --, X to the E(Y)-
map

T()" (Y, M) A - (Y, X) A

given by T(li)(g) lig(g (Y, M)A). Also T is an R-functor, which means
that, for any M, X mod A, the map

TM, x" (M, X)A -* ((Y, M)A, (Y, X)A)(r)



which takes T(), is R-linear. It follows that T commutes with finite
direct sums.

Let add Y denote the full subcategory of mod A whose objects are all the
components of finite direct sums of copies of Y. Since T(Y)= (Y, Y)=
E(Y)e(y), it is clear that T(M) is a projective right E(Y)-lattice, for all
M add Y. The next proposition is well known (see M. Auslander [1], Prop.
27(d), p. 193 or [4], Prop. (6.3), p. 120), and follows easily from Lemmas (3.2),
(3.3) below.

(3.1) PROPOSITION. The functor T induces a category equivalence between
add Y and the category (E(Y)p) of all finitely generated projective right
E(Y)-lattices.

(3.2) LEMMA.
X modA.

If M add Y, then the R-map TM, x is bijective, for all

Proof. First verify that Tr, x is bijective, which is easy. One then shows
that TM, x is bijective for any component M of Y [7, Lemma (2.1a), p. 249];
the lemma follows.

(3.3) LEMMA. If e is an idempotent in E(Y), then T(e(Y)) (Y, e(Y))A is
isomorphic, as right E(Y)-lattice, to e (Y, Y)A eE(Y).

Proof. Let p: Y e(Y) (resp. i: e(Y) Y) be the projection (resp.
inclusion) map. Check that g ig (g (Y, e(Y)A) defines an E(Y)-isomor-
phism (Y, e(Y))n e(Y, Y)A, with inverse f pf (f e(Y, Y)A)-

Now let el,..., e be the primitive idempotents of E(Y) which figure in
(2.7). Then for any indecomposable component Y’ of Y, there is precisely one

(1,..., 1} such that (Y, Y’)A -= exE(Y) as fight E(Y)-lattices (the E(Y)-
lattice (Y, Y’)A is indecomposable by (3.1)), hence such that Y’ -= ex(Y) as
A-lattices (since (Y, Y’)A ------ (Y, ex(Y)A) by (3.3), and this implies Y’ -= ex(Y)
by (3.1)). Therefore

e(Y),...,e,(Y)
is a full set of indecomposable components of Y. This can be restated as the
following proposition.

(3.4) PROPOSITION. If Y,..., Yt is a full set of indecomposable components
of Y, then (Y, Y)A,..., (Y, Yt)A is a full set of indecomposable projective right
E(Y)-modules; in fact the Yx can be so numbered that

( Y, Yx ) A =- exe ( Y ) as right E ( Y )-lattices,

for all ) (1,..., }.
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All the preceding discussion of the functor (Y, ) holds good for the functor
(kY, ): mod kY mod E(kY)P (k { K, F }); one has only to replace Y
by kY, and "lattice" by "finitely-generated module", throughout. For k
K, F, an argument analogous to that of Proposition (3.4) gives:

(3.6) If U1,..., Ur is a full set of indecomposable components of the kA-
module kY, then (kY, U1)kA.., (kY, U),A is a full set of indecomposable projec-
tive right E(kY)-modules.

Returning to the case k F, suppose that Y1,..., Yt are as in Proposition
(3.4). Then we find

(3.7) (FY, FYA) Fa XE(FY), for all X { I,..., }.

For our assumption that Y is F-endostable, together with (2.4)(i), shows that
the maps qF: exE(Y) xE(FY) and qF: (Y, YX)A (FY, FY)FA are both
surjective (remember that qr(ex) x). Thus

(FY, FYx)FA (Y, Yx)A/r(Y, Yx)A --- exe(Y)/rexE(Y) xE(FY)

Finally, combining (3.7) with (2.6) we have

(3.8) (FY, FYx) FA/rad(FY, FYx) FA ------ Sx, for all (1,..., l}.

Any one of the (equivalent) conditions (3.5), (3.7), (3.8) serves to show how the
numbering of the components Yx, is ’compatible’ with that of the simple
E(FY)-modules Sx.

4. The theorem

From now on we arrange the simple KA-modules X,..., X (see Section 1)
so that Xx,...,X are components of KY, while for > s, X is not a
component of KY. Then (remembering that both KA and E(K) are
semisimple K-algebras) X,..., Xs is a full set of indecomposable KA-compo-
nents of KY, so by (3.6),

( KY, Xx ) rA ( KY,X) :A

is a full set of simple right E(KY)-modules. Write Zi (KY, Xi)kA (i
(1,..., S)), and use this numbering to define the decomposition numbers
of Section 2 (X (1,..., )).

Suppose now that Yx is an indecomposable A-component of Y such that
Yx ex(Y) (see (3.3)). Then KYx is a KA-component, in general not inde-
composable, of KY.
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(4.1) DEFINITION. For any (1,..., s ), (1,..., !), di’ is the multi-
plicity of X as component of KYx.

We are now at last in a position to state our theorem.

(4.2) THEOREM. Let A be an R-order in a semisimple K-algebra KA, and let
Y be a non-zero F-endostable A-lattice. Let X1,... ,X be a full set of simple
KA-modules which are components of KY. Let St,..., S be a full set of simple
E( FY)-modules. Then the numbers dix, di defined above are connected by the
equation

(4.3) di’.e(Xi) dix.e(Sx)

for all (1,..., s }, , (1,..., 1}. Here

e(Sx) := dimFE(Sx) and e(X,):= dimKE(Xi).

Proof (E.C. Dade). Since Y--- ex(Y), it follows from (3.5) and (2.6) that
(Y, YX)A is a projective E(Y)-lattice which covers the simple E(FY)-module
Sx. So if we replace A, Xi, A,, E in Brauer’s formula (1.3) by E(Y), Zi,
(Y, YX)A, Sx, respectively, we get

Ji, .e (Zi) 8ix.e ( Sx ),

where 8x is exactly the decomposition number dix defined in Section 2, and
is the multiplicity of Z (KY, Xi)rA as a component of K(Y, Yx)A -=

(KY, KYx)rA. But the functor

(KY,)" mod KA --, mod E(KY)P

induces an equivalence of categories add KY - mod E(KY)p, by the analog
of Proposition (3.1) (all E(KY)P-modules are projective, of course). From
this follows at once that equals the multiplicity d of X as component of
KYx; also that e(Zi) e(Xi). Therefore (4.4) is the required formula (4.3).

Remarks 1. If Y =A A, we have E(Y) Ap, and theorem (4.2) reverts to
Brauer’s theorem (1.3) in its original form.

2. If K is a splitting field for KA and if F is a splitting field for E(FY),
then e(X) 1, e(Sx) 1 for all i, h and hence (4.3) reduces to

(4.5) d,=d,x (i (1,...,s),, (1,...,/}).

3. Even in a case where Y is not a projective A-lattice, it may happen that
some indecomposable component Yx of Y is projective. Then Yx -= A for
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some a {1,..., a ) (see Section 1) and di ii* for 1 < < s, while for
s < < t, * 0, since X is not a component of A --- Yx. We may now use
Brauer’s theorem (1.3),

Comparing this with (4.3) we have a relation between decomposition numbers,
namely

(4.6) i,.e(E,) dix.e(Sx) for all {1,..., s}.

In particular, if F is a splitting field for both FA and E(FY), then the ,-th
column of the decomposition matrix (dx) for E(Y) coincides, as far as the
rows 1,..., s are concerned, with the a-th column of the decomposition
matrix (8i,,) for A. The example in the next section provides a striking
illustration of this phenomenon.

5. James’s theorem

In this section we assume that char K 0, and that char F =p > 0.

Let n, r be positive integers with r < n, let E be a free R-module with basis
el,..., en, and let Y E (R)r be the r-fold tensor product E (R)R (R)R E. Then

can be regarded as right RG-lattice, where G is the symmetric group on
{1,..., r }, acting by ’place permutations’ [8, p. 28]. We shall use notations
from [8] (with slight modifications) without further comment. However, since
we start with a right RG-lattice Y, we must transpose ’left’ and ’right’ in
Theorem (4.2), in order to apply it to the present case. This gives little trouble;
the functor

( ,Y):modAp-modE(Y)

takes the place of (Y, ), so that we regard (X, Y) as a left E(Y)-module, etc.
We can identify E(Y), E(KY), E(FY) with the corresponding Schur alge-
bras .SR(n, r), St(n, r), SF(n, r). Since Y is a permutation RG-lattice, Y is
F-endostable. The Weyl modules { Vx, to: , r } [8, p. 65] form a full set of
simple St(n, r)-modules, and the unique simple factor modules { FX,F: - r )
of the ’characteristic p’ Weyl modules Vx, F [8, p. 71] form a full set of simple
S2;(n, r)-modules. The decomposition number dx (corresponding to dx in
equation (4.3)) is the multiplicity of F,e as a composition factor in Vx, .
Moreover e(F,r) 1, from the fact that F,e is generated by its/-weight
space, which has dimension one [8, (5.4a), (5.4b), p. 71].

In [6], [9] and [11] it is proved (in three very different ways!) that, for any
field k, a full set of indecomposable kG-components of kY (kE) *r can be
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labelled Ux, k ( I-" r) in such a way that for each pair ,, tt - r with/ ,
(see [10], p. 23 for the definition of the partial order __) there exists a
non-negative integer ax, t,(c) depending only on the characteristic c of k, so
that

(5.1) MX, k Ux, k E ax,(c)U,g,

for all b r; here Mx, k is the permutation kG-module kgx where Gx is the
Young subgroup [10, p. 16] corresponding to . It is clear from the Krull-
Schmidt theorem that the indecomposable kG-modules Ux, k are determined
up to isomorphism by these equations (5.1); therefore Ux, is isomorphic to
the module denoted Vx in [9], p. 12, and also to James’s Ix, k (see [11],
Theorem 3.1(i); note that James’s fields K and F are our F and K, respec-
tively!).

It is proved in [9], Remark 6, pp. 14-16, that the simple GLn(k)-module (or
Sk(n, r)-module) Fx, is associated by the Brauer-Fitting theorem to the
components of kY of type Ux, k, which means precisely that

(Ux, k, kY) gc//rad(Ux, k, kY) Fx, .
(James proves an equivalent result in [11], but a tittle less directly.)
By ’idempotent rifting’ we find a full set (Yx: , w r } of indecomposable

RG-components of Y E (R)r such that FYx =- UX, F ( r). Equations (5.2)
give

( FYx, FY) F/rad( FYx, FY ) t ---- Fx, ,
and so our labelling Yx is compatible (see (3.8)) with the labelling of the
simple E(FY) Sv(n, r)-modules Fx, .
Now take k K in (5.1) and (5.2). Equations (5.1) show that the (simple)

KG-module Ux, r has character .x in standard notation (see [10], 2.2). So we
may take Ux, r to be the Specht module Srx over K [10, p. 396]. Another
classical result says that e(SXr)= 1 [3, Exercise 3, p. 206]. The full set (SrX:, -r} of simple KG-modules corresponds to {X1,...,Xt} in our general
notation, so that (definition) dx* is the multiplicity of S in KYx. All the Srx
appear as components of KY, so that s in the notation of Section 4; but
we must be sure to label the simple E(KY) St(n, r)-modules Zx so that

Zx -= (SXr, KY)r

(this corresponds to Z (KY, Xi)KA in Section 4). Fortunately (5.2) gives

( SXr, KY ) ro =- ( Ux, r, KY) r --- Fx, r --- Vx, r"
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So we may take Zx Vx, tc which means that the dx, have the meaning
announced earlier in this section, and Theorem (4.2) gives James’s Theorem
3.4(ii) [11] namely

d=dx for allA,r.

Finally we may recover an earlier theorem of James involving the decom-
position numbers 8x, for G, namely

8x dx
for all X - r, and all column p-regular/ r (see [11], Section 1). For it can
be shown, that Y (or, what comes to the same thing, FY) is projective if and
only if/ is column p-regular; now we may apply Remark 3 of the last section.
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