G^{∞}-FIBER HOMOTOPY EQUIVALENCE

BY
S.Y. HUSSEINI ${ }^{1}$

Introduction and preliminaries

Let G be a compact, connected Lie group, and V, W two complex G-modules. Denote the unit spheres by $S V, S W$. In this article we shall be concerned with maps over $B G$,

where $E G \rightarrow B G$ is a universal G-bundle. Such maps are studied in [9]. It can be easily seen that they are exactly those induced by equivariant maps $E G \times S V \rightarrow S W$, i.e., by the so-called G^{∞}-maps $S V \rightarrow S W$. We shall say that f is a G^{∞}-equivalence if, and only if, f is the degree-one map on the fibers. Note that according to Dold's theorem [8] a G^{∞}-equivalence is a fiber-homotopy equivalence, and therefore it admits a G^{∞}-equivalence as an inverse. Also note that, in the equivariant case, the notion of a G^{∞}-equivalence is just the notion of quasi-equivalence introduced in [13]. We shall say that the G^{∞} equivalence $S V \rightarrow S W$ is special if, and only if, it induces a T^{∞}-equivalence

$$
\left(S V, S V^{T}, S V^{G}\right) \rightarrow\left(S W, S W^{T}, S W^{G}\right)
$$

where $T \subset G$ is a maximal torus. It is easy to see that a degree-one G-map is special [11].

In this article we first study how V and W are related to each other, given that $S V$ and $S W$ are G^{∞}-equivalent. The answer is formulated in terms of an appropriate K-theoretic degree, with values in the completion $R(G)^{\wedge}$ of the representation ring, defined in the manner of [12] and [7] and denoted by $\operatorname{deg}_{G} f$. We shall say that $\operatorname{deg}_{G} f$ is rational if, and only if, it lies in $R(G)$. It will be shown in $\S 2$ below that $\operatorname{deg}_{G} f$ is rational if $V \cong W$ and f is a G^{∞}-equivalence, or if f is equivariant. However, the inverse of a degree-one

[^0]G-map, which is always a G^{∞}-equivalence, need not have a rational degree (cf. Example (6.4) of [13] and (9.5.1) of [7] and Proposition (2.2) below).
We first show (Theorem (1.1)) that if there are special G^{∞}-equivalences $S V \rightleftarrows S W$ with rational degrees, then V and W are equivalent up to conjugancy. Theorem (2.2) of [16] follows as a special case. Next we consider the sphere bundles $S V \rightarrow B, S V \rightarrow B$ of the complex G-vector bundles $V \rightarrow B$, $W \rightarrow B$ over the trivial G-complex B. Given a G^{∞}-fiber homotopy equivalence $S V \rightarrow S W$ over B, we show (Theorem (2.3)) that the summands of V and W defined naturally by the irreducible G-modules are stably equivalent, again up to conjugamcy. This latter result is useful in the study of the question of the injectivity of the equivariant J-homomorphism and whether the image is a direct summand. As an illustration we state a result on the injectivity which generalizes those of [3], [6], [10] and [11].

1. Statement of results

Let (X, A) be a compact G-pair. Put

$$
\mathscr{K}_{G}^{*}(X, A)=K^{*}\left(E G \times_{G}(X, A)\right),
$$

where K^{*} is the K-theory based on the Bott-spectrum [1], [15]. Note that, for nice enough spaces, $\mathscr{X}_{G}{ }^{*}(X, A)$ is the completion of the equivariant K-theory of Segal [14] (Theorem (2.1) of [2]). Also note that \mathscr{K}_{G}^{*} defines an equivariant K-theory on the category of compact G-spaces and G^{∞}-maps.

Now let V and W be two complex G-modules, and denote by $S V$ and $S W$ the unit spheres with respect to some invariant Hermitian metrics. The \mathscr{K}_{G}^{*}-degree of a G^{∞}-map $f: S V \rightarrow S W$ is, by definition, the quantity $\operatorname{deg}_{G} f$ in $\mathscr{K}_{G}^{*}($ Point $)=K^{*}(B G) \cong R(G)^{\wedge}$ such that

$$
\mathscr{K}_{G}^{*}(f)\left(\mu_{W}\right)=\operatorname{deg}_{G}(f) \cdot \mu_{V}
$$

where μ_{W} and μ_{V} are the Thom-classes of

$$
E G \times_{G} W \rightarrow B G \text { and } E G \times_{G} V \rightarrow B G
$$

respectively. This is of course completely analogous to the notion of an equivariant degree defined in [12] and $\S 9.7$ of [7] for equivariant maps, and reduces to it in that case. Thus $\operatorname{deg}_{G} f$ is rational if f is a G-map.

Following the notation of p. 192 and p. 195 of [4], let $K \subset(L T)^{*}$ be a Weyl chamber, $I=\operatorname{ker}\left\{\exp _{T}: L T \rightarrow T\right\}$ the integral lattice, and $I^{*}=\{\alpha \in$ $\left.(L T)^{*} \mid \alpha(I) \subset \mathbf{Z}\right\}$ the lattice of integral forms. For $\omega \in \bar{K} \cap I^{*}$, denote by M_{ω} the irreducible G-module whose highest weight is ω (p. 242 of [4]). Let us note that the evaluation morphism

$$
\operatorname{Hom}_{G}\left(M_{\omega}, V\right) \otimes M_{\omega} \rightarrow V
$$

induces naturally an isomorphism

$$
V \cong \sum_{\omega} V^{\omega} \otimes M_{\omega}
$$

of G-modules, where $V^{\omega}=\operatorname{Hom}_{G}\left(M_{\omega}, V\right)$ and ω ranges over $\bar{K} \cap I^{*}$. Finally for $\omega \in \bar{K} \cap I^{*}$, let $\bar{\omega}=\sigma(-\omega)$, where σ is the element of the Weyl group $W_{G}(T)$ of G relative to T which takes $-K$ to K, (p. 261 of [4]).

Theorem (1.1). Suppose that

$$
S V \underset{g}{\stackrel{f}{\rightleftarrows}} S W
$$

are special G^{∞}-equivalences such that $\operatorname{det}_{G} f$ and $\operatorname{det}_{G} g$ are rational. Then

$$
\operatorname{dim}_{\mathbf{C}} V^{\omega}+\operatorname{dim}_{\mathbf{C}} V^{\bar{\omega}}=\operatorname{dim}_{\mathbf{C}} W^{\omega}+\operatorname{dim}_{\mathbf{C}} W^{\bar{\omega}}
$$

for all $w \in \bar{K} \cap I^{*}$.
The proof is given in $\S 2$ below.
As $\operatorname{dim}_{\mathbf{C}} V^{\infty}$ is the multiplicity of M_{ω} in M, and as M_{ω} and $M_{\bar{\omega}}$ are equivalent as real G-modules, the following is an immediate corollary.

Corollary (1.2). $\quad V$ and W are isomorphic as real G-modules.
The special case when f and g are G-maps is proved in [11]. Also, the case when f and g are the G-maps and $V^{G}=\{0\}=W^{G}$ is proved in [16], Theorem (2.2).

Next let us consider the complex G-vector bundles

$$
V \cong \sum_{\omega} V^{\omega} \otimes M_{\omega} \rightarrow B, \quad W \cong \sum_{\omega} W^{\omega} \otimes M_{\omega} \rightarrow B
$$

where $\omega \in \bar{K} \cap I^{*}, M_{\omega}$ is the irreducible G-module whose highest weight is ω and $V^{\omega}=\operatorname{Hom}_{G}\left(B \times M_{\omega}, V\right)$. The base-space B is by assumption a trivial G-space.

Theorem (1.3). Suppose that

$$
S V \xrightarrow{f} S W
$$

is a special G^{∞}-equivalence over B, and that B is a connected finite cell complex.

Then

$$
V^{\omega}+\left(V^{\bar{\omega}}\right)^{*} \rightarrow B, \quad W^{\omega}+\left(W^{\bar{\omega}}\right)^{*} \rightarrow B
$$

are stably equivalent as vector bundles, for all of $0 \neq \omega \in \bar{K} \cap I^{*}$.
The proof is given in $\S 3$ below.
The preceding theorem yields the following information on the equivariant J-homomorphism. Consider the complex G-module

$$
V=V_{0}+\sum_{\omega} V^{\omega} \otimes M_{\omega},
$$

where ω ranges over the set $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\} \subset \bar{K} \cap(L T)^{*}$ of non-zero maximal weights of V, and $V^{\omega}=\operatorname{Hom}_{G}\left(M_{\omega}, V\right)$. Thus $V^{G}=V_{0}$. Define $\mathrm{Map}_{G^{\infty}}^{0}(S V)$ to be the space, with the compact-open topology, of special G^{∞}-equivalences. Then the sub-space of linear maps is $U_{m_{1}} \times \cdots \times U_{m_{k}}$, where $m_{k}=\operatorname{dim}_{\mathbf{C}} V^{\omega_{k}}$. Passing to limits and classifying spaces, we obtain the map

$$
J:(B U)^{x k} \rightarrow B \operatorname{Map}_{G^{\infty}}^{0}\left(S V^{\oplus \infty}\right)
$$

where $(B U)^{x k}$ is the k-fold product of the classifying space of the infinite unitary group, and $\operatorname{Map}_{G^{\infty}}^{0}\left(S V^{\oplus \infty}\right)$ is the limit of $\operatorname{Map}_{G^{\infty}}^{0}(S V)$ as m_{1}, \ldots, $m_{k} \rightarrow \infty$.

Let $f: B \rightarrow(B U)^{x k}$ be a map, and denote by f_{ω} the component corresponding to $\omega \in \Omega$. Also denote by $c: B U \rightarrow B U$ the classifying map of the dual of the universal bundle, and put $f_{\omega}^{c}=f_{\omega} \circ c$.

Corollary (1.4). The composite

$$
G \xrightarrow{f} B U^{x k} \xrightarrow{J} B \operatorname{Map}_{G^{\infty}}^{0}\left(S V^{\oplus \infty}\right)
$$

is null-homotopic if, and only if, $f_{\omega}+f_{\bar{\omega}}^{c}$ is null-homotopic for all $\omega \in \Omega$, where addition is that induced by the Whitney sum.

Similar results are proved for the map

$$
(B U)^{x k} \xrightarrow{J^{\prime}} B \operatorname{Map}_{G}^{0}\left(S V^{\oplus \infty}\right)
$$

in [3], Theorem (11.1), and in [6], [10], and [11], with B a sphere. When B is just a finite complex, the case when $G=S^{3}$ or S^{1} and the action is free is established in [3]. This latter result is used there (in [3]) to prove that the image of J^{\prime} on the homotopy groups is a direct summand. Corollary (1.4) plays a similar role for the general case.

2. Proof of Theorem (1.1)

Consider V and W as T-modules, and denote by $V(\lambda)$ and $W(\lambda)$ the weight spaces of V and W that correspond to $\lambda \in I^{*}$. The key step in the proof is the following.

Assertion (2.1): For all $\lambda \in I^{*}$,

$$
\operatorname{dim}_{\mathbf{C}} V(\lambda)+\operatorname{dim}_{\mathbf{C}} V(-\lambda)=\operatorname{dim}_{\mathbf{C}} W(\lambda)+\operatorname{dim}_{\mathbf{C}} W(-\lambda)
$$

Assuming (2.1) for the time being, let us prove Theorem (1.1). Put

$$
P=\left\{\lambda \in \bar{K} \cap I^{*} \mid \operatorname{dim}_{\mathbf{C}} V(\lambda)+\operatorname{dim}_{\mathbf{C}} V(-\lambda) \neq 0\right\} .
$$

As $-\lambda$ and $\bar{\lambda}$ belong to the same orbit of the Weyl group $W_{G}(T)$, we note that

$$
\operatorname{dim}_{\mathbf{C}} V(\bar{\lambda})=\operatorname{dim}_{\mathbf{C}} V(-\lambda) \quad \text { and } \quad \operatorname{dim}_{\mathbf{C}} W(\bar{\lambda})=\operatorname{dim}_{\mathbf{C}} W(-\lambda)
$$

Hence,

$$
\begin{aligned}
P & =\left\{\lambda \in \bar{K} \cap I^{*} \mid \operatorname{dim}_{\mathbf{C}} V(\lambda)+\operatorname{dim}_{\mathbf{C}} V(\bar{\lambda}) \neq 0\right\} \\
& =\left\{\lambda \in \bar{K} \cap I^{*} \mid \operatorname{dim}_{\mathbf{C}} W(\lambda)+\operatorname{dim}_{\mathbf{C}} W(\bar{\lambda}) \neq 0\right\} .
\end{aligned}
$$

Now let $\omega \in P$ be a maximal element with respect to the usual order [4, Definition (2.2), p. 250]. Then either M_{ω} or $M_{\bar{\omega}}$ is a G-summand of V. Similarly, either M_{ω} or $M_{\bar{\omega}}$ is a G - summand of W. Thus proceeding inductively, we can show that

$$
\operatorname{dim}_{\mathbf{C}} V^{\omega}+\operatorname{dim}_{\mathbf{C}} V^{\bar{\omega}}=\operatorname{dim}_{\mathbf{C}} W^{\omega}+\operatorname{dim}_{\mathbf{C}} W^{\bar{\omega}} \quad \text { for all } \omega \in \bar{K} \cap I^{*}
$$

which is what is to be proved.
To prove Assertion (2.1), let

$$
\Lambda=\left\{\lambda \in I^{*} \mid V(\lambda) \neq\{0\}\right\} \quad \text { and } \quad \Gamma=\left\{\gamma \in I^{*} \mid W(\gamma) \neq\{0\}\right\}
$$

Regarding λ as a homomorphism $T \rightarrow S^{1}$, we can identify it with

$$
K^{0}(B \lambda)(t) \in K^{0}(B T)
$$

where $t=\xi^{*}-1$ and ξ^{*} is the dual of the Hopf-bundle over $B S^{1}$. By definition, let

$$
|\Lambda|=\prod_{\lambda \in \Lambda}(\lambda)^{m_{\lambda}}, \quad|\Gamma|=\prod_{\gamma \in \Gamma}(\gamma)^{m_{\gamma}}
$$

where $m_{\lambda}=\operatorname{dim}_{\mathbf{C}} V(\lambda), \mathrm{m}_{\gamma}=\operatorname{dim}_{\mathbf{C}} W(\gamma)$.

The first step in the proof of Assertion (2.1) is the computation of $\operatorname{deg}_{T}(f)$.
Proposition (2.2). $\quad|\Gamma|=\operatorname{deg}_{T}(f) \cdot|\Lambda|$.
Proof. Put $V_{0}=V^{T}$. We shall prove only the case when $V_{0} \neq\{0\}$, the other being similar. It is easy to see that

$$
\mathscr{K}_{T}^{*}\left(S V_{0}\right) \cong K^{*}(B T) \otimes K^{*}\left(S V_{0}\right)
$$

and that

$$
\mathscr{K}_{T}^{*}(S V) \cong K^{*}(B T) \otimes K^{*}(S V)
$$

Let $V^{\prime} \subset V$ be the T-orthogonal complement of V_{0} in V, and denote by $\beta \in \mathscr{K}_{T}^{*}\left(S V, S V_{0}\right)$ the Thom-class of the normal bundle of $S V^{\prime}$ in $S V$. The Thom Isomorphism Theorem implies that

$$
\mathscr{K}_{T}^{*}\left(S V, S V_{0}\right) \cong \mathscr{K}_{T}^{*}\left(V^{\prime}\right)[\beta]
$$

Moreover the homomorphism $T \rightarrow U_{m^{\prime}}, m^{\prime}=\operatorname{dim}_{\mathbf{C}} V^{\prime}$, defined by the T-module V^{\prime}, and the naturality of the Euler class imply that

$$
\mathscr{K}_{T}^{*}\left(V^{\prime}\right) \cong K^{*}(B T) /(|\Lambda|)
$$

where $(|\Lambda|)$ is the ideal generated by $|\Lambda|$. Since $\mathscr{K}_{T}^{*}(S V)$ is torsion-free as a $K^{*}(B T)$-module, we see immediately that the exact sequence of ($S V, S V_{0}$) becomes the short exact sequence

$$
\begin{align*}
0 & \rightarrow K^{*}(B T) \otimes K^{*}(S V) \xrightarrow{|\Lambda| \cdot} K^{*}(B T) \otimes K^{*}\left(S V_{0}\right) \tag{2.3}\\
& \rightarrow \mathscr{K}_{T}^{*}\left(S V, S V_{0}\right) \rightarrow 0 .
\end{align*}
$$

Similarly, the sequence of $\left(S W, S W_{0}\right)$ is

$$
\begin{align*}
0 & \rightarrow K^{*}(B T) \otimes K^{*}(S W) \xrightarrow{|\Gamma|} K^{*}(B T) \otimes K^{*}\left(S W_{0}\right) \tag{2.4}\\
& \rightarrow \mathscr{K}_{T}^{*}\left(S W, S W_{0}\right) \rightarrow 0 .
\end{align*}
$$

Now let

$$
\mu_{V_{0}} \in K_{T}^{*}\left(D V_{0}, S V_{0}\right) \quad \text { and } \quad \mu_{W_{0}} \in K_{T}^{*}\left(D W_{0}, S W_{0}\right)
$$

be the Thom classes of

$$
E T \times_{T} V_{0} \rightarrow B T \text { and } E T \times_{T} W_{0} \rightarrow B T
$$

respectively, and define

$$
\left[S V_{0}\right] \in \mathscr{K}_{T}^{*}\left(S V_{0}\right), \quad[S V] \in \mathscr{K}_{T}^{*}(S V), \quad\left[S W_{0}\right] \in \mathscr{K}_{T}^{*}\left(S W_{0}\right)
$$

and

$$
[S W] \in \mathscr{K}_{T}^{*}(S W)
$$

to be the elements whose coboundaries are the Thom classes of the corresponding vector bundles. As $|\Lambda|$ and $|\Gamma|$ are the equivalent Euler classes of V_{0} in V and W_{0} in W, it follows that the first morphisms of (2.3) and (2.4) take $[S V]$ to $|\Lambda| \cdot\left[S V_{0}\right]$ and $[S W]$ to $|\Gamma| \cdot\left[S W_{0}\right]$. Finally, the given map f induces a map of (2.4) to (2.3). By naturality we see that $|\Gamma|=\left(\operatorname{deg}_{G} f\right)|\Lambda|$ as required.

The second step in the proof of assertion (2.1) is the computation of $|\Lambda|$ and $|\Gamma|$. So choose an isomorphism $\tau: T \rightarrow S^{1} \times \cdots \times S^{1}$ of T with the r-fold product S^{1}, with $r=\operatorname{dim} T$. Regarding the components $\tau_{1}, \ldots, \tau_{r}$ of τ as elements of $K^{*}(B T)$, we see immediately that $K^{*}(B T) \cong R\left[\left[\tau_{1}, \ldots, \tau_{r}\right]\right]$, where $R=K^{*}$ (Point), and the latter is isomorphic to $\mathbf{Z}\left[u, u^{-1}\right][1, \mathrm{p} .13]$. A homomorphism $\lambda_{i}: T \rightarrow S^{1}$ induces in turn a homomorphism

$$
L\left(\lambda_{i}\right)^{*}: L\left(S^{1}\right)^{*} \rightarrow L(T)^{*}
$$

of the duals of the Lie algebras, which can be expressed in the form

$$
L\left(\lambda_{i}\right)^{*}(d t)=\sum_{i=1}^{r} \lambda_{i j} d \tau_{j}, \quad 1 \leq i \leq k
$$

where $\left[\lambda_{i j}\right]$ is an integral matrix. An easy computation shows that

$$
\begin{equation*}
\lambda_{i}=\left(\sum_{j=1}^{r}\left(\tau_{j}+1\right)^{\lambda_{i j}}\right)-1 \tag{2.5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\gamma_{i}=\left(\prod_{j=1}^{r}\left(\tau_{j}+1\right)^{\gamma_{i j}}\right)-1 \tag{2.6}
\end{equation*}
$$

Now set $x_{j}=\left(\tau_{j}+1\right)$ for $j=1, \ldots, r$, and consider the equation

$$
\begin{equation*}
|\Gamma|=\left(\operatorname{deg}_{T} f\right) \cdot|\Lambda| \tag{2.7}
\end{equation*}
$$

Since $\operatorname{deg}_{T}(f) \in R(T)$ by assumption, and since $|\Lambda|,|\Gamma| \in R(T)$, then (2.7) is an equation in $R(T)$. The third step in the proof of Assertion (2.1), is to
exploit the divisibility of $|\Gamma|$ by $|\Lambda|$. Recall that

$$
R(T)=\mathbf{Z}\left[X_{1}, \ldots, X_{r} ;\left(X_{1} \ldots X_{r}\right)^{-1}\right] .
$$

Assume that the elements of $|\Lambda| \subset(L T)^{*}$ are ordered so that $\left|\lambda_{i}\right| \geq\left|\lambda_{j}\right|$ for $1 \leq i<j \leq k$, where $\left|\lambda_{i}\right|^{2}=\sum_{j=1}^{r}\left(\lambda_{i j}\right)^{2}$. For every integer s, define

$$
\alpha_{s}: \mathbf{Z}\left[X_{1}, \ldots, X_{r} ;\left(X_{1} \ldots X_{r}\right)^{-1}\right] \rightarrow \mathbf{Z}\left[X ; X^{-1}\right]
$$

to be the homomorphism which takes X_{j} to $X^{\left(s \lambda_{1 j}+a_{j}\right)}$, where a_{j} is the coefficient of τ_{j} is the sum $\tau_{0}=a_{1} \tau_{1}+\cdots+a_{r} \tau_{r}$, with the coefficients $a_{j} \in \mathbf{Z}$ chosen so that $\left(\tau_{0}, \gamma\right) \neq 0$ for all $\gamma \in \Gamma$. Putting $\mu_{s}=s \lambda_{1}+\tau_{0}$, we see easily that

$$
\begin{aligned}
\alpha_{s}\left(\lambda_{1}\right) & =X^{\left(\lambda_{1}, \mu_{s}\right)}-1, \\
\alpha_{s}(|\Gamma|) & =\prod_{\gamma}\left(X^{\left(\gamma, \mu_{s}\right)}-1\right)^{m_{\gamma}}, \quad \gamma \in \Gamma
\end{aligned}
$$

where (\cdot, \cdot) is the usual inner-product, and $m_{\gamma}=\operatorname{dim}_{\mathbf{C}} W(\gamma)$, the multiplicity of γ. Let us observe now that (2.7) implies that λ_{1} divides $|\Gamma|$ in $R(T)$. Hence, for sufficiently large $s, X^{\left(\lambda_{1}, \mu_{s}\right)}-1$ divides $\alpha_{s}(|\Gamma|)$. Since the prime factors of the polynomials that appear in $\alpha_{s}\left(\lambda_{1}\right)$ and $\alpha_{s}(|\Gamma|)$ are the cyclotomic polynomials that correspond to the factors of (λ_{1}, μ_{s}) and (γ, μ_{s}), we see immediately that (λ_{1}, μ_{s}) divides (γ_{1}, μ_{s}) for some γ_{1} in Γ and infinitely many integers $s \geq 0$. Therefore, either $\left|\gamma_{1}\right|>\left|\lambda_{1}\right|$ or $\left|\gamma_{1}\right|=\left|\lambda_{1}\right|$. If $\left|\gamma_{1}\right|>$ $\left|\lambda_{1}\right|$, then arguing as above by using the T^{∞}-map g, whose \mathscr{K}_{T}^{*}-degree is in $R(T)$, we would obtain an element $\lambda^{\prime} \in \Lambda$ such that $\left|\lambda^{\prime}\right| \geq\left|\gamma_{1}\right|>\left|\lambda_{1}\right|$. But this would contradict the maximality of $\left|\lambda_{1}\right|$. Hence $\left|\gamma_{1}\right|=\left|\lambda_{1}\right|$, which implies that $\lambda_{1}= \pm \gamma_{1}$, since $\left|\lambda_{1}\right|=\left|\gamma_{1}\right|$ and $\left(\gamma_{1}, \mu_{s}\right)$ is a multiple of $\left(\lambda_{1}, \mu_{s}\right)$ for infinitely many $s \in \mathbf{Z}$.

Finally, repeating the argument for $\Lambda \backslash\left\{\lambda_{1}\right\}$ and $\Gamma \backslash\left\{\gamma_{1}\right\}$, one sees that after a finite number of steps, given $\lambda \in \Lambda$, we can find $\gamma \in \Gamma$ such that $\lambda= \pm \gamma$, and conversely. This proves assertion (2.1) and hence Theorem (1.1).

3. Proof of Theorem (1.3)

The proof proceeds in stages. Let

$$
V=\sum_{\omega} V^{\omega} \otimes M_{\omega} \rightarrow B \quad \text { and } \quad W=\sum_{\omega} W^{\omega} \otimes M_{\omega} \rightarrow B
$$

be two complex G-vector bundles over B as in $\S 1$, with $\omega \in \bar{K} \cap I^{*}$. Observe that on adding appropriate G-vector bundles to V and W we can reduce the
theorem to the special case where $W^{\omega} \rightarrow B$ is the trivial bundle for all $0 \neq \omega \in \bar{K} \cap I^{*}$. Thus the theorem is equivalent to the following statement.
(3.1) For all $0 \neq \omega \in \bar{K} \cap I^{*}$, the complex vector bundle $V^{\omega}+\left(V^{\bar{\omega}}\right)^{*} \rightarrow B$ is stably trivial.

For each $\lambda \in I^{*}$, put $V(\lambda)=\sum_{\omega} m(\lambda, \omega) V^{\omega}$, for $0 \neq \omega \in \bar{K} \cap I^{*}$ where $m(\lambda, \omega)$ is the multiplicity of λ in M_{ω}. The first step in the proof of (3.1) is to show that it is implied by the following assertion.
(3.2) For all $0 \neq \lambda \in I^{*}$, the complex vector bundle $V(\lambda)+V(-\lambda)^{*} \rightarrow B$ is stably trivial.

Put

$$
P=\left\{\omega \in \bar{K} \cap I^{*} \mid \operatorname{dim}_{\mathbf{C}} V^{\omega}+\operatorname{dim}_{\mathbf{C}}\left(V^{\bar{\omega}}\right)^{*} \neq 0\right\}
$$

and choose an element $\omega \in P$ such that, for all $\gamma \in P$ with $\gamma>\omega$, the bundle $V^{\gamma}+\left(V^{\bar{\gamma}}\right)^{*} \rightarrow B$ is stably trivial. Then

$$
V(\omega)=V^{\omega}+\sum_{\gamma>\omega} m(\omega, \gamma) V^{\gamma}, \quad V(\bar{\omega})=V^{\bar{\omega}}+\sum_{\bar{\gamma}>\bar{\omega}} m(\bar{\omega}, \bar{\gamma}) V^{\bar{\gamma}}
$$

since $m(\gamma, \gamma)=1=m(\bar{\gamma}, \bar{\gamma})$. But $m(\omega, \gamma)=m(\bar{\omega}, \bar{\gamma})$, for all γ (cf. proof of Proposition (4.1), p. 261 of [4]), since $M_{\bar{\gamma}}=M_{\gamma}{ }^{*}$, and as $-\omega$ and ω belong to the same $W_{G}(T)$-orbit, it also follows that $m(-\omega, \bar{\gamma})=m(\bar{\omega}, \bar{\gamma})$. Hence $V(\omega)+V(-\omega)^{*} \rightarrow B$ is stably equivalent to $V^{\omega}+\left(V^{\bar{\omega}}\right)^{*} \rightarrow B$, since $V^{\gamma}+$ $\left(V^{\bar{\gamma}}\right)^{*} \rightarrow B$ is stably trivial for all $\gamma>\omega$. Now (3.2) implies that $V^{\omega}+\left(V^{\bar{\omega}}\right)^{*}$ $\rightarrow B$ is stably trivial. Arguing by induction, we can deduce (3.1) assuming (3.2).

To prove (3.2), note first of all that $V(\lambda) \cong \operatorname{Hom}_{T}\left(B \times C_{\lambda}, V\right)$, where C_{λ} is the T-irreducible module defined by $\lambda \in I^{*}$. Now we proceed as in [11], adapting the proof to K-theory. The isomorphism

$$
\tau: T \rightarrow S^{1} \times \cdots \times S^{1}
$$

defined in $\S 2$, induces naturally a splitting $\xi \cong \xi_{1}+\cdots+\xi_{r}$ of ξ as a sum of line bundles, where ξ is the principal T-bundle

$$
E T \times S V \rightarrow(E T \times S V) / T=E T \times_{T} S V
$$

Define $t_{i} \in \mathscr{K}_{T}^{*}(S V)=K^{*}\left(E T \times_{T} S V\right)$ to be $\left[\xi_{i}^{*}\right]-1$, where ξ_{i}^{*} is the dual of ξ_{i}, and put

$$
\begin{equation*}
P(V)=\prod_{\lambda \neq 0} P(V(\lambda)) \tag{3.3}
\end{equation*}
$$

where $P(V(\lambda))=\lambda^{m_{\lambda}}+c_{1}(V(\lambda)) \lambda^{m_{\lambda}-1}+\cdots+c_{m_{\lambda}}(V(\lambda))$ is the K-theoretic Grothendieck defining relation of $V(\lambda) \rightarrow B$ evaluated at λ (Theorem (7.1) of [5]). The following result is the K-theoretic analogue of [11]. The proof will be omitted, it being similar.

Put $V_{0}=V^{T}, V=V_{0}+V^{\perp}$, and denote by β the Thom-class of $S V^{\perp}$ in $S V$. Regard $P(V)$ as an element in $K^{*}(B)\left[\left[t_{1}, \ldots, t_{r}\right]\right]$, where t_{1}, \ldots, t_{r} are regarded as indeterminates.

Theorem (3.4). The map ET $\times_{T} S V \rightarrow B$ induces an isomorphism

$$
K^{*}(B)\left[\left[t_{1}, \ldots, t_{r}\right]\right] /(P(V))[\beta] \rightarrow \mathscr{K}_{T}^{*}\left(S V, S V_{0}\right)
$$

of $K^{*}(B)$-modules, where $(P(V))$ is the ideal generated by $P(V)$.
Denote by Λ and Γ the non-zero weights of the representation of T, defined by the fibers of $V \rightarrow B$ and $W \rightarrow B$, respectively. Then the existence of a T^{∞}-fiber homotopy equivalence over $B, f: S V \rightarrow S W$, implies

$$
\begin{equation*}
P(V)=\left(\operatorname{deg}_{T} f\right)^{-1} \cdot|\Gamma| \tag{3.5}
\end{equation*}
$$

where $\operatorname{deg}_{T}(f)$ is the \mathscr{K}_{T}-degree of $f \mid S\left(V_{b}\right)$, with $b \in B$, and V_{p} is the fiber at b. But, according to Proposition (2.2), $\operatorname{deg}_{T}(\mathrm{f})=|\Gamma| /|\Lambda|$. Hence equation (3.5) can be written in the form

$$
\begin{equation*}
P(V)=|\Lambda| \tag{3.6}
\end{equation*}
$$

Consider first the case when $\operatorname{dim} T=1$. Since for every $\lambda \in \Lambda$, there is a T-equivalence

$$
S\left(V(\lambda) \otimes \underset{B}{\mathbf{C}_{\lambda}}\right) \longrightarrow S\left(V(\lambda)^{*} \otimes \mathbf{C}_{-\lambda}\right)
$$

where $V(\lambda)^{*} \rightarrow B$ is the dual of the $V(\lambda) \rightarrow B$, we can adjust the components of $V \rightarrow B$ so that the given bundle $V \rightarrow B$ becomes

$$
V_{0}+\sum_{\lambda \neq 0}\left(V(\lambda)+V(-\lambda)^{*}\right) \otimes \mathbf{C}_{\lambda} \rightarrow B
$$

where $\lambda \in \Lambda$ ranges over the positive elements. (Recall that when $\operatorname{dim} T=$ $1, I^{*} \cong \mathbf{Z}$.) Denote the positive elements of Λ by $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, and assume that λ_{1} is the smallest element. Now consider the equivariant Grothendieck polynomial

$$
P(V)=\prod_{i=1}^{k}\left\{\left(X^{\lambda_{i}}-1\right)^{m_{i}}+c_{1}\left(V_{1}^{\prime}\right)\left(X^{\lambda_{i}}-1\right)^{m_{i}-1}+\cdots\right\}
$$

where $V_{i}^{\prime}=V\left(\lambda_{i}\right)+V\left(-\lambda_{i}\right)^{*}, m_{i}=m_{\lambda_{i}}=\operatorname{dim}_{\mathbf{C}} V_{i}^{\prime}$, and $X=t+1$. Collecting the terms that involve the first Chern classes of the components V_{i}^{\prime}, we obtain the expression

$$
\sum_{i} c_{1}\left(V_{i}^{\prime}\right)\left(X^{\lambda_{1}}-1\right)^{m_{1}} \ldots\left(X^{\lambda_{i}}-1\right)^{m_{i}-1} \ldots\left(X^{\lambda_{k}}-1\right)^{m_{k}}
$$

The leading coefficient of $c_{1}\left(V_{1}^{\prime}\right)$ is the monomial

$$
X^{\lambda_{1}\left(m_{1}-1\right)} X^{\lambda_{2} m_{2}} \ldots X^{\lambda_{k} m_{k}}
$$

and, since λ_{1} is the smallest element of $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, it follows easily that this monomial does not occur anywhere else in $P(V)-|\Lambda|$. Thus the equation $P(V)=|\Lambda|$ implies that $c_{1}\left(V_{1}^{\prime}\right)=0$. This means that V_{1}^{\prime} is stably trivial and, hence, $c_{j}\left(V_{1}^{\prime}\right)=0$ for $j+1, \ldots, m_{1}$. Therefore $P\left(V_{1}^{\prime}\right)=\left(X^{\lambda_{1}}-1\right)^{m_{1}}$ and, after dividing the equation $P(V)=|\Lambda|$ by $\left(X^{\lambda_{1}}-1\right)^{m_{1}}$, which is the same as $\left(\lambda_{1}\right)^{m_{1}}$, we obtain a similar equation involving one less character. Proceeding inductively, we prove the theorem in the special case when $\operatorname{dim} T=1$.

Now let us turn to the general case when $\operatorname{dim} T \neq 1$. Choose an element $\lambda_{1} \in \Lambda$ of maximal length as in $\S 1$ and a character

$$
\alpha=\sum_{i=1}^{r} a_{i} \tau_{i} \text { in } I^{*} \subset(L T)^{*}
$$

such that
(i) $\left(\alpha, \lambda_{1}\right)>\left(\alpha, \lambda^{\prime}\right)$ for all $\lambda^{\prime} \in \Lambda$, and
(ii) $\quad(\alpha, \mu) \neq 0$ for all $\mu \in \Lambda$.

The element $\alpha=\sum_{i=1}^{r} a_{i} \tau_{i}$ defines a homomorphism $\varphi_{\alpha}: S^{1} \rightarrow T$ which takes $e^{2 \pi i \tau}$ to the tuple ($e^{2 \pi i a_{1} \tau}, \ldots, e^{2 \pi i a_{r} \tau_{r}}$). Considering the bundle

$$
V_{0}+\sum_{i=1}^{k} V\left(\lambda_{i}\right) \otimes \mathbf{C}_{\lambda_{i}} \rightarrow B
$$

as an S^{1}-bundle by means of the homomorphism φ_{α}, we can conclude, because of condition (ii) above, that $V^{S^{1}}=V_{0}$. Put

$$
\Lambda^{\prime}=\left\{\left(\lambda_{i}, \alpha\right) \mid i=1, \ldots, k\right\}
$$

and by definition let $\lambda_{1}^{\prime}, \ldots, \lambda_{p}^{\prime}$ be its distinct elements. Write V in the form

$$
V_{0}+\sum_{i=1}^{p} V\left(\lambda_{i}^{\prime}\right) \otimes \mathbf{C}_{\lambda_{i}^{\prime}} \rightarrow B
$$

(This is just the decomposition of V as an S^{1}-bundle.) It is easy to see that condition (i) above implies that $V\left(\lambda_{1}^{\prime}\right)=V\left(\lambda_{1}\right)$ and $V\left(-\lambda_{1}^{\prime}\right)=V\left(-\lambda_{1}\right)$. Proceeding as in the special case when $\operatorname{dim} T=1$, we prove that $V\left(\lambda_{1}\right)+$ $V\left(-\lambda_{1}\right)^{*} \rightarrow B$ is stably trivial. Now, continuing inductively, we finish the proof of the theorem for T with $\operatorname{dim} T>1$.

References

1. M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., vol. III (1961), pp. 7-38.
2. M.F. Atiyah and G. B. Segal, Equivarint K-theory and completions, J. Differential Geom., vol. 3 (1969), pp. 1-18.
3. J.C. Becker and E.R. Schultz,, Equivariant function spaces and stable homotopy theory I, Comment. Math. Helv., vol. 49 (1974), pp. 1-34.
4. Theodore Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Springer-Verlag, New York, 1985.
5. R. Bott, Lecturer on $K(X)$, W.A. Benjamin, New York, 1969.
6. W. Browder, Surgery and the theory of transformation groups, Proc. of the Conf. on Transformation groups, New Orleans 1967, Springer-Verlag, New York, 1966, pp. 1-46.
7. TAMMO том Dieck, Transformation groups and representation theory, Lect. Notes in Math., no. 766, Springer-Verlag, New York, 1979.
8. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math., vol. 78 (1963), pp. 223-255.
9. E. Dror, W.G. Dwyer and D.M. Kan, Automorphisms of fibrations, Proc. Amer. Math. Soc., vol. 80 (1980), pp. 491-494.
10. S.Y. HUSSEINI, The equivariant J-homomorphism for arbitrary S^{1}-actions, Indiana Univ. Math. J., vol. 33 (1984), pp. 711-720.
11. __, Applications of equivariant characteristic classes to problems of the Borsuk-Ulam and degree theory type, to appear.
12. A. Liulivicius, Borsuk-Ulam theorems and K-theory degrees of maps, Proc. of the Conf. on Algebraic Topology, Aarhus 1982, Lect. Notes in Math., no. 1051, Springer-Verlag, New York, 1984, pp. 610-619.
13. A. Meyerhof and T. Petrie, Quasi-equivalence of G-modules, Topology, vol. 15 (1976), pp. 69-75.
14. G.B. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math., vol. 34 (1968), pp. 129-151.
15. R.M. SwITzER, Algebraic topology-homotopy and homology, Springer-Verlag, New York, 1975.
16. P. Traczyk, On the G-homotopy equivalence of spheres of representations, Math. Zeitschr., vol. 161 (1978), pp. 257-261.

University of Wisconsin

Madison, Wisconsin

[^0]: Received July 20, 1987.
 ${ }^{1}$ This work was supported in part by the National Science Foundation.

