G^{∞} -FIBER HOMOTOPY EQUIVALENCE

BY

S.Y. HUSSEINI¹

Introduction and preliminaries

Let G be a compact, connected Lie group, and V, W two complex G-modules. Denote the unit spheres by SV, SW. In this article we shall be concerned with maps over BG,

where $EG \rightarrow BG$ is a universal G-bundle. Such maps are studied in [9]. It can be easily seen that they are exactly those induced by equivariant maps $EG \times SV \rightarrow SW$, i.e., by the so-called G^{∞} -maps $SV \rightarrow SW$. We shall say that f is a G^{∞} -equivalence if, and only if, f is the degree-one map on the fibers. Note that according to Dold's theorem [8] a G^{∞} -equivalence is a fiber-homotopy equivalence, and therefore it admits a G^{∞} -equivalence as an inverse. Also note that, in the equivariant case, the notion of a G^{∞} -equivalence is just the notion of quasi-equivalence introduced in [13]. We shall say that the G^{∞} equivalence $SV \rightarrow SW$ is special if, and only if, it induces a T^{∞} -equivalence

$$(SV, SV^T, SV^G) \rightarrow (SW, SW^T, SW^G),$$

where $T \subset G$ is a maximal torus. It is easy to see that a degree-one G-map is special [11].

In this article we first study how V and W are related to each other, given that SV and SW are G^{∞} -equivalent. The answer is formulated in terms of an appropriate K-theoretic degree, with values in the completion $R(G)^{\circ}$ of the representation ring, defined in the manner of [12] and [7] and denoted by $\deg_G f$. We shall say that $\deg_G f$ is rational if, and only if, it lies in R(G). It will be shown in §2 below that $\deg_G f$ is rational if $V \cong W$ and f is a G^{∞} -equivalence, or if f is equivariant. However, the inverse of a degree-one

© 1989 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 20, 1987.

¹This work was supported in part by the National Science Foundation.

G-map, which is always a G^{∞} -equivalence, need not have a rational degree (cf. Example (6.4) of [13] and (9.5.1) of [7] and Proposition (2.2) below).

We first show (Theorem (1.1)) that if there are special G^{∞} -equivalences $SV \rightleftharpoons SW$ with rational degrees, then V and W are equivalent up to conjugancy. Theorem (2.2) of [16] follows as a special case. Next we consider the sphere bundles $SV \rightarrow B$, $SV \rightarrow B$ of the complex G-vector bundles $V \rightarrow B$, $W \rightarrow B$ over the trivial G-complex B. Given a G^{∞} -fiber homotopy equivalence $SV \rightarrow SW$ over B, we show (Theorem (2.3)) that the summands of V and W defined naturally by the irreducible G-modules are stably equivalent, again up to conjugamcy. This latter result is useful in the study of the question of the injectivity of the equivariant J-homomorphism and whether the image is a direct summand. As an illustration we state a result on the injectivity which generalizes those of [3], [6], [10] and [11].

1. Statement of results

Let (X, A) be a compact G-pair. Put

$$\mathscr{K}_{G}^{*}(X, A) = K^{*}(EG \times_{G} (X, A)),$$

where K^* is the K-theory based on the Bott-spectrum [1], [15]. Note that, for nice enough spaces, $\mathscr{K}_G^*(X, A)$ is the completion of the equivariant K-theory of Segal [14] (Theorem (2.1) of [2]). Also note that \mathscr{K}_G^* defines an equivariant K-theory on the category of compact G-spaces and G^{∞} -maps.

Now let V and W be two complex G-modules, and denote by SV and SW the unit spheres with respect to some invariant Hermitian metrics. The \mathscr{K}_{G}^{*} -degree of a G^{∞} -map $f: SV \to SW$ is, by definition, the quantity deg_G f in \mathscr{K}_{G}^{*} (Point) = $K^{*}(BG) \cong R(G)^{\circ}$ such that

$$\mathscr{K}_{G}^{*}(f)(\mu_{W}) = \deg_{G}(f) \cdot \mu_{V}$$

where μ_{W} and μ_{V} are the Thom-classes of

$$EG \times_G W \to BG$$
 and $EG \times_G V \to BG$

respectively. This is of course completely analogous to the notion of an equivariant degree defined in [12] and §9.7 of [7] for equivariant maps, and reduces to it in that case. Thus $\deg_G f$ is rational if f is a G-map.

Following the notation of p. 192 and p. 195 of [4], let $K \subset (LT)^*$ be a Weyl chamber, $I = \ker\{\exp_T: LT \to T\}$ the integral lattice, and $I^* = \{\alpha \in (LT)^* | \alpha(I) \subset \mathbb{Z}\}$ the lattice of integral forms. For $\omega \in \overline{K} \cap I^*$, denote by M_{ω} the irreducible G-module whose highest weight is ω (p. 242 of [4]). Let us note that the evaluation morphism

$$\operatorname{Hom}_{G}(M_{\omega}, V) \otimes M_{\omega} \to V$$

induces naturally an isomorphism

$$V \cong \sum_{\omega} V^{\omega} \otimes M_{\omega}$$

of G-modules, where $V^{\omega} = \operatorname{Hom}_{G}(M_{\omega}, V)$ and ω ranges over $\overline{K} \cap I^{*}$. Finally for $\omega \in \overline{K} \cap I^{*}$, let $\overline{\omega} = \sigma(-\omega)$, where σ is the element of the Weyl group $W_{G}(T)$ of G relative to T which takes -K to K, (p. 261 of [4]).

THEOREM (1.1). Suppose that

$$SV \xleftarrow{f}{g} SW$$

are special G^{∞} -equivalences such that det_G f and det_G g are rational. Then

$$\dim_{\mathbf{C}} V^{\omega} + \dim_{\mathbf{C}} V^{\overline{\omega}} = \dim_{\mathbf{C}} W^{\omega} + \dim_{\mathbf{C}} W^{\overline{\omega}}$$

for all $w \in \overline{K} \cap I^*$.

The proof is given in §2 below.

As dim_C V^{∞} is the multiplicity of M_{ω} in M, and as M_{ω} and $M_{\overline{\omega}}$ are equivalent as real G-modules, the following is an immediate corollary.

COROLLARY (1.2). V and W are isomorphic as real G-modules.

The special case when f and g are G-maps is proved in [11]. Also, the case when f and g are the G-maps and $V^G = \{0\} = W^G$ is proved in [16], Theorem (2.2).

Next let us consider the complex G-vector bundles

$$V \cong \sum_{\omega} V^{\omega} \otimes M_{\omega} \to B, \quad W \cong \sum_{\omega} W^{\omega} \otimes M_{\omega} \to B,$$

where $\omega \in \overline{K} \cap I^*$, M_{ω} is the irreducible G-module whose highest weight is ω and $V^{\omega} = \text{Hom}_G(B \times M_{\omega}, V)$. The base-space B is by assumption a trivial G-space.

THEOREM (1.3). Suppose that

$$SV \xrightarrow{f} SW$$

is a special G^{∞} -equivalence over B, and that B is a connected finite cell complex.

556

Then

$$V^{\omega} + (V^{\overline{\omega}})^* \to B, \quad W^{\omega} + (W^{\overline{\omega}})^* \to B$$

are stably equivalent as vector bundles, for all of $0 \neq \omega \in \overline{K} \cap I^*$.

The proof is given in §3 below.

The preceding theorem yields the following information on the equivariant J-homomorphism. Consider the complex G-module

$$V = V_0 + \sum_{\omega} V^{\omega} \otimes M_{\omega},$$

where ω ranges over the set $\Omega = \{\omega_1, \ldots, \omega_k\} \subset \overline{K} \cap (LT)^*$ of non-zero maximal weights of V, and $V^{\omega} = \operatorname{Hom}_G(M_{\omega}, V)$. Thus $V^G = V_0$. Define $\operatorname{Map}_{G^{\infty}}^0(SV)$ to be the space, with the compact-open topology, of special G^{∞} -equivalences. Then the sub-space of linear maps is $U_{m_1} \times \cdots \times U_{m_k}$, where $m_k = \dim_{\mathbb{C}} V^{\omega_k}$. Passing to limits and classifying spaces, we obtain the map

$$J: (BU)^{xk} \to B \operatorname{Map}_{G^{\infty}}^{0}(SV^{\oplus \infty})$$

where $(BU)^{k}$ is the k-fold product of the classifying space of the infinite unitary group, and $\operatorname{Map}_{G^{\infty}}^{0}(SV^{\oplus \infty})$ is the limit of $\operatorname{Map}_{G^{\infty}}^{0}(SV)$ as $m_{1}, \ldots, m_{k} \to \infty$.

Let $f: B \to (BU)^{xk}$ be a map, and denote by f_{ω} the component corresponding to $\omega \in \Omega$. Also denote by $c: BU \to BU$ the classifying map of the dual of the universal bundle, and put $f_{\omega}^c = f_{\omega} \circ c$.

COROLLARY (1.4). The composite

$$G \xrightarrow{J} BU^{xk} \xrightarrow{J} B \operatorname{Map}^{0}_{G^{\infty}}(SV^{\oplus \infty})$$

is null-homotopic if, and only if, $f_{\omega} + f_{\overline{\omega}}^c$ is null-homotopic for all $\omega \in \Omega$, where addition is that induced by the Whitney sum.

Similar results are proved for the map

$$(BU)^{xk} \xrightarrow{J'} B \operatorname{Map}_{G}^{0}(SV^{\oplus \infty})$$

in [3], Theorem (11.1), and in [6], [10], and [11], with B a sphere. When B is just a finite complex, the case when $G = S^3$ or S^1 and the action is free is established in [3]. This latter result is used there (in [3]) to prove that the image of J' on the homotopy groups is a direct summand. Corollary (1.4) plays a similar role for the general case.

S.Y. HUSSEINI

2. Proof of Theorem (1.1)

Consider V and W as T-modules, and denote by $V(\lambda)$ and $W(\lambda)$ the weight spaces of V and W that correspond to $\lambda \in I^*$. The key step in the proof is the following.

Assertion (2.1): For all $\lambda \in I^*$,

$$\dim_{\mathbf{C}} V(\lambda) + \dim_{\mathbf{C}} V(-\lambda) = \dim_{\mathbf{C}} W(\lambda) + \dim_{\mathbf{C}} W(-\lambda).$$

Assuming (2.1) for the time being, let us prove Theorem (1.1). Put

$$P = \left\{ \lambda \in \overline{K} \cap I^* | \dim_{\mathbf{C}} V(\lambda) + \dim_{\mathbf{C}} V(-\lambda) \neq 0 \right\}.$$

As $-\lambda$ and $\overline{\lambda}$ belong to the same orbit of the Weyl group $W_G(T)$, we note that

 $\dim_{\mathbf{C}} V(\overline{\lambda}) = \dim_{\mathbf{C}} V(-\lambda)$ and $\dim_{\mathbf{C}} W(\overline{\lambda}) = \dim_{\mathbf{C}} W(-\lambda)$.

Hence,

$$P = \left\{ \lambda \in \overline{K} \cap I^* | \dim_{\mathbf{C}} V(\lambda) + \dim_{\mathbf{C}} V(\overline{\lambda}) \neq 0 \right\}$$
$$= \left\{ \lambda \in \overline{K} \cap I^* | \dim_{\mathbf{C}} W(\lambda) + \dim_{\mathbf{C}} W(\overline{\lambda}) \neq 0 \right\}.$$

Now let $\omega \in P$ be a maximal element with respect to the usual order [4, Definition (2.2), p. 250]. Then either M_{ω} or $M_{\overline{\omega}}$ is a G-summand of V. Similarly, either M_{ω} or $M_{\overline{\omega}}$ is a G-summand of W. Thus proceeding inductively, we can show that

$$\dim_{\mathbf{C}} V^{\omega} + \dim_{\mathbf{C}} V^{\overline{\omega}} = \dim_{\mathbf{C}} W^{\omega} + \dim_{\mathbf{C}} W^{\overline{\omega}} \quad \text{for all } \omega \in \overline{K} \cap I^*,$$

which is what is to be proved.

To prove Assertion (2.1), let

$$\Lambda = \{\lambda \in I^* | V(\lambda) \neq \{0\}\} \text{ and } \Gamma = \{\gamma \in I^* | W(\gamma) \neq \{0\}\}.$$

Regarding λ as a homomorphism $T \rightarrow S^1$, we can identify it with

$$K^0(B\lambda)(t) \in K^0(BT),$$

where $t = \xi^* - 1$ and ξ^* is the dual of the Hopf-bundle over BS^1 . By definition, let

$$|\Lambda| = \prod_{\lambda \in \Lambda} (\lambda)^{m_{\lambda}}, \qquad |\Gamma| = \prod_{\gamma \in \Gamma} (\gamma)^{m_{\gamma}}$$

where $m_{\lambda} = \dim_{\mathbf{C}} V(\lambda)$, $m_{\gamma} = \dim_{\mathbf{C}} W(\gamma)$.

The first step in the proof of Assertion (2.1) is the computation of $\deg_T(f)$.

PROPOSITION (2.2). $|\Gamma| = \deg_T(f) \cdot |\Lambda|$.

Proof. Put $V_0 = V^T$. We shall prove only the case when $V_0 \neq \{0\}$, the other being similar. It is easy to see that

$$\mathscr{K}_{T}^{*}(SV_{0}) \cong K^{*}(BT) \otimes K^{*}(SV_{0}),$$

and that

$$\mathscr{K}_T^*(SV) \cong K^*(BT) \otimes K^*(SV).$$

Let $V' \subset V$ be the *T*-orthogonal complement of V_0 in *V*, and denote by $\beta \in \mathscr{K}_T^*(SV, SV_0)$ the Thom-class of the normal bundle of SV' in SV. The Thom Isomorphism Theorem implies that

$$\mathscr{K}_{T}^{*}(SV, SV_{0}) \cong \mathscr{K}_{T}^{*}(V')[\beta].$$

Moreover the homomorphism $T \to U_{m'}$, $m' = \dim_{\mathbb{C}} V'$, defined by the T-module V', and the naturality of the Euler class imply that

$$\mathscr{K}_{T}^{*}(V') \cong K^{*}(BT)/(|\Lambda|),$$

where $(|\Lambda|)$ is the ideal generated by $|\Lambda|$. Since $\mathscr{K}_T^*(SV)$ is torsion-free as a $K^*(BT)$ -module, we see immediately that the exact sequence of (SV, SV_0) becomes the short exact sequence

(2.3)
$$0 \to K^*(BT) \otimes K^*(SV) \xrightarrow{|\Lambda|} K^*(BT) \otimes K^*(SV_0)$$
$$\to \mathscr{K}^*_T(SV, SV_0) \to 0.$$

Similarly, the sequence of (SW, SW_0) is

(2.4)
$$0 \to K^*(BT) \otimes K^*(SW) \xrightarrow{|\Gamma|}{\longrightarrow} K^*(BT) \otimes K^*(SW_0)$$
$$\to \mathscr{K}^*_T(SW, SW_0) \to 0.$$

Now let

$$\mu_{V_0} \in K_T^*(DV_0, SV_0)$$
 and $\mu_{W_0} \in K_T^*(DW_0, SW_0)$

be the Thom classes of

$$ET \times_T V_0 \to BT$$
 and $ET \times_T W_0 \to BT$,

respectively, and define

$$[SV_0] \in \mathscr{K}_T^*(SV_0), \quad [SV] \in \mathscr{K}_T^*(SV), \quad [SW_0] \in \mathscr{K}_T^*(SW_0)$$

and

$$[SW] \in \mathscr{K}_T^*(SW)$$

to be the elements whose coboundaries are the Thom classes of the corresponding vector bundles. As $|\Lambda|$ and $|\Gamma|$ are the equivalent Euler classes of V_0 in V and W_0 in W, it follows that the first morphisms of (2.3) and (2.4) take [SV] to $|\Lambda| \cdot [SV_0]$ and [SW] to $|\Gamma| \cdot [SW_0]$. Finally, the given map f induces a map of (2.4) to (2.3). By naturality we see that $|\Gamma| = (\deg_G f)|\Lambda|$ as required.

The second step in the proof of assertion (2.1) is the computation of $|\Lambda|$ and $|\Gamma|$. So choose an isomorphism $\tau: T \to S^1 \times \cdots \times S^1$ of T with the *r*-fold product S^1 , with $r = \dim T$. Regarding the components τ_1, \ldots, τ_r of τ as elements of $K^*(BT)$, we see immediately that $K^*(BT) \cong R[[\tau_1, \ldots, \tau_r]]$, where $R = K^*(\text{Point})$, and the latter is isomorphic to $\mathbb{Z}[u, u^{-1}]$ [1, p. 13]. A homomorphism $\lambda_i: T \to S^1$ induces in turn a homomorphism

$$L(\lambda_i)^* \colon L(S^1)^* \to L(T)^*$$

of the duals of the Lie algebras, which can be expressed in the form

$$L(\lambda_i)^*(dt) = \sum_{i=1}^{\prime} \lambda_{ij} d\tau_j, \quad 1 \le i \le k,$$

where $[\lambda_{ij}]$ is an integral matrix. An easy computation shows that

(2.5)
$$\lambda_i = \left(\sum_{j=1}^r \left(\tau_j + 1\right)^{\lambda_{ij}}\right) - 1.$$

Similarly,

(2.6)
$$\gamma_i = \left(\prod_{j=1}^r \left(\tau_j + 1\right)^{\gamma_{ij}}\right) - 1.$$

Now set $x_j = (\tau_j + 1)$ for j = 1, ..., r, and consider the equation

(2.7)
$$|\Gamma| = (\deg_T f) \cdot |\Lambda|.$$

Since deg_T(f) $\in R(T)$ by assumption, and since $|\Lambda|, |\Gamma| \in R(T)$, then (2.7) is an equation in R(T). The third step in the proof of Assertion (2.1), is to

exploit the divisibility of $|\Gamma|$ by $|\Lambda|$. Recall that

$$R(T) = \mathbf{Z} \Big[X_1, \ldots, X_r; (X_1 \ldots X_r)^{-1} \Big].$$

Assume that the elements of $|\Lambda| \subset (LT)^*$ are ordered so that $|\lambda_i| \ge |\lambda_j|$ for $1 \le i < j \le k$, where $|\lambda_i|^2 = \sum_{j=1}^r (\lambda_{ij})^2$. For every integer *s*, define

$$\alpha_s: \mathbf{Z} \Big[X_1, \ldots, X_r; (X_1 \ldots X_r)^{-1} \Big] \to \mathbf{Z} [X; X^{-1}]$$

to be the homomorphism which takes X_j to $X^{(s\lambda_{1j}+a_j)}$, where a_j is the coefficient of τ_j is the sum $\tau_0 = a_1\tau_1 + \cdots + a_r\tau_r$, with the coefficients $a_j \in \mathbb{Z}$ chosen so that $(\tau_0, \gamma) \neq 0$ for all $\gamma \in \Gamma$. Putting $\mu_s = s\lambda_1 + \tau_0$, we see easily that

$$\begin{aligned} \alpha_s(\lambda_1) &= X^{(\lambda_1, \, \mu_s)} - 1, \\ \alpha_s(|\Gamma|) &= \prod_{\gamma} (X^{(\gamma, \, \mu_s)} - 1)^{m_{\gamma}}, \quad \gamma \in \Gamma \end{aligned}$$

where (\cdot, \cdot) is the usual inner-product, and $m_{\gamma} = \dim_{\mathbb{C}} W(\gamma)$, the multiplicity of γ . Let us observe now that (2.7) implies that λ_1 divides $|\Gamma|$ in R(T). Hence, for sufficiently large s, $X^{(\lambda_1, \mu_s)} - 1$ divides $\alpha_s(|\Gamma|)$. Since the prime factors of the polynomials that appear in $\alpha_s(\lambda_1)$ and $\alpha_s(|\Gamma|)$ are the cyclotomic polynomials that correspond to the factors of (λ_1, μ_s) and (γ, μ_s) , we see immediately that (λ_1, μ_s) divides (γ_1, μ_s) for some γ_1 in Γ and infinitely many integers $s \ge 0$. Therefore, either $|\gamma_1| > |\lambda_1|$ or $|\gamma_1| = |\lambda_1|$. If $|\gamma_1| >$ $|\lambda_1|$, then arguing as above by using the T^{∞} -map g, whose \mathscr{K}_T^* -degree is in R(T), we would obtain an element $\lambda' \in \Lambda$ such that $|\lambda'| \ge |\gamma_1| > |\lambda_1|$. But this would contradict the maximality of $|\lambda_1|$. Hence $|\gamma_1| = |\lambda_1|$, which implies that $\lambda_1 = \pm \gamma_1$, since $|\lambda_1| = |\gamma_1|$ and (γ_1, μ_s) is a multiple of (λ_1, μ_s) for infinitely many $s \in \mathbb{Z}$.

Finally, repeating the argument for $\Lambda \setminus \{\lambda_1\}$ and $\Gamma \setminus \{\gamma_1\}$, one sees that after a finite number of steps, given $\lambda \in \Lambda$, we can find $\gamma \in \Gamma$ such that $\lambda = \pm \gamma$, and conversely. This proves assertion (2.1) and hence Theorem (1.1).

3. Proof of Theorem (1.3)

The proof proceeds in stages. Let

$$V = \sum_{\omega} V^{\omega} \otimes M_{\omega} \to B$$
 and $W = \sum_{\omega} W^{\omega} \otimes M_{\omega} \to B$

be two complex G-vector bundles over B as in §1, with $\omega \in \overline{K} \cap I^*$. Observe that on adding appropriate G-vector bundles to V and W we can reduce the

theorem to the special case where $W^{\omega} \to B$ is the trivial bundle for all $0 \neq \omega \in \overline{K} \cap I^*$. Thus the theorem is equivalent to the following statement.

(3.1) For all $0 \neq \omega \in \overline{K} \cap I^*$, the complex vector bundle $V^{\omega} + (V^{\overline{\omega}})^* \to B$ is stably trivial.

For each $\lambda \in I^*$, put $V(\lambda) = \sum_{\omega} m(\lambda, \omega) V^{\omega}$, for $0 \neq \omega \in \overline{K} \cap I^*$ where $m(\lambda, \omega)$ is the multiplicity of λ in M_{ω} . The first step in the proof of (3.1) is to show that it is implied by the following assertion.

(3.2) For all $0 \neq \lambda \in I^*$, the complex vector bundle $V(\lambda) + V(-\lambda)^* \rightarrow B$ is stably trivial.

Put

$$P = \left\{ \omega \in \overline{K} \cap I^* | \dim_{\mathbf{C}} V^{\omega} + \dim_{\mathbf{C}} (V^{\overline{\omega}})^* \neq 0 \right\},\$$

and choose an element $\omega \in P$ such that, for all $\gamma \in P$ with $\gamma > \omega$, the bundle $V^{\gamma} + (V^{\overline{\gamma}})^* \to B$ is stably trivial. Then

$$V(\omega) = V^{\omega} + \sum_{\gamma > \omega} m(\omega, \gamma) V^{\gamma}, \quad V(\overline{\omega}) = V^{\overline{\omega}} + \sum_{\overline{\gamma} > \overline{\omega}} m(\overline{\omega}, \overline{\gamma}) V^{\overline{\gamma}},$$

since $m(\gamma, \gamma) = 1 = m(\overline{\gamma}, \overline{\gamma})$. But $m(\omega, \gamma) = m(\overline{\omega}, \overline{\gamma})$, for all γ (cf. proof of Proposition (4.1), p. 261 of [4]), since $M_{\overline{\gamma}} = M_{\gamma}^*$, and as $-\omega$ and ω belong to the same $W_G(T)$ -orbit, it also follows that $m(-\omega, \overline{\gamma}) = m(\overline{\omega}, \overline{\gamma})$. Hence $V(\omega) + V(-\omega)^* \to B$ is stably equivalent to $V^{\omega} + (V^{\overline{\omega}})^* \to B$, since $V^{\gamma} + (V^{\overline{\gamma}})^* \to B$ is stably trivial for all $\gamma > \omega$. Now (3.2) implies that $V^{\omega} + (V^{\overline{\omega}})^* \to B$ is stably trivial. Arguing by induction, we can deduce (3.1) assuming (3.2).

To prove (3.2), note first of all that $V(\lambda) \cong \text{Hom}_T(B \times C_{\lambda}, V)$, where C_{λ} is the *T*-irreducible module defined by $\lambda \in I^*$. Now we proceed as in [11], adapting the proof to *K*-theory. The isomorphism

$$\tau\colon T\to S^1\times\cdots\times S^1,$$

defined in §2, induces naturally a splitting $\xi \cong \xi_1 + \cdots + \xi_r$ of ξ as a sum of line bundles, where ξ is the principal *T*-bundle

$$ET \times SV \rightarrow (ET \times SV)/T = ET \times_T SV.$$

Define $t_i \in \mathscr{K}_T^*(SV) = K^*(ET \times_T SV)$ to be $[\xi_i^*] - 1$, where ξ_i^* is the dual of ξ_i , and put

(3.3)
$$P(V) = \prod_{\lambda \neq 0} P(V(\lambda)),$$

562

where $P(V(\lambda)) = \lambda^{m_{\lambda}} + c_1(V(\lambda))\lambda^{m_{\lambda}-1} + \cdots + c_{m_{\lambda}}(V(\lambda))$ is the K-theoretic Grothendieck defining relation of $V(\lambda) \to B$ evaluated at λ (Theorem (7.1) of [5]). The following result is the K-theoretic analogue of [11]. The proof will be omitted, it being similar.

Put $V_0 = V^T$, $V = V_0 + V^{\perp}$, and denote by β the Thom-class of SV^{\perp} in SV. Regard P(V) as an element in $K^*(B)[[t_1, \ldots, t_r]]$, where t_1, \ldots, t_r are regarded as indeterminates.

THEOREM (3.4). The map $ET \times_T SV \to B$ induces an isomorphism $K^*(B)[[t_1, ..., t_r]]/(P(V))[\beta] \to \mathscr{K}^*_T(SV, SV_0)$

of $K^*(B)$ -modules, where (P(V)) is the ideal generated by P(V).

Denote by Λ and Γ the non-zero weights of the representation of T, defined by the fibers of $V \to B$ and $W \to B$, respectively. Then the existence of a T^{∞} -fiber homotopy equivalence over $B, f: SV \to SW$, implies

(3.5)
$$P(V) = (\deg_T f)^{-1} \cdot |\Gamma|$$

where $\deg_T(f)$ is the \mathscr{X}_T -degree of $f|S(V_b)$, with $b \in B$, and V_p is the fiber at b. But, according to Proposition (2.2), $\deg_T(f) = |\Gamma|/|\Lambda|$. Hence equation (3.5) can be written in the form

$$(3.6) P(V) = |\Lambda|.$$

Consider first the case when dim T = 1. Since for every $\lambda \in \Lambda$, there is a *T*-equivalence

$$S(V(\lambda) \otimes \mathbf{C}_{\lambda}) \longrightarrow S(V(\lambda)^* \otimes \mathbf{C}_{-\lambda})$$

where $V(\lambda)^* \to B$ is the dual of the $V(\lambda) \to B$, we can adjust the components of $V \to B$ so that the given bundle $V \to B$ becomes

$$V_0 + \sum_{\lambda \neq 0} (V(\lambda) + V(-\lambda)^*) \otimes \mathbf{C}_{\lambda} \to B$$

where $\lambda \in \Lambda$ ranges over the positive elements. (Recall that when dim T = 1, $I^* \cong \mathbb{Z}$.) Denote the positive elements of Λ by $\{\lambda_1, \ldots, \lambda_k\}$, and assume that λ_1 is the smallest element. Now consider the equivariant Grothendieck polynomial

$$P(V) = \prod_{i=1}^{k} \left\{ (X^{\lambda_{i}} - 1)^{m_{i}} + c_{1}(V_{1}')(X^{\lambda_{i}} - 1)^{m_{i}-1} + \cdots \right\}$$

where $V_i' = V(\lambda_i) + V(-\lambda_i)^*$, $m_i = m_{\lambda_i} = \dim_{\mathbb{C}} V_i'$, and X = t + 1. Collecting the terms that involve the first Chern classes of the components V_i' , we obtain the expression

$$\sum_{i} c_1(V_i') (X^{\lambda_1}-1)^{m_1} \dots (X^{\lambda_i}-1)^{m_i-1} \dots (X^{\lambda_k}-1)^{m_k}.$$

The leading coefficient of $c_1(V_1')$ is the monomial

$$X^{\lambda_1(m_1-1)}X^{\lambda_2m_2}\ldots X^{\lambda_km_k}$$

and, since λ_1 is the smallest element of $\{\lambda_1, \ldots, \lambda_k\}$, it follows easily that this monomial does not occur anywhere else in $P(V) - |\Lambda|$. Thus the equation $P(V) = |\Lambda|$ implies that $c_1(V'_1) = 0$. This means that V'_1 is stably trivial and, hence, $c_j(V'_1) = 0$ for $j + 1, \ldots, m_1$. Therefore $P(V'_1) = (X^{\lambda_1} - 1)^{m_1}$ and, after dividing the equation $P(V) = |\Lambda|$ by $(X^{\lambda_1} - 1)^{m_1}$, which is the same as $(\lambda_1)^{m_1}$, we obtain a similar equation involving one less character. Proceeding inductively, we prove the theorem in the special case when dim T = 1.

Now let us turn to the general case when dim $T \neq 1$. Choose an element $\lambda_1 \in \Lambda$ of maximal length as in §1 and a character

$$\alpha = \sum_{i=1}^r a_i \tau_i \quad \text{in } I^* \subset (LT)^*$$

such that

(i) $(\alpha, \lambda_1) > (\alpha, \lambda')$ for all $\lambda' \in \Lambda$, and

(ii)
$$(\alpha, \mu) \neq 0$$
 for all $\mu \in \Lambda$.

The element $\alpha = \sum_{i=1}^{r} a_i \tau_i$ defines a homomorphism φ_{α} : $S^1 \to T$ which takes $e^{2\pi i \tau}$ to the tuple $(e^{2\pi i a_1 \tau}, \dots, e^{2\pi i a_r \tau_r})$. Considering the bundle

$$V_0 + \sum_{i=1}^k V(\lambda_i) \otimes \mathbb{C}_{\lambda_i} \to B$$

as an S¹-bundle by means of the homomorphism φ_{α} , we can conclude, because of condition (ii) above, that $V^{S^1} = V_0$. Put

$$\Lambda' = \{ (\lambda_i, \alpha) | i = 1, \ldots, k \},\$$

and by definition let $\lambda'_1, \ldots, \lambda'_p$ be its distinct elements. Write V in the form

$$V_0 + \sum_{i=1}^p V(\lambda'_i) \otimes \mathbf{C}_{\lambda'_i} \to B.$$

(This is just the decomposition of V as an S^1 -bundle.) It is easy to see that condition (i) above implies that $V(\lambda'_1) = V(\lambda_1)$ and $V(-\lambda'_1) = V(-\lambda_1)$. Proceeding as in the special case when dim T = 1, we prove that $V(\lambda_1) + V(-\lambda_1)^* \rightarrow B$ is stably trivial. Now, continuing inductively, we finish the proof of the theorem for T with dim T > 1.

References

- 1. M.F. ATIYAH and F. HIRZEBRUCH, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., vol. III (1961), pp. 7-38.
- 2. M.F. ATIYAH and G. B. SEGAL, Equivarint K-theory and completions, J. Differential Geom., vol. 3 (1969), pp. 1-18.
- 3. J.C. BECKER and E.R. SCHULTZ, Equivariant function spaces and stable homotopy theory I, Comment. Math. Helv., vol. 49 (1974), pp. 1–34.
- 4. THEODORE BRÖCKER and TAMMO TOM DIECK, Representations of compact Lie groups, Springer-Verlag, New York, 1985.
- 5. R. BOTT, Lecturer on K(X), W.A. Benjamin, New York, 1969.
- W. BROWDER, Surgery and the theory of transformation groups, Proc. of the Conf. on Transformation groups, New Orleans 1967, Springer-Verlag, New York, 1966, pp. 1-46.
- 7. TAMMO TOM DIECK, Transformation groups and representation theory, Lect. Notes in Math., no. 766, Springer-Verlag, New York, 1979.
- 8. A. DOLD, Partitions of unity in the theory of fibrations, Ann. of Math., vol. 78 (1963), pp. 223-255.
- 9. E. DROR, W.G. DWYER and D.M. KAN, Automorphisms of fibrations, Proc. Amer. Math. Soc., vol. 80 (1980), pp. 491-494.
- S.Y. HUSSEINI, The equivariant J-homomorphism for arbitrary S¹-actions, Indiana Univ. Math. J., vol. 33 (1984), pp. 711-720.
- 11. _____, Applications of equivariant characteristic classes to problems of the Borsuk-Ulam and degree theory type, to appear.
- A. LIULIVICIUS, Borsuk-Ulam theorems and K-theory degrees of maps, Proc. of the Conf. on Algebraic Topology, Aarhus 1982, Lect. Notes in Math., no. 1051, Springer-Verlag, New York, 1984, pp. 610–619.
- 13. A. MEYERHOF and T. PETRIE, Quasi-equivalence of G-modules, Topology, vol. 15 (1976), pp. 69-75.
- 14. G.B. SEGAL, *Equivariant K-theory*, Inst. Hautes Études Sci. Publ. Math., vol. 34 (1968), pp. 129-151.
- 15. R.M. SWITZER, Algebraic topology-homotopy and homology, Springer-Verlag, New York, 1975.
- 16. P. TRACZYK, On the G-homotopy equivalence of spheres of representations, Math. Zeitschr., vol. 161 (1978), pp. 257-261.

UNIVERSITY OF WISCONSIN MADISON, WISCONSIN