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G-FIBER HOMOTOPY EQUIVALENCE

BY

S.Y. HUSSEINI

Introduction and preliminaries

Let G be a compact, connected Lie group, and V, W two complex G-mod-
ules. Denote the unit spheres by SV, SW. In this article we shall be concerned
with maps over BG,

xd.s.v, sv) /; xd sw, sw

B

where EG BG is a universal G-bundle. Such maps are studied in [9]. It can
be easily seen that they are exactly those induced by equivadant maps
EG SV SW, i.e., by the so-called Goo-maps SV SW. We shall say that
f is a Goo-equioalence if, and only if, f is the degree-one map on the fibers.
Note that according to Dold’s theorem [8] a Goo-equivalence is a fiber-homo-
topy equivalence, and therefore it admits a Goo-equivalence as an inverse. Also
note that, in the equivariant case, the notion of a G-equivalence is just the
notion of quasi-equivalence introduced in [13]. We shall say that the Goo-
equivalence SV SW is special if, and only if, it induces a T-equivalence

( sv, svr, sv) --, (sw, swr, sw),
where T c G is a maximal toms. It is easy to see that a degree-one G-map is
special [11].

In this article we first study how V and W are related to each other, given
that SV and SW are Goo-equivalent. The answer is formulated in terms of an
appropriate K-theoretic degree, with values in the completion R(G) of the
representation ring, defined in the manner of [12] and [7] and denoted by
degc f. We shall say that degc f is rational if, and only if, it lies in R(G). It
will be shown in {}2 below that deg f is rational if V--- W and f is a
Goo-equivalence, or if f is equivariant. However, the inverse of a degree-one
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G-map, which is always a GO-equivalence, need not have a rational degree (cf.
Example (6.4) of [13] and (9.5.1) of [7] and Proposition (2.2) below).
We first show (Theorem (1.1)) that if there are special G-equivalences

SV SW with rational degrees, then V and W are equivalent up to conju-
gancy. Theorem (2.2) of [16] follows as a special case. Next we consider the
sphere bundles SV B, SV B of the complex G-vector bundles V B,
W B over the trivial G-complex B. Given a G-fiber homotopy equivalence
SV Sire over B, we show (Theorem (2.3)) that the summands of V and W
defined naturally by the irreducible G-modules are stably equivalent, again up
to conjugamcy. This latter result is useful in the study of the question of the
injectivity of the equivariant J-homomorphism and whether the image is a
direct summand. As an illustration we state a result on the injectivity which
generalizes those of [3], [6], [10] and [11].

1. Statement of results

Let (X, A) be a compact G-pair. Put

a,’:(x, ,4) a)),
where K* is the K-theory based on the Bott-spectrum [1], [15]. Note that, for
nice enough spaces, :*(X, A) is the completion of the equivariant K-theory
of Segal [14] (Theorem (2.1) of [2]). Also note that ’* defines an equivariant
K-theory on the category of compact G-spaces and G-maps.
Now let V and W be two complex G-modules, and denote by SV and SW

the unit spheres with respect to some invariant Hermitian metrics. The
,g’*-degree of a G-map f: SV SW is, by definition, the quantity deg f in
.gg’*(Point) K*(BG) = R(G) such that

,3g’*(f)(#w) deg(/) v
where/.tw and #v are the Thom-classes of

EG X W BG and EG Xc. V BG

respectively. This is of course completely analogous to the notion of an
equivariant degree defined in [12] and 9.7 of [7] for equivariant maps, and
reduces to it in that case. Thus deg f is rational if f is a G-map.

Following the notation of p. 192 and p. 195 of [4], let K (LT)* be a Weyl
chamber, 1 ker{expr: LT T} the integral lattice,_and 1" { a
(LT)*Ia(1) Z} the lattice of integral forms. For o K i*, denote by
M,o the irreducible G-module whose highest weight is 0 (p. 242 of [4]). Let us
note that the evaluation morphism

nom(M,o, V) (R) M, ---, V
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induces naturally an isomorphism

of G-modules, where V Homa(M, V) and to ranges over K I*. Finally
for to K I*, let o(-to), where o is the element of the Weyl group
W(T) of G relative to T which takes -K to K, (p. 261 of [4]).

TI-IEOIM (1.1). Suppose that

SV SW
g

are special G-equivalences such that deta f and deta g are rational. Then

V" dimc W" + dimcdimc V’ + dimc

for all w K I*.

The proof is given in 2 below.
As dimc V is the multiplicity of M in M, and as M, and M are

equivalent as real G-modules, the following is an immediate corollary.

COROLLARY (1.2). V and W are isomorphic as real G-modules.

The special case when f and g are G-maps is proved in [11]. Also, the case
when f and g are the G-maps and Va= {0} Wa is proved in [16],
Theorem (2.2).
Next let us consider the complex G-vector bundles

where to K N I*, Mo, is the irreducible G-module whose highest weight is to

and V= Hom(B M, V). The base-space B is by assumption a trivial
G-space.

THEOREM (1.3). Suppose that

fSV SW

is a special G-equivalence over B, and that B is a connectedfinite cell complex.
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Then

v + * -, s, w + * --,

are stably equivalent as vector bundles, for all of 0 q: to K 3 I*.

The proof is given in 3 below.
The preceding theorem yields the following information on the equivariant

J-homomorphism. Consider the complex G-module

V=Vo+EW M ,

where to ranges over the set fl (to1,---, tok} C K 3 (LT)* of non-zero
maximal weights of V, and V’= HomG(M,, V). Thus VG= V0. Define
Map.(SV) to be the space, with the compact-open topology, of special
G-equivalences. Then the sub-space of linear maps is Urn1 Umk, where
mk dimc V’k. Passing to limits and classifying spaces, we obtain the map

J: (BU)k B Map=(SV)

where (BU)xg is the k-fold product of the classifying space of the infinite
unitary group, and Map(SV) is the limit of Map(SV) as ml,...,

mk --- OOo

Let f: B (BU) be a map, and denote by fo, the component corre-
sponding to to ft. Also denote by c: BU BU the classifying map of the
dual of the universal bundle, and put fc f c.

COROLLARY (1.4). The composite

G /, BUxk B Map.o(SV)

is null-homotopic if, and only if, f, + f is null-homotopic for all to f, where
addition is that induced by the Whitney sum.

Similar results are proved for the map

(BU)’ B Map(SV)

in [3], Theorem (11.1), and in [6], [10], and [11], with B a sphere. When B is
just a finite complex, the case when G-- S3 or S and the action is free is
established in [3]. This latter result is used there (in [3]) to prove that the image.
of J’ on the homotopy groups is a direct summand. Corollary (1.4) plays a
similar role for the general case.
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2. Proof of Theorem (1.1)

Consider V and W as T-modules, and denote by V(,) and W(h) the weight
spaces of V and W that correspond to I*. The key step in the proof is the
following.

Assertion (2.1): For all I*,

dimcV(h ) + dimcV(-h ) dimcW(h) + dimcW(-h ).

Assuming (2.1) for the time being, let us prove Theorem (1.1). Put

V { g - I*ldimcV(, ) + dimcV(-, ) + 0}.
As - and X belong to the same orbit of the Weyl group W(T), we note that

dimc V(X) dimc V( h) and dimc W() dimc W( X).

Hence,

P { g I*ldimcV(X ) + dimcV(X ) : 0}
{, g I*ldimcW() ) + dimcW(, ) 4: 0}.

Now let o P be a maximal element with respect to the usual order
[4, Definition (2.2), p. 250]. Then either M or M is a G-summand of V.
Similarly, either M,0 or M is a G- summand of W. Thus proceeding
inductively, we can show that

W + dimcW for all o K N I*dimc V’ + dimc V dimc

which is what is to be proved.
To prove Assertion (2.1), let

A {X /*IV(X) + {0}} and r {v + I*lW(,)+ {o}}.

Regarding as a homomorphism T ---, S1, we can identify it with

K(B)k)(t) - K(BT),where t--*-1 and * is the dual of the Hopf-bundle over BS1. By
definition, let

where mx dimc V(h), mv dimc W(-).
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The first step in the proof of Assertion (2.1) is the computation of degr(f).

PROPOSITION (2.2). Irl degr(/)" IAI.

Proof. Put Vo Vr. We shall prove only the case when V0 (0), the
other being similar. It is easy to see that

,I{’ (SVo) -- K* ( BT ) (R) K* (SVo )

and that

9’(SV) -- K*(BT) (R) K*(SV).

Let V’ c: V be the T-orthogonal complement of Wo in V, and denote by
fl .gff(SV, SVo) the Thom-class of the normal bundle of SV’ in SV. The
Thom Isomorphism Theorem implies that

r(sv, SVo ) x(v’)[].

Moreover the homomorphism T ---) U,,,, m’ dimc V’, defined by the T-mod-
ule V’, and the naturality of the Euler class imply that

U(V’) =_ K*(BT)/(IAI),

where (IAI) is the ideal generated by IAI. Since 9:(SV) is torsion-flee as a
K*(BT)-module, we see immediately that the exact sequence of (SV, SVo)
becomes the short exact sequence

(2.3) 0 K*(BT) (R) K*(SV)
-, f(sv, SVo) -, o.

IAI. K*(BT) (R) K*(SVo)

Similarly, the sequence of (SI/V, SW0) is

(2.4) 0 --* K*(BT) (R) K*(SW) K*(BT) (R) K*(SWo)
-,r(sw, SWo) -, o.

Now let

#V’o K" (DVo, SVo) and lWo e K, (DWo, SWo)

be the Thom classes of

ET XrVo--* BT and ET Xr140BT,
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respectively, and define

[sv0] ar(sv0),

and

[sv]

[sw]  r (sw)

[sw0] (sw0)

to be the elements whose coboundaries are the Thom classes of the corre-
sponding vector bundles. As AI and I’l are the equivalent Euler classes of V0
in V and W0 in W, it follows that the first morphisms of (2.3) and (2.4) take
[SV] to IAI" [SV0] and [SW] to Irl-[SWol. Finally, the given map f
induces a map of (2.4) to (2.3). By naturality we see that I’l (dega f)lAI as
required.
The second step in the proof of assertion (2.1) is the computation of [A[

and [F[. So choose an isomorphism : T S S of T with the
r-fold product S, with r dim T. Regarding the components ,..., , of
as elements of K*(BT), we see immediately that K*(BT)-- R[[1,..., ,]],
where R K*(Point), and the latter is isomorphic to Z[u, u -t] [1, p. 13]. A
homomorphism X: T S induces in turn a homomorphism

L(Xi)*:L(S)* -->L(T)*

of the duals of the Lie algebras, which can be expressed in the form

L(Xi)*(dt ) Xijd., 1 < < k,
i--1

where [hj] is an integral matrix. An easy computation shows that

Similarly,

Now set xj

(2.7)

(). + 1) for j 1,..., r, and consider the equation

II’l (degrf)" IAI.
Since degr(f) R(T) by assumption, and since IAI, II’l R(T), then (2.7)
is an equation in R(T). The third step in the proof of Assertion (2.1), is to



GOO-FIBER HOMOTOPY EQUIVALENCE 561

exploit the divisibility of FI by A[. Recall that

z[xx,..., Xr)-l].
Assume that the elements of IAI c (LT)* are ordered so that I’l >- [Xjl for
1 < < j < k, where I,1 E_x(,j)z. For every integer s, define

z[ Xr; ( Xr) --’ Z[ X; X- I
to be the homomorphism which takes Xy to X(SXlJ+aJ), where ay is the
coefficient of zy is the sum z0 al"rl + + ar’rr, with the coefficients ay Z
chosen so that (z0, 7) 4:0 for all 7 F. Putting g s, + z0, we see easily
that

aXs(l) X(l’s) 1,

,(Irl) H(x("") 1) m’

where (-,.) is the usual inner-product, and mr dimc W(7), the. multiphcity
of 7. Let us observe now that (2.7) implies that 1 divides II’l in R(T).
Hence, for sufficiently large s, X<xx’,) 1 divides a,(IFI). Since the prime
factors of the polynomials that appear in a(h) and a,(lI’l) are the cyclo-
tomic polynomials that correspond to the factors of (,x, g) and (7, g), we
see immediately that (,x, gs) divides (3’1, g) for some 7 in F and infinitely
many integers s > 0. Therefore, either I1 > I,1 or I1 I,xl- If Ixl
I’1 I, then arguing as above by using the T-map g, whose dr*-degree is in
R(T), we would obtain an dement X’ A such that I,’1 >- 1711 > Xxl- But
this would contradict the maximality of I,xl- Hence Ixl--IXxl, which
imphes that h -I-71 since Ihll I’11 and (71, /Xs) is a multiple of
for infinitely many s Z.

Finally, repeating the argument for A \ (hx} and F \ (,}, one sees that
after a finite number of steps, given X A, we can find 3’ F such that
X + 3’, and conversely. This proves assertion (2.1) and hence Theorem (1.1).

3. Proof of Theorem (1.3)

The proof proceeds in stages. Let

V= _,V’(R)M.,--)B and W= .,W’(R)M.,--)B

be two complex G-vector bundles over B as in 1, with to K n I*. Observe
that on adding appropriate G-vector bundles to V and W we can reduce the
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theorem to the special case where W B is the trivial bundle for all
0 4 0 K n 1". Thus the theorem is equivalent to the following statement.

(3.1) For all 0 q: o K I*, the complex vector bundle V + (V’)* --> B
is stably trivial.

For each , I*, put V(X) Em(X, o)V, for 0 4: o K q I* where
m(X, o) is the multiplicity of in Mo. The first step in the proof of (3.1) is to
show that it is implied by the following assertion.

(3.2) For all 0 4 ? I*, the complex vector bundle V(?) + V(-)* B
is stably trivial.

Put

V" + dimc (VP {o g3 I*ldimc )* 0),
and choose an element o P such that, for all y P with 7 > o, the bundle
Vv + (V)* B is stably trivial. Then

V(a)) V’+ E m(a),y)Vv,
y>

V() V+ E m(,)V,
?>

since m(7, y) 1 m(, ). But rn(0, 7) rn(, ), for all y (cf. proof of
Proposition (4.1), p. 261 of [4]), since M My*, and as -o and 0 belong to
the same W(T)-orbit, it also follows that m(-o,)= m(,). Hence
V(o) + V(-o)* B is stably equivalent to V + (V’)* B, since Vv +
(VV)* B is stably trivial for all > 0. Now (3.2) implies that V + (V)*

B is stably trivial. Arguing by induction, we can deduce (3.1) assuming
(3.).
To prove (3.2), note first of all that V(h) --- Homr(B Cx, V), where Cx is

the T-irreducible module defined by e I*. Now we proceed as in [11],
adapting the proof to K-theory. The isomorphism

z: T S x X S1,

defined in {}2, induces naturally a splitting --- t + +r
line bundles, where is the principal T-bundle

of as a sum of

e7 x sv -, ( eT" x sv)/r er

Define t d)’(SV) K*(ET r SV) to be [/*] 1, where /* is the dual
of i, and put

(3.3) e(v) I-I P(V(X)),
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where P(V(X)) )tmx + ct(V()k))Xrex-1 + +Cmx(V()t)) is the K-theoretic
Grothendieck defining relation of V(X) B evaluated at (Theorem (7.1) of
[5]). The following result is the K-theoretic analogue of [11]. The proof will be
omitted, it being similar.

Put Vo Vr, V V0 + V +/- and denote by fl the Thorn-class of SV +/- in
SV. Regard P(V) as an element in K*(B)[[tl,..., LI], where q,..., are
regarded as indeterminates.

THEOREM (3.4). The map ET Xr SV B induces an isomorphism

K*(B)[[tt,..., tr]]/(P(V))[B] --’ (SV, SVo)

of K*(B)-modules, where (P(V)) is the ideal generated by P(V).

Denote by A and F the non-zero weights of the representation of T, defined
by the fibers of V B and W B, respectively. Then the existence of a
T-fiber homotopy equivalence over B, f: SV SW, implies

(3.5) P(V) (degrf) -. IFI
where degr(f) is the X’-degree of flS(Vb), with b B, and V is the fiber at
b. But, according to Proposition (2.2), degr(f) I’I/IAI. Hence equation
(3.5) can be written in the form

(3.6) V(V)- IAI.
Consider first the case when dim T 1. Since for every , A, there is a

T-equivalence

s(v(x) (R) ---, s(v(x), (R)

B’
where V(X)* B is the dual of the V(A) ---> B, we can adjust the components
of V B so that the given bundle V B becomes

v0 + E (v(x) + v(-x),). -,

where )t A ranges over the positive elements. (Recall that when dim T
1, I* Z.) Denote the positive elements of A by {Xx,..., Xk }, and assume
that X is the smallest dement. Now consider the equivariant Grothendieck
polynomial

k

P(V) /I-11._ {(Xx’ 1) m’ + Cl(Vlt)(Xhi 1)mi-1 + }
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where V/’ V(Xi) + V(-i)*, m mx, dimcV/’, and X + 1. Collect-
ing the terms that involve the first Chern classes of the components V’, we
obtain the expression

Cl(Vi’)(ght 1)"’ ...(Xx’- 1)’*

The leading coefficient of ct(V{) is the monomial

Xhl(ml- 1)xh2m X’kmk

and, since ),t is the smallest dement of {)kt,..., Xk }, it follows easily that this
monomial does not occur anywhere else in P(V)- IAI. Thus the equation
P(V) IAI implies that q(V{) 0. This means that Vx’ is stably trivial and,
hence, cj(V{)= 0 for j + 1,..., ml. Therefore P(V{)= (Xx -1)mx and,
after dividing the equation P(V) IAI by (Xx 1)mx, which is the same as
()1)mr, we obtain a similar equation involving one less character. Proceeding
inductively, we prove the theorem in the special case when dim T 1.
Now let us turn to the general case when dim T 4= 1. Choose an dement

h A of maximal length as in {}1 and a character

_.r
a= ,aiz inI*C (LT)*

such that

(i)
(ii)

(a, 1) > (tl, )’) for all )’ A, and
(a,/.t) #= 0 for all # A.

The element a Eri_lai’ri defines a homomorphism %: S T which takes
e2"i to the tuple (e2ria,..., e2’ria’r’). Considering the bundle

k

v0 + E v(x,),
i----1

as an SLbundle by means of the homomorphism %, we can conclude, because
of condition (ii) above, that Vsx Vo. Put

At { ()i’ )l 1,..., k ),

and by definition let h’,..., h’,, be its distinct dements. Write V in the form

p

Vo + E
i=l
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(This is just the decomposition of V as an Sl-bundle.) It is easy to see that
condition (i) above implies that V(X) V(Xl) and V(-) V(-,x). Pro-
ceeding as in the special case when dim T 1, we prove that V(X)+
V(-X)* B is stably trivial. Now, continuing inductively, we finish the
proof of the theorem for T with dim T > 1.
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