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1. Introduction

Geodesic symmetries on a Riemannian manifold (M, g) are local diffeo-
morphisms which play an important role in the treatment of the geometry of
(M, g). Locally symmetric Riemannian manifolds are manifolds with isomet-
ric local geodesic symmetries. In [3] it is proved that "isometric" may be
replaced by "harmonic" to characterize these spaces. Further, (local) reflec-
tions with respect to a curve are considered in [11] and the case of harmonic
reflections has been studied in [1], [10].

All the results in these papers show that there is a strong relation between
harmonic and isometric reflections. The main purpose of this paper is to
clarify this relation. More precisely, the study of reflections with respect to a
submanifold has been started in [2], [9]. In this paper we study harmonic
reflections with respect to a submanifold and we will show that in the analytic
case a reflection with respect to a submanifold is harmonic if and only if it is an
isometry. As a corollary we obtain a result for holomorphic and anti-holomor-
phic reflections on a quasi-K.hler manifold.

2. Preliminaries

In this section we give a short description of the basic material we shall use
in the rest of the paper. (See [6], [7] for more details.)

Let (M, g) be a Riemannian manifold of class COO and B a (connected)
topologically embedded submanifold which is relatively compact. Let m B
and let (Et,..., E#), n dim M, be a local orthonormal frame field of
(M, g) defined along B in a neighborhood of m. Let q dim B and special-
ize the moving frame such that E,..., Eq are tangent vector fields and
Eq+ t,..., E,, are normal vector fields. Further, let (yt,..., yq) be a system of
coordinates in a neighborhood of m in B such that

0 (m) E(m), l,..., q,
Oy
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and let (xl,..., x") be a system of Fermi coordinates with respect to m,
(yl,..., yq) and (Eq+l,..., En). These coordinates are defined in an open
neighborhood U,,, of m in M. More precisely we have

x exp taEa =yi, 1,...,q,
q+l

x" exp tE t", a q + l,...,n,
q+l

where v T-LB is the normal bundle of B.
Choose a fixed normal unit vector u at m, u TB c T,M, and consider

the geodesic "t(t) exp,,(tu). We have

y(0) =m, y’(0) =u.

We specialize now the frame field (E,..., E, } in such a way that

e.(m) u v’(o).

Next, consider the frame field {e(t),..., e,(t)} along y(t) obtained by
parallel transport of { E(m),..., E,(rn)). Further, let Y,., Ya, 1,..., q,
a =q + 1,..., n- 1, denote the Jacobi vector fields along , with initial
conditions

Y(O) E,(m), Y’(O) V,,-x
Ya(O) O, ra’(O) =Ea(m),

where V denotes the Riemannian connection of (M, g). Note that

(1) Y/(t) Ox--- v(t)’ Ya(t) =t-d ,(t)"

Define the endomorphism-valued function D,(t) by

(2) Ya(t) =Du(t)e, a= l,...,n-1.

Then the Jacobi equation yields

(3) zV+ 0

where t R(t) is the endomorphism-valued function on (’(t))+/-c Tv(t)M
defined by

R(t)x-- R,,(t)xY’(t), x - (y’(t)) +/-
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R denotes the Riemann curvature tensor on (M, g) defined by

Rxr Vtx, r [Vx, Vy]

for all tangent vectors X, Y of M.
To obtain the initial conditions for Du(t), where u is fixed, we use some

facts about submanifolds. Denote by V the Riemannian connection of B.
Further, let X, Y be tangent vector fields and N a unit normal vector field
along an open domain in B. Then we have the orthogonal decompositions

VxY xY+ TxY, vxN T(N ) X +

where TxY T(X, Y) is the second fundamental form operator of B, T(N)
the shape operator of B corresponding to the normal vector N, and X7"L is the
normal connection along B. Note that

g(T(N)X, Y) -g(r(x, r), N).

Also, we use the operator _t. defined in [6], [7] by

-I-xN VN.
Now using the initial conditions for Ya, we obtain the following initial

conditions (in the matrix form with respect to the basis { El,..., E,_I}m of
(u) c TM)"

(4) Du(O) 0 0 D,(O) _, 2. (u) I

where

T(u)ij g(T(u)Ei,

-I-(U)ia g(.l- giEa, En)(m ).

In the rest of the paper we will consider the local diffeomorphism

B: P ’ IPB(P), eXPm(tU) - eXPm(--tu)

for u TmB, Ilull 1. tps is called the (local) reflection with respect to the
submanifold B. Using the Fermi coordinates, tps is locally given by

q0B (X xq xq+ n,X ) ’ (X1, X q, Xq+l
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3. Harmonic reflections

Let (M, g) and (N, h) be two Riemannian manifolds with metrics g and h
and let f: (M, g) (N, h) be a smooth map. Then the covariant differential
X7 (df) is called the secondfundamentalform and the tension fieM of f, denoted
by ’(f), is the trace of X7 (df). We say f is harmonic if r(f) 0.
To express this condition analytically, let U c M be a domain with coordi-

nates (xl,..., xm) and V c M a domain with coordinates (yl,..., yn). Then f
can be locally represented by y= f(xt,..., xm), a 1,..., n. Further we
have

(5) v (df). _r afv af___, af
iJ-xk + Fa#(f) Ox "ffx

i, j 1,..., m and j 1,..., n. Here MFi and NF# denote the Christoffel
symbols for (M, g) and (N, h) respectively. Hence, f is harmonic if and only
if

(6) ,(f )v giJ(v(df ))ij O.

For more details about harmonic maps we refer to [4], [5].
From these remarks we now get easily, using Fermi coordinates,

THEOREM 1. The local reflection Ps with respect to the submanifold qs is
harmonic if and only if

(7)
k giaV k abV

kz(qs)k(p) ( gijv(dqs)ij + 2 (dqtl)ia + g (dqs)ab }(P) 0,

(8)
Cz(qs)C(p) ( gijv(dqs)ij + 2giav(dqB)ia + gabv(dtpl)ab)(p) O,

for i, j, k 1,..., q and a, b, c q + 1,..., n, where

(91)

(92)

(93)
(94)

(9)
(96)
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It is worthwhile to note that (9t), (93), (9) are odd functions and (92), (94), (96)
are even functions.

In what follows we will need to compute the Christoffel symbols with
respect to a system of Fermi coordinates. Therefore we shall use the well-known
expression

(10) F. -- 4
t- Ox Ox

4. First result

To compute (10) we use power series expansions for the components of g
with respect to a system of Fermi coordinates. We have

(0gij g
Oxi, Oxj gia g

OXi, OXa (ogab g Oxa, 19Xb

i, j 1,..., q; a,b q + 1,..., n 1, and

gin gan O, gnn 1.

Using (1), we get for p exp,(tu), u . TB,

(11)

gi(p) g(D.(t)ei, D.(t)ey),

.gia(P) g(Du(t)ei, Du(t)ea),
1gab(P) -g(Du(t)ea, Du(t)%)"

Finally, using (3) and the initial values (4), together with a rotation of
{ Eq+l,..., E, } at m, we obtain with T T(u), +/-(u) .L and R Ru.u:

(12)

gij(P) g(Ei, Ej)(m) + 2tg(TEi, Ej)(m) + O(t2),
2

gia(P) -tg(t-I-E,, Ea)(m) "t2g(RE,, Ea)(m) + O(t3),
2

ga(P) g(Ea, E)(m) Tg(REa, Ea)(m) + O(t3),

where i, j 1,..., q and a, b q + 1,..., n. (Note that u TB, Ilull 1
is now arbitrary with respect to this basis.)
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From this we easily get

(13)

gij(p) g(Ei, Ej)(m).2tg(TEi E:)(m) + O(t2),
2

gia(p) tg(t_l_Ei, Ea)(m) + .t2g(REi, Ea)(m) + O(t3),

g"b(p) g(Ea, Eb)(m) + O(t2).

Finally, using (10), (12) and (13) we get for u En(m):

(14)

-g(re,, Ej)(m) + O(t),

ina(p) g(t.l. Ei, Ea)(m ) -I- tg(REi, Ea)(m ) + O(t2),
ra" (p) o(t).

From this we obtain our first result:

THEOREM 2. If the reflection Ps with respect to the submanifold B is
harmonic, then B is totally geodesic.

Proof Using (8) and the formulas above we compute the first order term
in (B)n for u En(m). After an easy calculation one gets

q_, g(TE, E)2(m) 0
i,j-’l

for all m B and all u T,, B. Hence T 0 which means that B is totally
geodesic.

5. The main theorem

In the rest of this paper we suppose that (M, g), B and the embedding are
analytic. In this case we prove"

THEOREM 3. The reflection pB with respect to the submanifold B is harmonic

if and only if it is isometric.

Proof. Since an isometry is always harmonic, we have only to prove the
converse. To do this we have to prove $g g, i.e.

(15)
gij(B(P)) gij(P), gab(q)Ja(P)) gab(P),

gia(B(P)) --gia(P)"
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As in Section 4 we put p exp,,(tu), u TmB, Ilull 1. Then (15) means
that we have to prove that the gij, gab are even functions and the gia are odd
functions of t.
To do this we use the following result.

LEMMA 4. With respect to Fermi coordinates, with u En(m), if the gij and
gab are even functions up to order k + 1 and the gia are oddfunctions up to order
k+ 1, we have

(16) 2(Fa")(,) (k + 3)(gab)(,+), 2(F/)(/,)= (k + 1)(gij)(/,+x)

if k is even and

(17) 2(I’i)(/)-- (k + 2)(gia)(k+l)

if k is odd. Here the index indicates the order of the coefficient in the Taylor
expansion.

Proof First, by our hypothesis and the rule for obtaining the elements of
the inverse of a matrix, the giJ, gab are even functions of up to order k + 1,
and the gia are odd functions of t up to order k + 1.

Further, using gVgv/ i, we get

(gab)(k+l)=--(gab)(k+l), (gij)(k+l)=--(gij)(k+l)

if k is even and

( gia)(k+l) ( gia)(k+l)

if k is odd.
Finally, we use (10) and a method similar to that used in Section 4,

combined with the symmetry properties of the curvature tensor R and its
covariant derivatives, to obtain the formulas (16) and (17). (We omit the
straightforward computations.)
Now we return to the proof of the main theorem. Suppose we have the

hypotheses of Lemma 4 and let (pn be harmonic. Then it follows from (8) and
Lemma 4 that the vanishing of ()9_,+) yields

(k + 1)E (gq (,+) + (k + 3) E (gab)(2k+l)= 0
i,j a,b

if k is even and

E ( gia)(2k + 1) 0
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if k is odd. Using now induction on k (k 0 has been considered in Section
4) we obtain the required result.

6. Holomorphic and anti-holomorphic reflections

Let (M, g, J) be an almost Hermitian manifold. Then (M, g, J) is said to
be a quasi-Kihler manifold if

(VxJ)Y + (TjxJ)JY 0

for all tangent vector fields X, Y. It is proved in [8] that any holomorphic and
anti-holomorphic map from a quasi-Kihler manifold to a quasi-Kihler mani-
fold is harmonic. From this and the main theorem we have:

THEOREM 5. Let qB be a holomorphic or anti-holomorphic reflection with
respect to a submanifoM B of a quasi-Kiihler rnanifoM (M, g, J). Then qB is an
isometry.

This extends a result of [2]. Note that it is proved in [2] that when n is
holomorphic, then B is a holomorphic submanifold. Using a similar procedure
as in [2], it is easy to show that when is anti-holomorphic, then B is a
totally real submanifold and dim B 1/2 dim M.

7. Remark

The proof of our main theorem is much easier when the manifold (M, g) is
locally symmetric. In this case one may use the following result.

L.MMA 6 [2]. Let (M, g) be a locally symmetric Riemannian manifold and B
a submanifoM. Then the reflection qn is an isometry if and only if

(i) B is totally geodesic and
(ii) R uou is normal to B for all u, v T -B.

The proof of our result follows then easily from Theorem 2 and only the
first step in the induction procedure.
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