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PERTURBATION THEORY IN DIFFERENTIAL
HOMOLOGICAL ALGEBRA I

BY

V.K.A.M. GUGENHEIM AND L.A. LAMBE

1. Introduction and notation

1.1. Introduction. Differential homological algebra extends the classical
machinery of homological algebra to differential algebras and modules. As first
introduced by Eilenberg and Moore [5], the functor Tot (differential Tor) can
be constructed in terms of resolutions relative to the category of differential
modules, that is, in terms of bicomplexes. The category DGA of differential
graded augmented algebras and differential graded augmented algebra maps
was enlarged to the category DASH_in [7]. DASH and DGA have the same
objects; but DASH(A, A’)= DC(BA, BA’) where DC is the category of
differential graded augmented coalgebras and B denotes the bar construction
functor. The functoriality of Tor and Cotor was extended to this larger
category and used to explain certain "collapse theorems" for the Eilenberg-
Moore spectral sequence. These collapse theorems are subsumed by the theory
in [6] which uses multicomplexes, a useful generalization of bicomplexes [22].
Perturbation theory has come to refer to a systematic way of constructing
multicomplexes and the purpose of this paper is to begin a study of such
algorithms.
DASH itself can be expanded to include more objects and this can be done

in a way that generalizes results from [7]. More specifically, it is shown in [10]
that if A DGA is chain homotopy equivalent to a differential graded module
M in a certain way (see i.2 below) then M inherits an Aoo structure and there
is a differential graded coalgebra map which is a homology isomorphism from
the "tilde construction" (which is what is meant by an "Aoo structure" [20],
[21]) of M to the bar construction of A. With strong conditions on a chain
homotopy equivalence between an algebra A and another algebra M, an
algorithm was given in [7, 4.1] for the construction of a chain homotopy
equivalence which is a differential graded coalgebra map BM BA. In 3 we
will show that the algorithm given in [10] reduces to this one under these
special hypotheses. In other words, a special case of the proof in [10] is the
proof of the special case in [7]. Next, we consider the algorithm presented in
[8] and called "the basic perturbation lemma" in [14]. We show that .the
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coalgebra map BM BA above can also be obtained by this method. In the
final section, we examine some multicomplexes constructed using the twisting
cochain studied in {}3.
As already mentioned, when the special hypothesis (see 2.5) is not assumed,

the algorithm in [10] generally.produces a non-associative multiplication on M
and a "classifying space", BM for it. Connections between this general
procedure and other constructions, along with some applications, will appear
in part II. Also see [14].

1.2. Notation and side conditions. We adopt the conventions for signs
involving tensor product of maps, suspension, twisting cochains, etc., from [7].
All modules are considered to be differential graded modules over a commuta-
tive ring R with 1. The identity map on an object X is denoted by the same
symbol X. Strong deformation retraction data is a collection of modules and
maps,

( )X Y,v

which satisfy

(i) tot X,

aft X + D(r),

where we have used the notation D(v) dv + vd for the chain homotopy v.
Consider the additional conditions

(iii) ra 0

(iv) fly 0

(v) 0.

SDR-data which satisfies (’tii) and (iv) is said to provide a contraction of Y
onto X [3]. Initial SDR-data can always be altered to satisfy these conditions.
If (iii) and (iv) are not satisfied we can replace v by v’ D(v)vD(v) to obtain
a contraction. If (v) is not satisfied, we can now replace v’ by v" ’ dv’ and
all 3 conditions will hold. This was pointed out in [14]. We will assume that
our SDR-data satisfies (iii)-(v). If X and Y are coalgebras and a is a
coalgebra map then such data is called "Eilenberg-Zilber data" [7]. The
objects called "Koszul algebras" in [16, {}3] give rise to Eilenberg-Zilber data.
The dual case in which X and Y are algebras and /3 is multiplicative will
concern us here.
We assume that our algebras are augmented over R and are complete with

respect to the augmentation filtration and that the corresponding dual notions
hold for our coalgebras.
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2. Review of some constructions

2.1. Coproducts in tensor modules. Let M be a connected module, i.e.,
M0 R and M R M where M consists of the elements of M of positive
degree. We set

To R

and

T sM (R) (R)sM n-times if n > 1.

Let T ),oT" and r,: T--, T" be the nth projection. Generators of T"
are written [m,..., rn,] for n > 0, and for n 0. The coproduct k: T --,

T (R) T is defined by the commutativity of the diagram:

T T(R)T

Ta+b e(a, b). T (R) T6

where

E(a, b T TTa+b (R)
F(a,b)

are the natural is__omorphisms. Note that k[ (R) ]. T is the tensor
coalgebra on sM. If M is an augmented al__gebra then T is the underlying
coalgebra structure of the bar construction B(M). In general, if we want to
emphasize the role of the module M, we will write T(M).

2.2. Coderivations of tensor coalgebras.
coderivation if

An R-linear map 0: T T is a

ro8 O,

1+

If 0 is a coderivation we have

(’a a (R) rb + r (R) roa) F(a, b)#a+ba

or equivalently

E(a, b)(#aO (R) #b + #a (R) #bCg)q’ #a+a
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and so by induction

a, EE(1,...,1)(r (R)-.. (R)ra (R)---(R)r)’I’

where E(1,..., 1): T (R) (R) T Tn is the natural isomorphism and xI, is
the iterated coproduct (n-fold). Thus is determined by ,rxO: T Tx and
conversely, given any map 8" T ---, T we have a unique coderivation with
,rxO 8. We write to(8) . Note that we do not claim that 0(8)2 0.

2.2.1. REMARK.
defined by

The following special cases will arise later. Let iS be

]) 0,

8([m]) -[dm],
i$]r 0, a>l.

Then

()([ 1) 0,

to(8)[ml,..., m,] Y’. 4- [ml,..., dm,..., m,].

This coderivation will be denoted by T(d). More generally, let u: T ---, T be
any function such that ul r, 0, for a : n; then

0

to(u)[ml,..., ma] u[ml,..., ma]
[m1, u[... ],..., ma]

ifa<n
ifa=n

ifa>n

where [... has n entries. Also note that to(u)(Ta) C T-+. If M is an
algebra and we take the cup product ,r U r of ,q: T M with itself, i.e.,
form the composition

BA (R) BA -----+ A (R) A

then to(% U %) is the algebraic bar construction differential since ’/r U ’/’/’1
restricted to Ta is zero for a : 2 and for a 2 it is just given by the
multiplication in M. Putting these together, if M is a differential graded
augmented algebra and u is the sum of and % u ,q above, then to(u) is just
the full bar construction for differential Tor.

2.3. Aoo structure for modules strongly homotopy equivalent to algebras.
We will review the construction given in [10] so that we can conveniently refer
to the details in the proofs that follow.
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2.3.1 THEOREM [10]. Given SDR-data

( )MA,v

with A a connected differential graded augmented algebra and a splitting [9, {}1]

OZMO

of M (where the boundaries and cycles of M are denoted by and ) there
exist two R-module maps of degree -1,

"r" T(M) - A

and

O" T(M)" T(M),

such that 0 is a coderivation with 0 2 0 and is a twisting cochain for which
the induced differential graded coalgebra map [7, 2.4] is a chain homotopy
equivalence

(T(M), O) (A).

The topological analog of this theorem was a motivation for the study of
spaces in [19], [20]. When the given differential.dM on M is zero it reduces to
results in [9], [11] and [18]. We will often write BM for the complex (T(M), 0)
of the theorem and call it the tilde construction of M as in [21]. We emphasize
that all of the constructions which follow depend on

(1) the given SDR-data,
(2) the given splitting of M.

With respect to the splitting, we have sM s sr and

T-- E (R)a s= ECix(R) (R)Ci,

where each C is either sN or s. To construct the maps of the theorem, we
J. Fa Xause the following filtration, q. Let q be the submodule of Ta equal to

the sum

where exactly q factors are equal to sN. Let

p<q
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Notice that the differential dM of M takes the form

(z,b)(b,O).

This shows that the differential decreases filtration. For more details about the
splitting see [8, pp. 198-199].

If we denote the ordinary Eilenberg-Moore filtration by Fa, i.e.,

Fa= Tb

b<a

then Fa Fa’a. Let Gn Fa’q where n 3,(a, q) and the function , is given
by

t(a, b) a(a + 1)
2 +b.

Also, write Y" Sa’ q. Notice that

Gn+ yn+ @

and we have

n>_O

Finally, we write the complementary filtration as a j> ayj, so that for
each n we have the induced splitting

T G" yn+l ) (dn+l).

For n < 5 we have

R F F F2

R F’ F1’ ---}F1’1 F2’0 F2’1 F2’2

R GO G G2 G3 G4 G5

The coderivation 0 and the twisting cochain are given by
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where tg, and % are given inductively: On GO and G they are zero and

2 a’x,

%+x=% +x+x forn>l,

002 to(--dMqT1)

O+x- tg.+y+x forn>l.

The "partial twisting cochain" x+ is given by

O on G

Xn+ v on yn+

0 on dn+l

and the coderivation y+ is given by

on Gn

on yn+

on n+l.

F is the function given by

F. D(%) % U % (twisting cochain obstruction).

Notice that %1 r a for a < n. We have

It follows that, in general,

(2.3.2)
on G3.

Also note that for n > -/(a, a),

"rn[ml,..., ma] "r.t(a,a)[ml,... ma].
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2.4. Basic perturbation. We say that SDR-data is filtered if there are
increasing filtrations on the objects involved which are bounded below and the
maps are filtration preserving.

2.4.1 BAsic PERTURBATION LEMMA [2], [8], [17].

( )X ----- Y, ck

Gioen SDR-data

and a new differential D on Y, let D d and more generally,
n > 1. For each n define new maps:
On X,

(i) 0n d+f(t + t2 + +tn_l)V
7 + qb(t + t2 + +tn_l)XT.

On Y,

f f + f(tl + 2 + + tn_l)b,
b b + b(t + 2 + + ) dp

(t)n-lt,

If the SDR-data is filtered and lowers filtration, then these maps converge to
new SDR-data which we denote by

( )(X, 0oo ) --- (Y, D) qoo
foo

Furthermore, if the original data satisfies 1.2(i)-(v) then so does the new data.

2.5. Eilenberg-Zillmr data. The dual of the following construction was
given in [7] for Eilenberg-Zilber data. Assume that the SDR-data

( )AM,v

is such that M is an algebra and fl is an algebra map. Define a twisting
cochain from BM to A by

# /1 + /’g2 +

where

0 0, 1--- //’1’ n E P(i U j)
i+j----n
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Under the given conditions, we have [7]:

2.5.1 THEOREM.
equivalence.

The coalgebra map induced by Ix is a chain homotopy

3. A special case of the construction

3.1. Multiplicative projection. In this section we show that under the
hypotheses of (2.5), both the construction of Gugenheim and Stasheff in (2.3.1)
and the basic perturbation lemma in (2.4.1) yield the ordinary bar construction
and the twisting cochain of (2.5.1).

3.1.1 THEOREM. Under the hypotheses of (2.5) the formula for the twisting
cochain in Theorem (2.3.1) reduces to the formula for the twisting cochain in
(2.5.1).

Proof We haveflv=0, va O and vv= O so that for n > 3,

fix, O and vx, O.

This is because the non-trivial part of x
that

looks like x, vF_ 1. It follows

and

I)% P(’/’2 + X3 + +xn) P’l’2 POl’rl’l O.

We will see that 03 is the ordinary (differential Tor) bar construction differ-
ential and, by induction, that , 3, for all n > 3. For this, consider
which is defined in terms of Fn. We have

(since/3 is multiplicative)

Also note that

,rx(a2 + y3)
dMrq + *qY3

--dM’ff + 1" U "rl’x"
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by the remark at the end of (2.2.1), this gives the bar construction differential.
Now assume that , 3. Then

/3I’, drq + r18 ,q U ,q

drrl + *rl3 ’ffl U ’//’1

0 (because rl is a twisting cochain).

Thus

n+1 n + 0 9 93.

We now show that for each n > 3,

’In "I2 -t- V(’In_ 1,3 "In-l) on G".

Indeed notice that

I3 "I2 + v(’I2 u "I2) from (2.3.2) above.

More generally (on G),

"In "In-1-

"in-1 v(d%-I + Tn-la- Tn-1 U "In-I)

"In-1- V d’In_ + V(’In_ U n-1) (since v%_ 0)

but vd= l afl- dv so

% "i.- (%-1- afl%-I- dv%-l) + 1/(’in-1 U "In-l)

"In--1 "In-1 + 0/’1 + 0 + l(’In_ U "In-l) (since fl’In-1
arx + v(.-1 u ._).

Now for each a > 2, consider % for n -/(a, a). On T2 we have

I5[ml, mg_] v(’ia U "i4)[ml, m2]
vm,(’i4 (R) "Ia)A([m1, m2])
v (’ia(ml)’ia(m2))

v(’Ig_ U "I2)[m, m2] for m s
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where mA is the multiplication on A. For n /(a, a) and a > 3,

"rn[ml,..., ma] l’(’rn_ U ,rn_x)[ml,..., ma]
(R) Zn_l)([ml,..., mi] (R) [mi+l,..., ma])

Egm(%_x[ml,..., mi] (R) "rn_x[mi+x,..., no])

Evm,(’.,(,,o[mx,..., m,] (R) ’r.t(a_i,a_i)[mi+l,..., no])

so, in the limit, we just get the twisting cochain of (2.5.1).

3.2. Tensor coalgebra of SDR-data. The tensor coalgebra of the SDR-data

M -- A v) is the SDR-data
(#)

(TMT(TAT(v))7(,) (see (2.1))

where T(a) and T(fl) are the obvious maps and

where

+---+A (R)-.-(R)A(R)v(R)afl(R).-. (R)a/3
+ +A @ (R)A @v.

This construction appears in [3]. Note that the differentials involved are just
the tensor product differentials denoted by T(du) and T(d,). Sine A is an
algebra, we also have the bar-construction differential 0 on T(A) and as noted
in (2.2.1),

19 Z( dA) + .O(q/’ U ’/rl).

We now apply the basic perturbation lemma (2.4.1) to the tensor coalgebra
data above using (h U rl) to obtain limit SDR-data

T(a)o )(ra o)
T(,8) 00

provided that a suitable filtration on the tensor coalgebra data is given. For
now, we will only consider this method in the case that M is an algebra and
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the projection/3 is multiplicative. Then we have:

3.2.1 THEOREM.
data satisfies

Under the hypotheses of (2.5), the limit tensor coalgebra

(1)
(2)
(3)

O bar-construction differential on M,

rlT(et)oo the twisting cochain of (2.5).

Proof By definition,

O T(d) + r(fl)(ti + 2 + ...)r(t)

where

t= o(t u rl) arid n (tT(v))n-lt.
Thus is the bar-construction differential for the ordinary algebra obtained by
forgetting the differential of A. Since fl is an algebra map, we have

Since T(fl)T(r) 0, we obtain

Ooo r(d) + r(fl)tr(a)
r(dM) + to(q U rl)r(fl)r(t)
T(dM) + t(q/’ U

A similar computation shows that T(fl)oo T(fl). Now consider the limit
inclusion"

A straightforward accounting of the tensor product filtration shows that

rlT(a)oo[al lan tl(Z(v)t)n-l[ all a. ]-

Expanding the last term gives precisely g,[al lan] where g, is the n
of the twisting eoehain in (2.5).

th term
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4. Resolutions

In this section, we examine Theorem (2.3.1) from the viewpoint of resolu-
tions.

4.1. We need a simple lemma that gives a special condition for two twisted
tensor products to be homology equivalent.

4.1.1 LEMMA. Suppose that C and C’ are connected coalgebras and A and A’
are connected algebras. If the diagram

C --Z- A

commutes, where and ’ are twisting cochains and F and G are coalgebra
and algebra maps that induce isomorphisms in homology, respectively, then
the tensor product map xI, F (R) G induces an isomorphism of twisted tensor
products

H(C a) H(C’ a’).

Proof. Since xI, is a chain map of the underlying tensor product complexes,
we only need to show that xI,( t3 )= (’ t3 )xI,. This is a straightfor-
ward computation using the fact that G and F are algebra and coalgebra
maps respectively. Now consider the Serre spectral sequence of each twisted
tensor product and the map of spectral sequences that xI, induces. On E2

terms, this map is just the tensor product and so by the spectral sequence
comparison theorem xI, induces an isomorphism in homology.

4.1.2 REIme..K. One application of this lemma is to the data produced by
theorem (2.3.1). Let /M A be the twisti.ng cochain produced there. By the
lemma above, the twisted tensor product BM (R) A is homology equivalent to
the twisted tensor product BA (R),,1 A; but this latter complex is just the
bar-construction of A and hence acyclic on R, that is, it has zero homology in
positive dimensions and homology R in dimension 0. Thus the twisted tensor
product

(M)(R)A

is a differential A-module which is acyclic on R and so it provides a resolution
of R over A.
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4.2. Distinguished resolutions in a Slmeiai case. In [6, (2.1)], it is shown
that under rather general conditions, a resolution over H(A) can be "per-
turbed" into a resolution over A. Thus, for example, a resolution of R of the
form X (R) H(A) gives rise to a resolution of the form X (R) A. By explicitly
giving a contracting homotopy s for X (R) H(A), i.e., by specifying SDR-data

(X(R) H(A) ---- Rso)
and by specifying SDR-data

( )#

all of the choices in [6, (2.1)] can be made systematically and an analogous
remark holds in the more general context given there. For now, we just want
to note that in some instances, small complexes for differential Tor can be
obtained using the simple twisting chain of (2.5). Resolutions of the ground
ring over group rings of two-stage nilpotent groups provide a class of exam-
ples. For simplicity, consider the case of two-step torsion free nilpotent groups
which are finitely generated. The small complexes given by [6] were worked
out explicitly in [12]. On the other hand, for a direct sum of infinite cyclic
groups r, consider the multiplicative map

which is the dual of the differential Hopf algebra map [6, A.25]. (Brr is the
bar construction of the group ring of ,r over R.) One can complete this to
SDR-data

( )(4.2.1) R[al,..., a,,l A,

where A C(Br) and H*(K(rr,2); R)= R[al,..., an]. By composing the
twisting chain obtained in (2.5) with the well known coalgebra homology
equivalence

E[Ul,..., Un] ---) BR[Ul,... Un]

given by "shuffle product", we obtain a small complex

e[ u,l (R), .4

equivalent to the bar construction BA (R) A for differential Tot. In our experi-
ence, any homotopy v arising in this context is of the same order of
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complexity as the cup-1 products used in [6]. Similar remarks apply to the case
of more general two-stage nilpotent groups. See [14] for generalizations which
apply to n-stage systems. See [12] and [13] for explicit calculations of the cup-1
products for r.

4.3. Cohomology exterior algebra. We conclude with a brief example using
the Eilenberg-Maclane contraction [3] for the integers, Z, over Z"

( E[x] Z, ,
/

where

v() [l,

f[nl In] (0 if k ,> 1
n ifk=l,

n 1

Y’. [11iln21... In]
i--1

,[nxl Ink] 0

E [ll -iln2l---Ink]
i-’l

ifn > 1

if n 1

ifn _<1.

Note that we are using the normalized bar construction for the additive group
Z which is generated by the expressions [n[ [n] for non-zero ng Z. We
will consider the dual of this data denoted by

(e[z]
__

?z, )
where CZ is the complex of "normalized cochains" consisting of certain
functions Zk Z [15, IV.5.7] and

a(z) Z identity function,

fl(g) [0 if g: Zi Z, > 1,

g(1)z ifgC.
We will work out the twisting cochain (2.5) in this case. First, note that
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This follows by counting degrees. Write this function as f. Now note that

,( )[zl Iz] rg(, (R) )4[zl I=1
,g(=[zl Iz] (R) [=1 I=])
’(L uh)

where # denotes cup-product of the functional cochains fn and fk, i.e.,

g(f (R) f,) f U f where (f U f)(i, j) f(i)fk(j).

By dualizing the formula for the homotopy above, and using the usual
convention for signs, we have

Furthermore, by induction,

r(fuh)=0 ifn>l

so that we have the recursive equations

fl(i)=i,
i-1

L() E L_()
j=l

for j > 0

and these are the binomial coefficient functions

f,,(i) (-1)n+t(i)"n
Consider the well-known coalgebra homology isomorphism

Z[e] E[z].

By composing the binomial twisting cochain with this map, we obtain a "small
model" for B(CZ)(R) CZ. By tensoring data we can construct a model for
BA (R) A of the form Z[ex,..., e[ (R)A where A CZ. Analogous results for
other arithmetic rings can also be obtained.
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