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THE GEOMETRY OF BRS TRANSFORMATIONS

BY

RUDOLF SCHMID

1. Introduction

In 1976 C. Becchi, A. Rouet and R. Stora [1] noticed that in gauge field
theories the effective Lagrangian, which is no longer gauge invariant, is still
invariant under a new class of transformations now called BRS transforma-
tions

sA drl + [A, 11, srl -1/2[r/, rl]

where A is the potential field (connection one form) and 1 is the ghost field.
We show how these BRS transformations can be interpreted as purely

differential geometric objects. We define a general BRS cohomology Hq, p of
the infinite dimensional Lie algebra g of infinitesimal gauge transformations
with respect to an induced representation. As a special case, namely with
respect to the adjoint representation, we obtain the classical BRS transforma-
tions as coboundary operator

$.cq,p cq+l,p

of this complex. The Wess-Zumino consistency condition is expressed as
s2 0, while the ghost field is interpreted as the canonical Maurer-Cartan
form on the infinite dimensional Lie group G of gauge transformations.

2. The gauge group G

Let r: P M be a principal bundle with structure group G (not necessar-
ily compact), i.e., we have a free fight action R: P G P of G on P,
denoted by p a R(p, a), p P, a G. The gauge group G is the group
of gauge transformations of P; i.e., G consists of all fiber preserving automor-
phisms of P

G={ Diff(e)l(p a)=b(p).a,r(k(p))=r(p),p P,a G}.
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G is a group under composition, hence a subgroup of Diff(P), the diffeo-
morphism group of P. Since gauge transformations preserve the fibers of P we
can realize each G by (p)--p. z(p), where z is a smooth map z:
P G satisfying (p a) a- l(p) a. Let

Gau(P) (z C(P, G)lz(p’ a) a-X’r(p)a, p P, a G}.
Gau(P) is a group under pointwise multiplication, hence a subgroup of the
"loop group" C(P, G).
The first observation is that the relation (p)=p. (p), G, z

Gau(P) defines a group isomorphism

(2.1) G=-Gau(P), 0

The gauge group G has still another interpretation in terms of associated
vector bundles, given by a left action

o’GXF--*F

of G on some manifold F. The twisted bundle r P Xa F is given
as follows: G acts on the right on P F by (p, x). a (p.a, p(a-1, x)),
x F. The corresponding orbit space P F is a smooth fiber bundle
over M, r: P /7 -o M, r[p, x] r(p), where [p, x] denotes the orbit
through (p, x) P F. Any smooth section s of r can be realized by
s(r(p)) p, ’(p)] where is a smooth map : P -o F satisfying (p a)

p(a-, "r(p)).
In our case let F G and p be the conjugation action p(a, b) aba- 1.

Then Ad(P) P G is a smooth bundle of groups (not a principal bundle)
over M and sections of Ad(P) can be multiplied pointwise, making the space
of sections C(Ad P) into a group,

c(ad P) -= {z: P Gl’r(p a) a-,r(p)a, p P, a G}.
Note that Ad(P) has a trivial subbundle P Z where Z is the center of G.
In general Ad(P) is not trivial but if G is abelian, then Ad(P) is a trivial
vector bundle over M. With this identification the gauge group G is canoni-
cally group isomorphic to the group C(Ad P);

(2.2) G --- C(Ad P).

To put a topology on G we complete the space of smooth sections C(Ad P)
with respect to the Sobolev Hs-norm and give G and Gau(P) the induced
topologies; denoting the corresponding spaces by Hs(Ad P), G,, Gaus(P). If
s > 1/2 dimM, then

(2.3) G -= H,(Ad V) --- Gau,(V)
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are smooth Hilbert manifolds with smooth group operations

(bl’ 2) --> 1 2: iGs X Js > ws, -"> -1: IG _. Cjs,

i.e., G is a smooth Hilbert Lie group (e.g., see [9]).

3. The gauge algebra g

The gauge algebras g is the Lie algebra of the gauge group G, i.e. the algebra
of infinitesimal gauge transformations on P. Again there are three different
interpretations of g.

(A) The Lie algebra g of the Lie group G is the space of all G-invariant,
vertical (i.e., tangent to the fibers) smooth vector fields X on P, i.e.,

g= ( X XOO(P)IR*aX= X, X(p) g, a G, p P }

where g is the Lie algebra of G and Ra(P) R(p, a). Under the commuta-
tor bracket g is a Lie subalgebra of Xoo(P), the Lie algebra of all smooth
vector fields on P.

(B) The Lie algebra gau(P) of the Lie group Gau(P) is the Space of all
Ad-invariant g-valued functions on P, i.e.

gau(P) { C(P, g)l(P" a) Ada-,(p ), p P, a g},

where Ad is the adjoint representation of G on g. Under pointwise bracket
gau(P) is a Lie subalgebra of the "loop algebra" C(P, g).

(C) Let ad(P) denote the vector bundle associated to the adjoint action of
G on g;

ad(V) =P6gM.

The space of sections Coo(adP) is a Lie algebra under pointwise bracket; it is
the Lie algebra of the Lie group Coo(Ad P).

PROPOSITION 3.1.
cally isomorphic.

The Lie algebras g, gau(P), and Coo(adP) are canoni-

Proof (1) Any section s C(adP) can be identified with a map
P - g satisfying (p a) Ada-X(p) i.e., gau(P). Given any

gau(P) we define a section s Coo(adP) by s(r(p)) [p, (p)].
(2) For any gau(P) define Z g by

dZ (p) R(p,expt(p)), (= (p)*(p));
t--O
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i.e., Z is the fundamental vector field on P generated by g. It is invariant
iff (p. a)= Ad,,-l(p). This defines an isomorphism between gau(P)
and g. a
To topologize g accordingly, we complete the space of smooth sections

C(adP) with respect to the H-Sobolev norm and give g and gau(P)
the induced topologies; denoting the corresponding spaces by H(adP), g,
gau (P). If s > 1/2 dimM then

(3.1) gs--- Hs(adP) --- gaul(P)are Hilbert spaces.
There is a natural exponential map Exp: gaul(P) Gaul(P) defined by

(Exp ) ( p ) exp( ( p )),

where exp: g---, G is the exponential map of G. The map Exp is a local
diffeomorphism form a neighborhood of zero in gau,(P) onto a neighborhood
of the identity in Gau,(P). Smoothness of Exp follows from the fl-lemma"
Exp ’,exp: H(P, g) --* Hs(P, G), "exp() exp, . Summarizing we have:

PROPOSITION 3.2. For s > 1/2 dimM, G, -- Gaus(P) =- Hs(AdP)
smooth Hilbert Lie groups with Lie algebras gs -- gau,(P) --- Hs(adP).

are

Remark. We will switch between these three interpretations of gauge
transformations as dements of either G, Gau(P), or C(Ad P) and translate
important facts from one picture to the others. Typically we will denote
dements of G by , dements of Gau(P) by and elements of C(Ad P) by s.
As example, the corresponding exponential map Exp" gau,(P) --, G, is given
by (Exp f)(p) =p. exp(f(p)).

4. Representation of G and g on A(P, V)

Let O be a representation of G on a finite dimensional vector space V and
let A(P, V) be the space of V-valued equivariant k-forms on P, i.e.
satisfying R* o(a-X) , a G. Let

A(e, v) EAr(e, v).
k

For h g let Z denote the fundamental vector field on P generated by h
and denote by h and Lh the operators interior product izh and Lie derivative

Lzh respectively, extended to the space A(P, V) -- A(V) (R) V; in
z (R) id, Lh Lz (R) id. Consider the derived representations p’ of g on
A(V, P). For any A(P, V) we have p’(h)O --Lh, h g. Then G is
represented on A(P, V) by ,r(O)O (-1),, G.
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Let X g and gau(P) such that X(p) Z<,)(p), i.e., X -= under
the identification 3.1. Let L Lz and i z.

PROPOSITION 4.1. The derived representation ,r’ of g on A(P, V) is given by

,r’(X)(I) L,(I), X g, (I) A(P, V).

Proof The flow of Z is given by exp t hence

d,r’(X)O ,r’()O -l,.orr(exp t)O
d
-lt_o(eXp(-t))*O

We put a Hilbert space structure on A(P, V) as follows: For s > 1/2 dimP
let N(P) denote the completion of the space of smooth vector fields N(P)
under the Sobolev H-norm. X is a Hilbert space. Then the space A(P, V) is
the space of all continuous V-valued and equivariant, skew k-linear maps on
X(P). With the induced topologies A(P, V) and A(P, V) EA(P, V)
are Hilbert spaces.
The representation r induces an action on G of A(P, V): . r()
(-)*. This action is smooth since ,-t and pull back are both

smooth.

Special subrepresentations. Let V g and p Ad, the adjoint representa-
tion of G in g. For Ak(p, g) and xI, AY(P, g) we have

[(I), I’] (I) ^ I’ (--1)JkI ^ (I) Ai+k(P, g);

e.g., for to AI(P, g) we get 1/2[ to, to] to ^ to.

Identifying g with A(P, g), i.e., with Ad-equivariant g-valued functions on
P, we get the next result.

COROLLARY 4.2. The derived representation r’ of g on A(P, g) -= g is the
adjoint representation of g:

r’(X)(Y) adx(Y) IX, Y], X, Y g.

Denote by A the space of connection 1-forms (or gauge potentials) on P;
i.e., to A iff to is a g-value 1-form on P satisfying R a*to Ada-to and
to(Zh) h g. For fixed too A we write to too + with A(P, g);
i.e., we regard A as affine space A too + AI(P, g) with tangent space
T,oA A(P, g). With the induced topology from A(P, g) we denote A by
A
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The space A is invariant under the induced action of G. Indeed,

R*a(q’l’ckto ) R*(qb-1)*to (b-1 Ra)*to--(Ra qb-1)* ato

(,-1)*(Ada_xto) Ada_x(,-1),to Ada-l(,n’to ).

and

(**)(z)(p) (,-x),(z)(p) (**z)(p)

(d -l(p.expth))to " ,t=0

=to -" t--O

Let D denote the exterior covariant derivative with respect to to A"

D: Ak(P, g) Ak+I(P, g), Do(O) de + 1/2[0,

The curvature 2-form (or gauge field) f of to, defined by f D,to A2(p, g)
satisfies the structure equation of Maurer-Cartan 2(X, Y)= do(X, Y)
+ 1/2[to(X), to(Y)], X, Y X(P), written compactly as fl dto + 1/2[to, to], and
the Bianchi identity Dfl2 0.

PROPOSITION 4.3. The induced action of the derived representation ,r’ of g
on A is given by

r’( X)o 1), X g, o A,

where X Z, 1 gau(P).

Proof. From Proposition 4.1 we have r’(X)to L,to. But L,to ditto +
idto and i,to to(Z) , so

r’( X)to d, + idto.

From the structure equation we get dto(Zv Y) 1/2[to(Z,), to(Y)] +
f(Z, Y) for any Y X(P). But f(Z, Y) 0 since Z is vertical. So

a(z, r) -[(z), (r)] -1/2[, (r)] -1/2[, ](r).

Hence idto dto(Z) 1/2[, to]; and Lto d + 1/2[to, 1 D. m
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We want to compute these representations under the identification (2.1).
Denote the components of the fight action R: P G P by R a" P
P, Ra(P) R(p, a) and Rp: G P, R,(a) R(p, a).

PROPOSITION 4.4. Let q G and Gau(P) such that (p) p ,( p )
(i.e., do -- under the isomorphism (2.1)). For any {} AI(p, V) we have

(,-1),(p) o,-l(p)(p) + (Rp "r 1){I)(p)

Proof. We have q,=Ro(id,,,) and -t=Ro(id,,*- t). Let
AI(p, V) and v T,P. Then

(q,-)**(p)(v) (R o(id,, -))*(p)(v)
d(R(p,,r-(p))(T(Ro(id,, ’r-X))(o)).

But

Hence

As a special case we get:

COROLLARY 4.5. The gauge group Gau(P) acts on A c AI(p, g) by

. o(p) Ad,-o o(p) + (,-l)*O, Gau(P), A,
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where 0 is the canonical Maurer-Cartan form on G; i.e., 0 is the left inoariant
g-oalued 1-form on G determined by O(X) X, for all X g.

Proof. (1) For any Gau(P) let be the corresponding dement in G,
so . (-x)*t. Since t A we have R*-lt,)t(p) Ad,-l,)t(p).

(2) For any X g let gau(P) such that X Z. Then

R,o(X(e)) o(R,,X(e)) o(Z(p)) Z(p) X(p),

where e id G. Hence Rt O and (R, o q.-1), (,/.-1),O. []

We express 4,5 in local coordinates (Ua} of M. Let gao: U N U G be
the corresponding transition functions. For each a let s,:U. P be a local
section defined by s(x) ggt(x, e), e G the identity. Let O goO and

s* be the induced g-valued 1-forms on Ua N U and U respectively.
Then

If in addition G GI(n,R) then the change under gauge transformations
becomes

This action can be written as

g A g-tAg + g-t dg

where A denotes the vector potential and g the gauge transformation.

5. The BRS cohomology

Recall the Chevalley-Eilenberg cohomology of a Lie algebra with respect to
a representation [4]: Let

o: g -, Horn(W)

be a representation of the gauge algebra g in a not necessarily finite dimen-
sional W and denote by cq(g, W) the space of W-valued q-cochaines,
C(g, W) W and C(g, W) .qCq(g, W). The eoboundary operator
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is given by

q

(/)(Xo,..., Xq) E (-I)’o(X)(Xo,..., ,..., Xq)
i--0

+ E (-1)’+J([ X,, x/l,..., .,,,..., ),..., Xq),
i<j

for q 0, C(g, W) W, 8 is defined by (8)(X) o(X).

PROPOSITION 5.1. /2 0.

The proof is analog to the one in finite dimensions (e.g., see [4] p. 115). The
cohomology of this complex is the Lie algebra cohomology of g with respect to
the representation (, W). We define a representation 0 of g on W (R) Ag* by

O(X) =o(X) +ad,, Xg,

i.e., for Cq(g, W) and Xo,..., Xq_ g we have

O( X)+( Xo, Xq_l) l( X)O( Xo,. Xq_l)
+ Y’.(-1)’+X(adx X,, Xo,..., ,,..., Xq-1).

Furthermore for X g let ix: Cq+ l(g, W) cq(g, W) be given by

+(x, x0,...,

A straightforward calculation gives x.6 + . ix= 0(X), which implies. o(x) 0(x). .
For the BRS transformation we consider a special case. Let W A(P, V)

and o r’ as described in Section 4. Furthermore let V g and O Ad the
adjoint representation of G on g. Denote Cq’p Cq(g, A’(P, g)). We define
the BRS transformations s by

S" Cq’p -’ Cq+l’p s m
(3’--1/’+1.
q+l

From 5.1 we get:

PROPOSITION 5.2. S2 0.

The cohomology of the complex {Cq, ’, s} will be called BRS cohomology of
the gauge algebra g and will be denoted by HRs(g).
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THEOREM 5.3. Let A be a vector potential and rl a ghost field on P; i.e.,
A A and rl g* such that l(X)= Xfor all X g. Then

(1) sA d/+ [A,
(2) s,/= 1/2[,/, /].

Proof (1) For q 0 and p 1 we have cq, PC(g, AI(p, g)) -= AI(p, g)
and A c AI(P, g). Then s and for A A, X g we get

(sA)(X) (SA)(X) o(X) A ,r’(X) A DAX= dX + 1/2[A, X 1.

Also

(drl)(X) d(rl(X)) dX and [X,,I(A) [A,,(X)I [A, xl.

Hence sA(X) (d,/)(X) + 1/2[A, r/](X).
(2) For q 1 and p 0 we have Cq, P Cl(g, A(P, g)). So for r/ g*,

i.e., /(X)" P--,g,Xg we have r/C1,. Then s= 1/28, and for X0,

X g we get

()(Xo, Xl) -(’(Xo)(x) ,,(Xl)(Xo) ([ Xo, xx]))
-(z,,,oX z,,Xo Ixo, x])

--[Xo, Xx]
[(x0), (x)]
[,,,](Xo, x).

Remarks. S2"- 0 is the Wess-Zumino consistency condition. The ghost
field r/is an anticommuting vector field with values in the Lie algebra g. The
equations (1) and (2) in Theorem 5.3 are the BRS transformations.
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