THE GEOMETRY OF BRS TRANSFORMATIONS

BY

RUDOLF SCHMID¹

1. Introduction

In 1976 C. Becchi, A. Rouet and R. Stora [1] noticed that in gauge field theories the effective Lagrangian, which is no longer gauge invariant, is still invariant under a new class of transformations now called BRS transformations

$$sA = d\eta + [A, \eta], s\eta = -1/2[\eta, \eta]$$

where A is the potential field (connection one form) and η is the ghost field. We show how these BRS transformations can be interpreted as purely differential geometric objects. We define a general BRS cohomology $\mathbf{H}^{q,p}$ of the infinite dimensional Lie algebra \mathbf{g} of infinitesimal gauge transformations with respect to an induced representation. As a special case, namely with respect to the adjoint representation, we obtain the classical BRS transformations as coboundary operator

$$s: \mathbb{C}^{q, p} \to \mathbb{C}^{q+1, p}$$

of this complex. The Wess-Zumino consistency condition is expressed as $s^2 = 0$, while the ghost field η is interpreted as the canonical Maurer-Cartan form on the infinite dimensional Lie group G of gauge transformations.

2. The gauge group G

Let $\pi: P \to M$ be a principal bundle with structure group G (not necessarily compact), i.e., we have a free right action $R: P \times G \to P$ of G on P, denoted by $p \cdot a = R(p, a), p \in P, a \in G$. The gauge group G is the group of gauge transformations of P; i.e., G consists of all fiber preserving automorphisms ϕ of P

$$\mathbf{G} = \{ \phi \in \mathrm{Diff}^{\infty}(P) | \phi(p \cdot a) = \phi(p) \cdot a, \pi(\phi(p)) = \pi(p), p \in P, a \in G \}.$$

Received February 10, 1988.

¹Research partially supported by a grant from the National Science Foundation.

G is a group under composition, hence a subgroup of $Diff^{\infty}(P)$, the diffeomorphism group of P. Since gauge transformations preserve the fibers of P we can realize each $\phi \in \mathbf{G}$ by $\phi(p) = p \cdot \tau(p)$, where τ is a smooth map τ : $P \to G$ satisfying $\tau(p \cdot a) = a^{-1}\tau(p)a$. Let

$$\operatorname{Gau}(P) = \left\{ \tau \in C^{\infty}(P,G) | \tau(p \cdot a) = a^{-1}\tau(p)a, p \in P, a \in G \right\}.$$

Gau(P) is a group under pointwise multiplication, hence a subgroup of the "loop group" $C^{\infty}(P, G)$.

The first observation is that the relation $\phi(p) = p \cdot \tau(p)$, $\phi \in \mathbf{G}$, $\tau \in \operatorname{Gau}(P)$ defines a group isomorphism

(2.1)
$$G \cong Gau(P), \quad \phi_1 \circ \phi_2 \to \tau_1 \cdot \tau_2.$$

The gauge group G has still another interpretation in terms of associated vector bundles, given by a left action

$$\rho \colon G \times F \to F$$

of G on some manifold F. The twisted bundle $\pi_G = P \times_G F$ is given as follows: G acts on the right on $P \times F$ by $(p, x) \cdot a = (p \cdot a, \rho(a^{-1}, x))$, $x \in F$. The corresponding orbit space $P \times_G F$ is a smooth fiber bundle π_G over M, π_G : $P \times_G F \to M$, $\pi_G[p, x] = \pi(p)$, where [p, x] denotes the orbit through $(p, x) \in P \times F$. Any smooth section s of π_G can be realized by $s(\pi(p)) = [p, \tau(p)]$ where τ is a smooth map τ : $P \to F$ satisfying $\tau(p \cdot a) = \rho(a^{-1}, \tau(p))$.

In our case let F = G and ρ be the conjugation action $\rho(a, b) = aba^{-1}$. Then $Ad(P) \equiv P \times_G G$ is a smooth bundle of groups (not a principal bundle) over M and sections of Ad(P) can be multiplied pointwise, making the space of sections $C^{\infty}(Ad P)$ into a group,

$$C^{\infty}(\operatorname{Ad} P) \cong \left\{ \tau \colon P \to G \middle| \tau(p \cdot a) = a^{-1}\tau(p)a, p \in P, a \in G \right\}.$$

Note that Ad(P) has a trivial subbundle $P \times_G Z$ where Z is the center of G. In general Ad(P) is not trivial but if G is abelian, then Ad(P) is a trivial vector bundle over M. With this identification the gauge group G is canonically group isomorphic to the group $C^{\infty}(Ad P)$;

$$\mathbf{G} \cong C^{\infty}(\operatorname{Ad} P).$$

To put a topology on G we complete the space of smooth sections $C^{\infty}(Ad\ P)$ with respect to the Sobolev H_s -norm and give G and Gau(P) the induced topologies; denoting the corresponding spaces by $H_s(Ad\ P)$, G_s , $Gau_s(P)$. If $s > 1/2 \dim M$, then

(2.3)
$$G_s \cong H_s(Ad P) \cong Gau_s(P)$$

are smooth Hilbert manifolds with smooth group operations

$$(\phi_1, \phi_2) \rightarrow \phi_1 \circ \phi_2 \colon \mathbf{G}_s \times \mathbf{G}_s \rightarrow \mathbf{G}_s, \phi \rightarrow \phi^{-1} \colon \mathbf{G}_s \rightarrow \mathbf{G}_s,$$

i.e., G_s is a smooth Hilbert Lie group (e.g., see [9]).

3. The gauge algebra g

The gauge algebras g is the Lie algebra of the gauge group G, i.e. the algebra of infinitesimal gauge transformations on P. Again there are three different interpretations of g.

(A) The Lie algebra g of the Lie group G is the space of all G-invariant, vertical (i.e., tangent to the fibers) smooth vector fields X on P, i.e.,

$$\mathbf{g} = \left\{ X \in \mathbf{X}^{\infty}(P) | R_a^* X = X, X(p) \in \mathbf{g}, a \in G, p \in P \right\}$$

where g is the Lie algebra of G and $R_a(p) = R(p, a)$. Under the commutator bracket g is a Lie subalgebra of $X^{\infty}(P)$, the Lie algebra of all smooth vector fields on P.

(B) The Lie algebra gau(P) of the Lie group Gau(P) is the space of all Ad-invariant g-valued functions on P, i.e.

$$\operatorname{gau}(P) = \left\{ \xi \in C^{\infty}(P,g) | \xi(p \cdot a) = \operatorname{Ad}_{a^{-1}} \xi(p), p \in P, a \in g \right\},\,$$

where Ad is the adjoint representation of G on g. Under pointwise bracket gau(P) is a Lie subalgebra of the "loop algebra" $C^{\infty}(P, g)$.

(C) Let ad(P) denote the vector bundle associated to the adjoint action of G on g;

$$ad(P) = P \times_G g \to M.$$

The space of sections $C^{\infty}(\operatorname{ad} P)$ is a Lie algebra under pointwise bracket; it is the Lie algebra of the Lie group $C^{\infty}(\operatorname{Ad} P)$.

PROPOSITION 3.1. The Lie algebras g, gau(P), and $C^{\infty}(adP)$ are canonically isomorphic.

Proof. (1) Any section $s \in C^{\infty}(\operatorname{ad} P)$ can be identified with a map $\xi: P \to g$ satisfying $\xi(p \cdot a) = \operatorname{Ad}_{a^{-1}}\xi(p)$ i.e., $\xi \in \operatorname{gau}(P)$. Given any $\xi \in \operatorname{gau}(P)$ we define a section $s \in C^{\infty}(\operatorname{ad} P)$ by $s(\pi(p)) = [p, \xi(p)]$.

(2) For any $\xi \in gau(P)$ define $Z_{\xi} \in g$ by

$$Z_{\xi}(p) = \frac{d}{dt}\Big|_{t=0} R(p, \exp t\xi(p)), \quad (=\xi(p)^*(p));$$

i.e., Z_{ξ} is the fundamental vector field on P generated by $\xi \in \mathbf{g}$. It is invariant iff $\xi(p \cdot a) = \operatorname{Ad}_{a^{-1}}\xi(p)$. This defines an isomorphism between $\operatorname{gau}(P)$ and \mathbf{g} .

To topologize g accordingly, we complete the space of smooth sections $C^{\infty}(\operatorname{ad} P)$ with respect to the H_s -Sobolev norm and give g and $\operatorname{gau}(P)$ the induced topologies; denoting the corresponding spaces by $H_s(\operatorname{ad} P)$, g_s , $\operatorname{gau}_s(P)$. If $s > 1/2 \operatorname{dim} M$ then

$$(3.1) g_s \cong H_s(ad P) \cong gau_s(P)$$

are Hilbert spaces.

There is a natural exponential map Exp: $gau_s(P) \rightarrow Gau_s(P)$ defined by

$$(\operatorname{Exp} \xi)(p) = \exp(\xi(p)),$$

where exp: $g \to G$ is the exponential map of G. The map Exp is a local diffeomorphism form a neighborhood of zero in $gau_s(P)$ onto a neighborhood of the identity in $Gau_s(P)$. Smoothness of Exp follows from the Ω -lemma: Exp = Ω_{exp} : $H_s(P, g) \to H_s(P, G)$, $\Omega_{exp}(\xi) = \exp \circ \xi$. Summarizing we have:

PROPOSITION 3.2. For $s > 1/2 \dim M$, $G_s \cong \operatorname{Gau}_s(P) \cong H_s(\operatorname{Ad} P)$ are smooth Hilbert Lie groups with Lie algebras $g_s \cong \operatorname{gau}_s(P) \cong H_s(\operatorname{ad} P)$.

Remark. We will switch between these three interpretations of gauge transformations as elements of either G, Gau(P), or $C^{\infty}(Ad\ P)$ and translate important facts from one picture to the others. Typically we will denote elements of G by ϕ , elements of Gau(P) by τ and elements of $C^{\infty}(Ad\ P)$ by s. As example, the corresponding exponential map $Exp: gau_s(P) \to G_s$ is given by $(Exp\ \xi)(p) = p \cdot exp(\xi(p))$.

4. Representation of G and g on $\Lambda(P, V)$

Let ρ be a representation of G on a finite dimensional vector space V and let $\Lambda^k(P, V)$ be the space of V-valued equivariant k-forms Φ on P, i.e. satisfying $R_a^* \Phi = \rho(a^{-1}) \cdot \Phi$, $a \in G$. Let

$$\Lambda(P,V) = \sum_k \Lambda^k(P,V).$$

For $h \in g$ let Z_h denote the fundamental vector field on P generated by h and denote by i_h and L_h the operators interior product i_{Z_h} and Lie derivative L_{Z_h} respectively, extended to the space $\Lambda(P,V) \cong \Lambda(V) \otimes V$; $i_h = i_{Z_h} \otimes \operatorname{id}$, $L_h = L_{Z_h} \otimes \operatorname{id}$. Consider the derived representations ρ' of g on $\Lambda(V,P)$. For any $\Phi \in \Lambda(P,V)$ we have $\rho'(h)\Phi = -L_h\Phi$, $h \in g$. Then G is represented on $\Lambda(P,V)$ by $\pi(\phi)\Phi = (\phi^{-1})^*\Phi$, $\phi \in G$.

Let $X \in \mathbf{g}$ and $\xi \in \operatorname{gau}(P)$ such that $X(p) = Z_{\xi(p)}(p)$, i.e., $X \cong \xi$ under the identification 3.1. Let $L_{\xi} = L_{Z_{\xi}}$ and $i_{\xi} = i_{Z_{\xi}}$.

PROPOSITION 4.1. The derived representation π' of \mathbf{g} on $\Lambda(P, V)$ is given by

$$\pi'(X)\Phi = L_{\xi}\Phi, \quad X \in \mathfrak{g}, \Phi \in \Lambda(P, V).$$

Proof. The flow of Z_{ξ} is given by $\exp t\xi$ hence

$$\pi'(X)\Phi = \pi'(\xi)\Phi = \frac{d}{dt}_{|t=0}\pi(\exp t\xi)\Phi$$
$$= \frac{d}{dt}_{|t=0}(\exp(-t\xi))^*\Phi = L_{Z_{\xi}}\Phi = L_{\xi}\Phi.$$

We put a Hilbert space structure on $\Lambda(P,V)$ as follows: For $s>1/2\dim P$ let $\mathbf{X}_s(P)$ denote the completion of the space of smooth vector fields $\mathbf{X}^\infty(P)$ under the Sobolev H_s -norm. \mathbf{X}_s is a Hilbert space. Then the space $\Lambda_s^k(P,V)$ is the space of all continuous V-valued and equivariant, skew k-linear maps on $\mathbf{X}_s(P)$. With the induced topologies $\Lambda_s^k(P,V)$ and $\Lambda_s(P,V) = \sum_k \Lambda_s^k(P,V)$ are Hilbert spaces.

The representation π induces an action on G_s of $\Lambda_s(P, V)$: $\phi \cdot \Phi = \pi(\phi)\Phi = (\phi^{-1})^*\Phi$. This action is smooth since $\phi \to \phi^{-1}$ and pull back are both smooth.

Special subrepresentations. Let V = g and $\rho = Ad$, the adjoint representation of G in g. For $\Phi \in \Lambda^k(P, g)$ and $\Psi \in \Lambda^j(P, g)$ we have

$$[\Phi, \Psi] = \Phi \wedge \Psi - (-1)^{jk} \Psi \wedge \Phi \in \Lambda^{j+k}(P, g);$$

e.g., for $\omega \in \Lambda^1(P, g)$ we get $\frac{1}{2}[\omega, \omega] = \omega \wedge \omega$.

Identifying g with $\Lambda^0(P, g)$, i.e., with Ad-equivariant g-valued functions on P, we get the next result.

COROLLARY 4.2. The derived representation π' of g on $\Lambda^0(P, g) \cong g$ is the adjoint representation of g:

$$\pi'(X)(Y) = \operatorname{ad}_X(Y) = [X, Y], X, Y \in g.$$

Denote by A the space of connection 1-forms (or gauge potentials) on P; i.e., $\omega \in A$ iff ω is a g-value 1-form on P satisfying $R_a^*\omega = \operatorname{Ad}_{a^{-1}}\omega$ and $\omega(Z_h) = h \in g$. For fixed $\omega_0 \in A$ we write $\omega = \omega_0 + \tau$ with $\tau \in \Lambda^1(P, g)$; i.e., we regard A as affine space $A = \omega_0 + \Lambda^1(P, g)$ with tangent space $T_{\omega_0}A = \Lambda^1(P, g)$. With the induced topology from $\Lambda^1_s(P, g)$ we denote A by A_s .

The space A_s is invariant under the induced action of G_s . Indeed,

$$\begin{split} R_a^*(\pi_{\phi}\omega) &= R_a^*(\phi^{-1})^*\omega = (\phi^{-1} \circ R_a)^*\omega = (R_a \circ \phi^{-1})^*\omega = (\phi^{-1})^*R_a^*\omega \\ &= (\phi^{-1})^*(\mathrm{Ad}_{a^{-1}}\omega) = \mathrm{Ad}_{a^{-1}}(\phi^{-1})^*\omega = \mathrm{Ad}_{a^{-1}}(\pi_{\phi}\omega). \end{split}$$

and

$$(\pi_{\phi}\omega)(Z_h)(p) = (\phi^{-1})^*\omega(Z_h)(p) = \omega(\phi^*Z_h)(p)$$

$$= \omega\left(\frac{d}{dt}\Big|_{t=0}\phi^{-1}(p\cdot\exp th)\right)$$

$$= \omega\left(\frac{d}{dt}\Big|_{t=0}\phi^{-1}(p)\cdot\exp th\right) = \omega(Z_h(p)) = h.$$

Let D_{ω} denote the exterior covariant derivative with respect to $\omega \in A$:

$$D_{\omega}$$
: $\Lambda^{k}(P,g) \to \Lambda^{k+1}(P,g)$, $D_{\omega}(\Phi) = d\Phi + \frac{1}{2}[\omega,\Phi]$.

The curvature 2-form (or gauge field) Ω of ω , defined by $\Omega = D_{\omega}\omega \in \Lambda^2(P,g)$ satisfies the structure equation of Maurer-Cartan $\Omega(X,Y) = d\omega(X,Y) + \frac{1}{2}[\omega(X),\omega(Y)], X,Y \in \mathbf{X}(P)$, written compactly as $\Omega = d\omega + \frac{1}{2}[\omega,\omega]$, and the Bianchi identity $D_{\omega}\Omega = 0$.

PROPOSITION 4.3. The induced action of the derived representation π' of g on A is given by

$$\pi'(X)\omega = D_{\omega}\xi, \quad X \in \mathbf{g}, \, \omega \in \mathbf{A},$$

where $X = Z_{\xi}, \xi \in \text{gau}(P)$.

Proof. From Proposition 4.1 we have $\pi'(X)\omega = L_{\xi}\omega$. But $L_{\xi}\omega = di_{\xi}\omega + i_{\xi}d\omega$ and $i_{\xi}\omega = \omega(Z_{\xi}) = \xi$, so

$$\pi'(X)\omega=d\xi+i_{\xi}d\omega.$$

From the structure equation we get $d\omega(Z_{\xi}, Y) = -\frac{1}{2}[\omega(Z_{\xi}), \omega(Y)] + \Omega(Z_{\xi}, Y)$ for any $Y \in \mathbf{X}(P)$. But $\Omega(Z_{\xi}, Y) = 0$ since Z_{ξ} is vertical. So

$$d\omega(Z_{\xi},Y) = -\frac{1}{2}[\omega(Z_{\xi}),\omega(Y)] = -\frac{1}{2}[\xi,\omega(Y)] = -\frac{1}{2}[\xi,\omega](Y).$$

Hence $i_{\xi}d\omega = d\omega(Z_{\xi}) = -\frac{1}{2}[\xi, \omega]$; and $L_{\xi}\omega = d\xi + \frac{1}{2}[\omega, \xi] = D_{\omega}\xi$.

We want to compute these representations under the identification (2.1). Denote the components of the right action $R: P \times G \to P$ by $R_a: P \to P$, $R_a(p) = R(p, a)$ and $R_p: G \to P$, $R_p(a) = R(p, a)$.

PROPOSITION 4.4. Let $\phi \in \mathbf{G}$ and $\tau \in \mathrm{Gau}(P)$ such that $\phi(p) = p \cdot \tau(p)$ (i.e., $\phi \cong \tau$ under the isomorphism (2.1)). For any $\Phi \in \Lambda^1(P, V)$ we have

$$\pi(\phi)\Phi(p) = (\phi^{-1})*\Phi(p) = R_{\tau^{-1}(p)}^*\Phi(p) + (R_p \circ \tau^{-1})\Phi(p).$$

Proof. We have $\phi = R \circ (\mathrm{id}_p, \tau)$ and $\phi^{-1} = R \circ (\mathrm{id}_p, \tau^{-1})$. Let $\Phi \in \Lambda^1(P, V)$ and $v \in T_p P$. Then

$$\begin{split} (\phi^{-1})^*\Phi(p)(v) &= \left(R \circ \left(\mathrm{id}_p, \tau^{-1}\right)\right)^*\Phi(p)(v) \\ &= \Phi\left(R(p, \tau^{-1}(p))\left(T_p\left(R \circ \left(\mathrm{id}_p, \tau^{-1}\right)\right)(v)\right). \end{split}$$

But

$$\begin{split} T_p\Big(R\circ \big(\mathrm{id}_p,\tau^{-1}\big)\Big)(v) &= T_{(p,\,\tau^{-1}(p))}R\Big(v,\,T_p\tau^{-1}(v)\Big) \\ &= T_{1(p,\,\tau^{-1}(p))}R(v) + T_{2(p,\,\tau^{-1}(p))}R\Big(T_p\tau^{-1}(v)\Big) \\ &= T_pR_{\tau^{-1}(p)}(v) + \big(T_{\tau^{-1}(p)}R_p\big)\big(T_p\tau^{-1}(v)\big) \\ &= T_nR_{\tau^{-1}(p)}(v) + T_n\big(R_p\circ\tau^{-1}\big)(v). \end{split}$$

Hence

$$\begin{split} (\phi^{-1})^* \Phi(p)(v) &= \Phi(p \cdot \tau^{-1}(p)) \big(T_p R_{\tau^{-1}(p)}(v) \big) \\ &+ \Phi(p \cdot \tau^{-1}(p)) \big(T_p \big(R_p \circ \tau^{-1} \big)(v) \big) \\ &= \Phi(R_{\tau^{-1}(p)}(p)) \big(T_p R_{\tau^{-1}(p)}(v) \big) \\ &+ \Phi(R_p(\tau^{-1}(p)) \big(T_p \big(R_p \circ \tau^{-1} \big) \big)(v) \big) \\ &= \big(R_{\tau^{-1}(p)}^* \Phi(p)(v) + \big(R_p \circ \tau^{-1} \big)^* \Phi(p)(v). \end{split}$$

As a special case we get:

COROLLARY 4.5. The gauge group Gau(P) acts on $A \subset \Lambda^1(P, g)$ by

$$\tau \cdot \omega(p) = \operatorname{Ad}_{\tau^{-1}} \circ \omega(p) + (\tau^{-1}) * \Theta, \quad \tau \in \operatorname{Gau}(P), \omega \in \mathbf{A},$$

where Θ is the canonical Maurer-Cartan form on G; i.e., Θ is the left invariant g-valued 1-form on G determined by $\Theta(X) = X$, for all $X \in g$.

Proof. (1) For any $\tau \in \text{Gau}(P)$ let ϕ be the corresponding element in G, so $\tau \cdot \omega = (\phi^{-1})^*\omega$. Since $\omega \in A$ we have $R_{\tau^{-1}(p)}^*\omega(p) = \text{Ad}_{\tau^{-1}(p)}\omega(p)$.

(2) For any $X \in g$ let $\xi \in gau(P)$ such that $X = Z_{\xi}$. Then

$$R_n^*\omega(X(e)) = \omega(R_{n^*}X(e)) = \omega(Z_{\xi}(p)) = Z_{\xi}(p) = X(p),$$

where $e = \mathrm{id} \in G$. Hence $R_p^* \omega = \Theta$ and $(R_p \circ \tau^{-1})^* \omega = (\tau^{-1})^* \Theta$.

We express 4.5 in local coordinates $\{U_{\alpha}\}$ of M. Let $g_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to G$ be the corresponding transition functions. For each α let $s_{\alpha}\colon U_{\alpha}\to P$ be a local section defined by $s_{\alpha}(x)=g_{\alpha}^{-1}(x,e),\ e\in G$ the identity. Let $\Theta_{\alpha\beta}=g_{\alpha\beta}^{*}\Theta$ and $\omega_{\alpha}=s_{\alpha}^{*}\omega$ be the induced g-valued 1-forms on $U_{\alpha}\cap U_{\beta}$ and U_{α} respectively. Then

$$\omega_{\beta} = \operatorname{Ad}_{g_{\alpha\beta}^{-1}} \omega_{\alpha} + g_{\alpha\beta}^* \Theta = \operatorname{Ad}_{g_{\alpha\beta}^{-1}} \omega_{\alpha} + \Theta_{\alpha\beta}.$$

If in addition $G = Gl(n, \mathbb{R})$ then the change under gauge transformations becomes

$$\omega_{\beta} = g_{\alpha\beta}^{-1} \omega_{\alpha} g_{\alpha\beta} + g_{\alpha\beta}^{-1} dg_{\alpha\beta}.$$

This action can be written as

$$g \cdot A = g^{-1}Ag + g^{-1} dg$$

where A denotes the vector potential and g the gauge transformation.

5. The BRS cohomology

Recall the Chevalley-Eilenberg cohomology of a Lie algebra with respect to a representation [4]: Let

$$\sigma: \mathbf{g} \to \operatorname{Hom}(W)$$

be a representation of the gauge algebra \mathbf{g} in a not necessarily finite dimensional W and denote by $C^q(\mathbf{g}, W)$ the space of W-valued q-cochaines, $C^0(\mathbf{g}, W) \equiv W$ and $C(\mathbf{g}, W) = \sum_q C^q(\mathbf{g}, W)$. The coboundary operator

$$\delta \colon C^q(\mathbf{g}, W) \to C^{q+1}(\mathbf{g}, W)$$

is given by

$$(\delta\Phi)(X_0,...,X_q) = \sum_{i=0}^{q} (-1)^i \sigma(X_i) \Phi(X_0,...,\hat{X}_i,...,X_q) + \sum_{i< j} (-1)^{i+j} \Phi([X_i,X_j],...,\hat{X}_i,...,\hat{X}_j,...,X_q),$$

for $q = 0, \Phi \in C^0(g, W) = W, \delta \Phi$ is defined by $(\delta \Phi)(X) = \sigma(X)\Phi$.

Proposition 5.1. $\delta^2 = 0$.

The proof is analog to the one in finite dimensions (e.g., see [4] p. 115). The cohomology of this complex is the Lie algebra cohomology of g with respect to the representation (σ, W) . We define a representation θ of g on $W \otimes \Lambda g^*$ by

$$\theta(X) = \sigma(X) + \operatorname{ad}_{X}^{*}, X \in \mathfrak{g},$$

i.e., for $\Phi \in C^q(\mathbf{g}, W)$ and $X_0, \ldots, X_{q-1} \in \mathbf{g}$ we have

$$\theta(X)\Phi(X_0,...,X_{q-1}) = \sigma(X)\Phi(X_0,...,X_{q-1}) + \sum_{i} (-1)^{i+1}\Phi(\operatorname{ad}_X X_i, X_0,..., \hat{X}_i,...,X_{q-1}).$$

Furthermore for $X \in \mathbf{g}$ let i_X : $C^{q+1}(\mathbf{g}, W) \to C^q(\mathbf{g}, W)$ be given by

$$i_X\Phi(X_0,\ldots,X_q)=\Phi(X,X_0,\ldots,X_q).$$

A straightforward calculation gives $i_X \circ \delta + \delta \circ i_X = \theta(X)$, which implies $\delta \cdot \theta(X) = \theta(X) \cdot \delta$.

For the BRS transformation we consider a special case. Let $W = \Lambda(P, V)$ and $\sigma = \pi'$ as described in Section 4. Furthermore let V = g and $\rho = \mathrm{Ad}$ the adjoint representation of G on g. Denote $C^{q, p} = C^q(\mathbf{g}, \Lambda^p(P, g))$. We define the *BRS transformations* \mathbf{s} by

$$s: \mathbb{C}^{q, p} \to \mathbb{C}^{q+1, p}, \quad s = \frac{(-1)^{p+1}}{q+1} \delta.$$

From 5.1 we get:

Proposition 5.2. $s^2 = 0$.

The cohomology of the complex $\{C^{q, p}, s\}$ will be called *BRS cohomology* of the gauge algebra g and will be denoted by $H_{BRS}^*(g)$.

THEOREM 5.3. Let A be a vector potential and η a ghost field on P; i.e., $A \in \mathbf{A}$ and $\eta \in \mathbf{g}^*$ such that $\eta(X) = X$ for all $X \in \mathbf{g}$. Then

- $(1) \quad \mathbf{s}A = d\eta + [A, \eta]$
- (2) $s\eta = -\frac{1}{2}[\eta, \eta].$

Proof. (1) For q = 0 and p = 1 we have $\mathbb{C}^{q, p}C^0(\mathbf{g}, \Lambda^1(P, g)) \cong \Lambda^1(P, g)$ and $\mathbf{A} \subset \Lambda^1(P, g)$. Then $\mathbf{s} = \delta$ and for $A \in \mathbf{A}$, $X \in \mathbf{g}$ we get

$$(sA)(X) = (\delta A)(X) = \sigma(X) \cdot A = \pi'(X) \cdot A = D_A X = dX + \frac{1}{2}[A, X].$$

Also

$$(d\eta)(X) = d(\eta(X)) = dX$$
 and $[X, \eta](A) = [A, \eta(X)] = [A, X].$

Hence $sA(X) = (d\eta)(X) + \frac{1}{2}[A, \eta](X)$.

(2) For q=1 and p=0 we have $\mathbb{C}^{q,\,p}=C^1(\mathbf{g},\,\Lambda^0(P,\,g))$. So for $\eta\in\mathbf{g}^*$, i.e., $\eta(X)\colon P\to g,\,X\in\mathbf{g}$ we have $\eta\in\mathbb{C}^{1,\,0}$. Then $\mathbf{s}=-\frac{1}{2}\delta$, and for $X_0,\,X_1\in\mathbf{g}$ we get

$$(s\eta)(X_0, X_1) = -\frac{1}{2} (\pi'(X_0)\eta(X_1) - \pi'(X_1)\eta(X_0) - \eta([X_0, X_1]))$$

$$= -\frac{1}{2} (L_{X_0}X_1 - L_{X_1}X_0 - [X_0, X_1])$$

$$= -\frac{1}{2} [X_0, X_1]$$

$$= -\frac{1}{2} [\eta(X_0), \eta(X_1)]$$

$$= -\frac{1}{2} [\eta, \eta](X_0, X_1).$$

Remarks. $s^2 = 0$ is the Wess-Zumino consistency condition. The ghost field η is an anticommuting vector field with values in the Lie algebra g. The equations (1) and (2) in Theorem 5.3 are the BRS transformations.

REFERENCES

- C. BECCHI, A. ROUET and R. STORA, Renormalization of gauge groups, Ann. Physics, vol. 98, (1976), pp. 287-321.
- D. BLEECKER, Gauge theories and variational principles, Addison-Wesley, Reading, Mass., 1981.
- L. BONORA and P. COTTA-RAMUSINO, Some remarks on BRS transformations, anomalies and the cohomology of the lie group of gauge transformations, Comm. Math. Phys., vol. 87, (1983), pp. 589-603.
- 4. C. CHEVALLEY and S. EILENBERG, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., vol. 63, (1948), pp. 85-124.
- P. COTTA-RAMUSINO, Geometry of gauge orbits and ghost fields, Proc. Geometry and Physics, Florence, 1982, pp. 229–238, Pitagora, Bologna, 1983.
- 6. M. DUBOIS-VIOLETTE, M. TALON and C.M. VIALLET, New results on BRS cohomology in gauge theory, Phys. Lett. B, vol. 158, (1985), pp. 231-233.

- I.B. FRENKEL, H. GARLAND and G.J. ZUCKERMAN, Semi-infinite cohomology and string theory, Proc. Nat. Acad. Sci. USA, vol. 83, (1986), pp. 8442–8446.
- 8. D. KASTLER, R.STORA, A differential geometric setting for BRS transformations and anomalies I, II, J. Geom. Phys., vol. 3, (1986), pp. 437-482, 483-505.
- P.K. MITTER, Geometry of the space of gauge orbits and the yang-mills dynamical system, Proc. Recent Developments in Gauge Theories, Cargese, 1979, t'Hooft ed. Plenum, NewYork, 1980, pp. 265-292.
- 10. I.M. SINGER, Lectures UC Berkeley, 1983-84.
- 11. R. STORA, Algebraic structures of chiral anomalies, New perspectives in quantum field theory (Jaca 1985), World Scientific, Singapore, 1986, pp 309-342.
- C.M. VIALLETT, Some results on the cohomology of the Becchi-Rouet-Stora operator in gauge theory, Proc. Symp. Anomalies, Geometry, Topology, Argonne Natl. Lab., W.E. Bardeen, A.R. White, eds., World Scientific, Singapore, 1985, pp. 213-219.
- 13. B. ZUMINO, Lectures UC Berkeley, 1983-84.
- Anomalies, cocycles and Schwinger terms, Proc. Symp. Anomalies, Geometry, Topology, Argonne Natl. Lab., W.E. Bardeen, A.R. White, eds., World Scientific, Singapore, 1985, pp. 111–128.

EMORY UNIVERSITY
ATLANTA, GEORGIA